
Auton Robot (2008) 24: 49–67
DOI 10.1007/s10514-007-9060-9

Fault detection in autonomous robots based on fault injection
and learning

Anders Lyhne Christensen · Rehan O’Grady ·
Mauro Birattari · Marco Dorigo

Received: 23 January 2007 / Accepted: 27 September 2007 / Published online: 17 November 2007
© Springer Science+Business Media, LLC 2007

Abstract In this paper, we study a new approach to fault de-
tection for autonomous robots. Our hypothesis is that hard-
ware faults change the flow of sensory data and the ac-
tions performed by the control program. By detecting these
changes, the presence of faults can be inferred. In order to
test our hypothesis, we collect data from three different tasks
performed by real robots. During a number of training runs,
we record sensory data from the robots while they are op-
erating normally and after a fault has been injected. We use
back-propagation neural networks to synthesize fault detec-
tion components based on the data collected in the training
runs. We evaluate the performance of the trained fault detec-
tors in terms of number of false positives and time it takes
to detect a fault. The results show that good fault detectors
can be obtained. We extend the set of possible faults and go
on to show that a single fault detector can be trained to de-
tect several faults in both a robot’s sensors and actuators. We
show that fault detectors can be synthesized that are robust
to variations in the task, and we show how a fault detector
can be trained to allow one robot to detect faults that occur
in another robot.

Keywords Fault detection · Fault injection · Learning ·
Model-free · Mobile robots

A.L. Christensen (�) · R. O’Grady · M. Birattari · M. Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles,
50, Av. Franklin Roosevelt, CP 194/6, 1050 Brussels, Belgium
e-mail: alyhne@iridia.ulb.ac.be

R. O’Grady
e-mail: rogrady@ulb.ac.be

M. Birattari
e-mail: mbiro@ulb.ac.be

M. Dorigo
e-mail: mdorigo@ulb.ac.be

1 Introduction

As more and more robots are introduced in space, industry,
and private homes, fault detection is becoming an increas-
ingly important issue to address. When a robot stops exhibit-
ing its intended behavior, either due to an internal fault or to
external factors, it can become a costly and/or a dangerous
affair. The problem is often exacerbated if the fault is not
detected in a timely manner. In a recent paper (Carlson and
Murphy 2003), the reliability of seven mobile robots from
three different manufacturers was tracked over a period of
two years and the average mean time between failures was
found to be 8 hours. The result suggests that faults in mobile
robots are quite frequent.

Technically, a fault is an unexpected change in system
function which hampers or disturbs normal operation, caus-
ing unacceptable deterioration in performance (Isermann
and Ballé 1997). A fault tolerant system is capable of con-
tinued operation, possibly at a degraded performance, in
the event of faults in some of its parts. Fault tolerance is
a sought-after property for critical systems due to economic
and/or safety concerns. What we study in this paper is the ac-
tivity known as fault detection in autonomous robots. Fault
detection is a binary decision process confirming whether or
not a fault has occurred in a system. Other aspects of fault
tolerance include fault diagnosis, namely determining the
type and location of faults, and protection which comprises
any steps necessary to ensure continued safe operation of the
system (Isermann and Ballé 1997).

Fault detection can be achieved by adding special-
purpose hardware such as torque and position sensors (Terra
and Tinos 2001). Adding additional hardware increases cost
and complexity, and it is, therefore, something that we
would like to avoid in many cases. Reducing cost and com-
plexity would, for example, be crucial in projects such as the

50 Auton Robot (2008) 24: 49–67

National Aeronautics and Space Administration’s (NASA)
swarm missions, in which cooperating swarms of hundred
to thousands of small-scale autonomous robots explore the
solar system (Hinchey et al. 2004). Given the high number
of robots, simplicity and small size are high priorities. Simi-
larly, for domestic adoption of service and leisure robots, the
number and complexity of components have to be kept low
in order to reach a price point that allows for high market
penetration (Kochan 2005).

In this study, we propose a method for performing fault
detection for autonomous robots. Our method requires no
special fault detection hardware and relatively little compu-
tational resource to run the fault detection software. It relies
on recording sensory data, firstly over a period of time when
a robot is operating as intended, and secondly over a period
of time when various types of hardware faults are present.
Using knowledge of how the flow of information changes
after a fault has occurred, we are able to detect faults.

2 Related work

Fault detection is based on observations of a system’s behav-
ior (for an introduction see Isermann 1997). Deviations from
normal behavior can be interpreted as symptoms of a fault in
the system. A specific fault detection approach is a concrete
method for observation processing. A large body of research
in model-based fault detection approaches exists (Gertler
1988; Isermann and Ballé 1997). In model-based fault de-
tection some model of the system or of how it is supposed to
behave is constructed. The actual behavior is then compared
to the predicted behavior and deviations can be interpreted
as symptoms of faults. A deviation is called a residual, that
is, the difference between the predicted and the observed
value. In the domain of mobile autonomous robots, accurate
analytical models are often not feasible due to uncertain-
ties in the environments, noisy sensors, and imperfect actu-
ators. A number of methods have been studied to deal with
these uncertainties. Artificial neural networks and radial ba-
sis function networks have been used for fault detection and
diagnosis based on residuals (Vemuri and Polycarpou 1997;
Terra and Tinos 2001; Patton et al. 2000). In Skoundrianos
and Tzafestas (2004), for instance, the authors train multi-
ple local model neural networks to capture the input-output
relationship for the components in a robot for which fault
should be detected. The authors focus on detecting faults in
the wheels of a robot, and the input and the output are the
voltage to the motor driving a wheel and the speed of the
wheel, respectively. Supervised learning is used to train the
local model neural networks. During operation, the speeds
predicted by the local models are compared to the actual
speed and the residuals are computed.

Another popular approach to fault detection is to op-
erate with multiple global models of the system concur-
rently. Each model corresponds to the behavior of the sys-
tem in a given fault state, for example a broken motor, a
flat tire, and so on. The fault corresponding to a particu-
lar model is considered to be detected when that model’s
predictions are a sufficiently close match to the currently
observed behavior. Banks of Kalman filters have been
used for such state estimation (Roumeliotis et al. 1998;
Goel et al. 2000). In their basic form, Kalman filters are
based on the assumption that the modeled system can be
approximated as a Markov chain built on linear opera-
tors perturbed by Gaussian noise (Kalman 1960). Robot-
ics systems are, like many other real-world systems, inher-
ently nonlinear. Furthermore, discrete fault state changes
can result in discontinuities in behavior. Extensions, such
as the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF), overcome some of these limita-
tions. In EKFs the state transitions and the models can
be non-linear functions, but they must be differentiable
so that the Jacobian matrix can be computed. In UKFs,
a few sample points are picked and propagated through
the model allowing the mean and covariance to be es-
timated even for models comprised of highly non-linear
functions (Julier and Uhlmann 1997). EKFs and UKFs
have been extensively used for localization for mobile ro-
bots (Smith and Cheeseman 1986; Leonard and Durrant-
Whyte 1991; Ashokaraj et al. 2004), but in the domain of
fault detection and fault diagnosis for autonomous robots
these techniques are often used in combination with other
methods.

Dynamic Bayesian networks represent another technique
that does not require that the underlying phenomenon can be
reasonably modeled as a linear system (Lerner et al. 2000).
Recently, computationally efficient approaches for approxi-
mating Bayesian belief using particle filters have been stud-
ied as a means for fault detection and identification (Dear-
den et al. 2004; Verma et al. 2004; Li and Kadirkamanathan
2001). Particle filters are Monte Carlo methods capable of
tracking hybrid state spaces of continuous noisy sensor data
and discrete operation states. The key idea is to approxi-
mate the probability density function over fault states given
the observed data by a swarm of points or particles. One
of the main issues related to particle filters is tracking mul-
tiple low-probability events (faults) simultaneously. A scal-
able solution to this issue has recently been proposed (Verma
and Simmons 2006).

Artificial immune-systems (AIS) are a biologically in-
spired approach to fault detection. An AIS is a classifier that
distinguishes between self and non-self (Forrest et al. 1994).
In fault detection, “self” corresponds to fault-free opera-
tion while “non-self” refers to observations resulting from
a faulty behavior. AIS have been applied to robotics, see for

Auton Robot (2008) 24: 49–67 51

example (Canham et al. 2003) in which fault detectors are
obtained for a Khepera robot and for a control module of a
BAE Systems Rascal robot. The two systems are first trained
during fault-free operation and their capacity to detect faults
is then tested.

Marsland et al. have suggested using a novelty filter based
on a clustering neural network and habituation, for inspec-
tion and fault detection (Marsland et al. 2005). Through un-
supervised learning a novelty filter learns to ignore sensory
data similar to data previously perceived. The authors eval-
uated the approach in various configurations using a Nomad
200 robot placed in various environments and the robot cor-
rectly detected environmental differences.

The approach that we propose in this study relies on ar-
tificial neural networks that are trained to discriminate be-
tween behaviors when a robot is operating normally and be-
haviors when the presence of a fault is affecting the robot’s
performance. We rely on a single neural network, as opposed
to the multiple local model neural networks and the multi-
model approaches mentioned above. We do not use explicit
or analytical modeling of the system (which can be com-
plicated for all but the simplest systems). In contrast with
the studies on AIS and novelty detection, we use supervised
learning. When an artificial neural network is trained, we
include training data with both positive and negative exam-
ples, which potentially allows the proposed method to be
extended to fault diagnosis.

3 Methodology

Some methods for fault detection base classification on the
most recent observations only. The approach presented in
this study allows classification based on both current and
past observations, since many faults can only be detected if
a system is observed over time. This is especially true for
mechanical faults in mobile robots; a fault causing a wheel
to block, for instance, can only be detected once the robot
has tried to move the wheel for a period of time long enough
for the absence of movement to be detectable. This period
of time could be anywhere from a few milliseconds if, for
example, dedicated torque sensors in the wheels are used,
to several seconds if the presence of a fault has to be in-
ferred based on information from non-dedicated and impre-
cise sensors.

We assume that the correct behavior for a robot has been
specified in the form of a control program that directs the
robot to carry out its intended task. The fault detection prob-
lem is to determine if the robot performs this task correctly,
or if some fault in the hardware or in a software sub-system
(but not in the control program itself) is degrading the ro-
bot’s performance. If a fault is detected, a signal can be sent

Fig. 1 The fault detection module monitors the sensory data read by
the control program and the consequent control signals sent to the actu-
ators. The fault detection module is passive and does not interact with
the robot hardware or the control program

to the control program itself, another robot, or a human op-
erator. In our design, the fault detector is an isolated soft-
ware component that passively monitors the performance of
the robot through the information that flows in and out of
the control program. A conceptual illustration of the rela-
tionship between the control program, the robotic platform,
and the fault detection module can be seen in Fig. 1. The
control program is run as a succession of sense-think-act
cycles. In each cycle, the control program reads data from
sensors such as the on-board camera, infrared proximity sen-
sors, light sensors, and so on, processes the data, and sends
control signals to the actuators such as the motors that drive
the robot. A control cycle period is typically between 0.10 s
and 0.15 s, depending on the task and the amount of com-
putation needed to extract the relevant information from the
sensory data.

We take a black-box approach and consider only the in-
puts and the outputs of the control program, that is, the ro-
bot’s flow of sensory data into the control program and the
resulting flow of control signals sent from the control pro-
gram to the actuators. Our hypothesis is that this informa-
tion alone is sufficient to discriminate between situations in
which the robot operates as intended and situations in which
the presence of one or more faults hampers its performance.
We record the flow of sensory data and control signals in
situations where a robot is operating normally and when the
robot is in a fault state.

There are several methods for obtaining flows of sensory
data and control signals for robots with faults: A broken ro-
bot can be used, readings can be obtained using a detailed
software simulator, or faults can be purposefully provoked
by the experimenter. In this study, we apply the latter tech-
nique: in a modified version of the low-level on-board soft-
ware, we provoke (simulated) hardware faults on real ro-
bots. We apply a well-establish technique known as soft-
ware implemented fault injection (SWIFI) used in depend-

52 Auton Robot (2008) 24: 49–67

able systems research. The technique is usually applied to
measure the robustness and fault tolerance of software sys-
tems (Hsueh et al. 1997; Arlat et al. 1990). In our case,
we inject faults to discover how sensory data and the con-
trol signals change when faults are present. The idea is
that by actively controlling the state of the robot (for in-
stance by injecting faults or by using a broken robot) and
recording the flow of sensory data and control signals, we
can use supervised learning techniques and obtain a classi-
fier that, based on that flow, can determine the state of the
system.

We use time-delay neural networks (TDNNs) as classi-
fiers (Waibel et al. 1989; Clouse et al. 1997). TDNNs are
feed-forward networks that allow reasoning based on time-
varying inputs without the use of recurrent connections. In
a TDNN, the values for a group of neurons are assigned
based on a set of observations from a fixed distance into
the past. The TDNNs used in this study are normal multi-
layer perceptrons for which the inputs are taken from mul-
tiple, equally spaced points in a delay-line of past obser-
vations. TDNNs have been extensively used for time-series
prediction due to their ability to make predictions based on
data distributed in time. Unlike more elaborate, recurrent
network architectures, the properties of multilayer TDNNs
are well-understood and supervised learning through back-
propagation can be applied.

3.1 Formal definitions

Our aim is to obtain a function that maps from a set of cur-
rent and past sensory data, S, and control signals, A, to either
0 or 1 corresponding to no-fault and fault, respectively:

χ : S,A → {0,1}. (1)

We assume that such a function exists and we approximate
it with a feed-forward neural network. We let I ⊆ (S ∪ A)

be the inputs to the network. We choose a network that has
a single output neuron whose output value is in the interval
[0,1]. The output value is interpreted in a task-dependent
way. For instance, a threshold-based classification scheme
can be applied where an output value above a given thresh-
old is interpreted as 1 (fault), whereas an output value below
the threshold is interpreted as 0 (no-fault).

Sensory data, control signals and fault state We perform
a number of runs each consisting of a number of con-
trol cycles (sense-compute-act loops). For each control cy-
cle, c, we record the sensory data and control signals to
and from the control program. We let irc denote a sin-
gle set of control program inputs and outputs (CPIO), that
is, the CPIO for control cycle c in run r . We let s de-
note the number of values in a single CPIO set, that is
s = |irc |. We let I r be the ordered set of all CPIO sets

for r . Similarly, for each control cycle we let f r
c denote

the fault state for control cycle c in run r , where f r
c = 1 if

a fault has been injected and 0 otherwise. Hence, f r
c = 0

when the robot is operating normally and f r
c = 1 other-

wise.

Tapped delay-line and input group distance The CPIO sets
are stored in a tapped delay-line, where each tap has size s.
The input layer of a TDNN is logically organized in a num-
ber of input groups g0, g1, . . . , gn−1 and each group consists
of precisely s neurons, that is, one neuron for each value in a
CPIO set. The activation of the input neurons in group gt are
then set according to gt = irc−t ·d , where c is the current con-
trol cycle and d is the input group distance. See Fig. 2 for
an example. If we choose an input group distance d = 1, for
example, the TDNN has access to the current and the n − 1
most recent CPIOs, whereas if d = 2, the TDNN has ac-
cess to the current and every other CPIO set up to 2(n − 1)

control cycles into the past, and so on. In this way, the in-
put group distance specifies the relative distance in time be-
tween the individual groups and (along with the number of
groups) how far into the past a TDNN “sees”.

TDNN structure and activation function The input layer
of the TDNN is fully connected to a hidden layer, which is
again fully connected to the output layer. The output layer
consists of a single neuron whose value reflects the net-
work’s classification of the current inputs. The activations of
the neurons are computed layer-by-layer in a feed-forward
manner and the following sigmoid activation function is
used to compute the neurons’ outputs in the hidden and the
output layers:

f (a) = 1

1 + e−a
, (2)

where a is the activation of the neuron.

Classification and learning The output of the TDNN has a
value between 0 and 1. The error factor used in the back-
propagation algorithm is computed as the difference be-
tween the fault state f r

c and the output oc:

Ec = f r
c − oc. (3)

The neural networks are all trained by a standard batch
learning back-propagation algorithm to minimize the ab-
solute value of the error factor Ec in (3) (Rumelhart et al.
1986).

In summary, sensor and actuator data is collected from a
number of runs on real robots and different types of faults
are injected. A TDNN is trained to discriminate between
normal and faulty operation. By storing past observations
in a tapped delay-line, classification based on how the flow
of information changes over time is performed.

Auton Robot (2008) 24: 49–67 53

Fig. 2 An illustration of a fault detection module based on a TDNN.
The current control program input and output (CPIO) is stored in the
tapped delay-line and the activations of the neurons in the logical input

groups are set according to the current and past CPIOs. In the exam-
ple illustrated, there are 3 input groups and the input group distance d

is 4

3.2 Robot hardware

We use a number of real robots known as s-bots (Mon-
dada et al. 2005). The s-bot platform has been used for
several studies, mainly in swarm intelligence and collec-
tive robotics (Dorigo et al. 2004; Trianni and Dorigo 2006;
Nouyan et al. 2008). Overcoming steep hills and transport
of heavy objects are notable examples of tasks which a sin-
gle robot could not solve individually, but which have been
solved successfully by teams of collaborating robots (Groß
et al. 2006; O’Grady et al. 2005; Nouyan et al. 2006).

Each s-bot is equipped with an Xscale CPU running
at 400 MHz, a number of sensors including an omni-
directional camera, light and proximity sensors, as well as a
number of actuators including a ring of 8×3 (RGB) colored
leds, and a gripper that allows robots to attach to each other.
The sensors and actuators are indicated in Fig. 3.

4 Faults

Faults in the mechanical system that propels the robot can
be hard to detect when no special hardware to facilitate fault
detection is used. Unlike faults in sensors, which are usu-
ally immediately observable due to inconsistencies or abrupt
changes in the sensory values, faults in the mechanical sys-
tem have to be inferred from the unexpected consequences
(due to the presence of faults) of the actions performed by
the robot. There is often a latency associated with the detec-
tion of faults in the mechanical systems of a robot because
the consequences of the robot’s actions need to become ap-
parent before the presence of a fault can be inferred.

In this study, we focus principally on faults in the me-
chanical system that propels the s-bots. This system consists
of a set of differential treels, that is, combined tracks and
wheels (Mondada et al. 2004). Given that the treels contain

54 Auton Robot (2008) 24: 49–67

Fig. 3 The s-bot platform, sensors, and actuators

moving parts and that they are used continuously in most
experiments, they are the components in which the majority
of faults occur.

We analyze two types of faults. Both types can either be
isolated to the left or the right treel or they can affect both
treels simultaneously. The first type of fault causes one or
both treels to stop moving. This usually happens if the strap
that transfers power from the electrical motors to the treels
breaks or jumps out of place. Whenever this happens, the
treels stop moving. We denote this type of fault as stuck-
at-zero. The second type of fault occurs when an s-bot’s
software sub-system crashes leaving one (or both) motor(s)
driving the treels running at some undefined speed. The re-
sult is that a treel no longer can be controlled by the on-
board software. We refer to this type of fault as stuck-at-
constant.

To collect training data, a number of runs are conducted.
In each run the s-bot starts in a nominal state and during
the run, a fault is injected. The fault is implemented in the
on-board software by discarding the control program’s com-
mands to the failed part and by substituting them accord-

ing to the type of fault injected. If, for instance, a stuck-at-
constant fault is injected in the left treel, the speed of that
treel is set to a random value, and all future changes in speed
requested by the control program are discarded.

5 The three experimental setups

We have chosen three setups in which to study fault detec-
tion based on fault injection and learning. The setups are
called find perimeter, follow the leader, and connect to s-bot,
respectively, and they are described in Fig. 4. In all setups,
we use a 180 × 180 cm2 arena surrounded by walls.

In the find perimeter setup an s-bot follows the perimeter
of a dark square drawn on the arena surface. In this setup,
the four infrared ground sensors are used to discriminate be-
tween the normal light-colored arena surface and the dark
square.

In the follow the leader setup, an s-bot (the leader) per-
forms a random walk in the environment and another s-bot
(the follower) follows. The two robots perceive one another

Auton Robot (2008) 24: 49–67 55

Find perimeter: An s-bot is situated in an arena with a dark colored square drawn on an
otherwise light floor. A light source is placed in the center of the square. The task for the
s-bot is to follow the perimeter of the square.

Sensors: IR ground (4 inputs), light (8 inputs)
Control period: 100 ms

Follow the leader: Two s-bots are placed in a square environment bounded by walls. One
of the s-bots has been preassigned the leader role, while the other has been preassigned the
follower role. The leader moves around in the environment. The follower tails the leader
and tries to stay at a distance of 35 cm. If the follower falls behind, the leader waits. Faults
are injected in the follower only.

Sensors: Camera (16 inputs), IR proximity (15 inputs)
Control period: 150 ms

Connect to s-bot: One s-bot attempts to physically connect to a stationary s-bot using its
gripper. When a successful connection has been made, the s-bot waits for 10 seconds, dis-
connects, moves back, and tries to connect again. Faults are injected in the connecting s-bot
only.

Sensors: Camera (16 inputs), optical sensors in gripper (4 inputs)
Control period: 150 ms

Fig. 4 Description of the three setups: find perimeter, follow the
leader, and connect to s-bot. For each setup a list of sensors used
and the control cycle period for the controllers are shown. The num-

ber in brackets after each sensor listed corresponds to the number of
input values the sensor provides to the fault detector at each control
cycle

using their omni-directional cameras. The infrared proxim-
ity sensors are used to detect and avoid walls. Objects up
to 50 cm away can be seen reliably through the camera. In-
frared proximity sensors have a range from a few centime-
ters up to 20 cm depending on the reflective properties of

the obstacle or object. Faults are injected in the follower
only.

In the connect to s-bot setup, one s-bot tries to connect to
another, stationary s-bot. The connection is made using the
gripper. The connecting s-bot uses the camera to perceive

56 Auton Robot (2008) 24: 49–67

the location of the other robot. Faults are only injected in
the s-bot that is trying to form the connection.

Readings from sensors such as infrared ground sensors
are straightforward to normalize and feed to the input neu-
rons of a neural network. The camera sensor, in contrast,
captures 640 × 480 color images. For these more complex
sensor readings to serve as input to a neural network, rel-
evant information must be extracted and processed before-
hand. The s-bots have sufficient on-board processing power
to scan the entire images and identify objects based on color
information. The image processor is configured to detect
the location of colored leds of the s-bots only, and discard
any other information. The s-bot camera captures images of
the robot’s surroundings reflected in a semi-spherical mir-
ror. Since the robots operate on flat terrain, the distance
in pixels from the center of an image to a perceived ob-
ject corresponds to the physical distance between the ro-
bot and the object. In order to make this information avail-
able to a neural network, we divide the image into 16 non-
overlapping slices of equal size in terms of the field of view
they cover. Each slice corresponds to a single input value.
The value is set depending on the distance to the closest
object perceived in the slice. If no object is perceived, the
value for a slice is 0. Used in this way, the camera sensor
effectively becomes a range sensor for colored leds.

6 Data collection, training and performance evaluation

6.1 Data collection

A total of 60 runs on real s-bots are performed for each of the
three setups. In each run, the robot(s) start in a nominal state,
and at some point during the run a fault is injected. The fault
is injected at a random point in time after the first 5 seconds
of the run and before the last 5 seconds of the run according
to a uniform distribution. Hence, a robot spends on average
50% of the time that a run lasts in a nominal state. When a
fault is injected, there is a 50% probability that a fault affects
both treels instead of only one of the treels, and faults of the
type stuck-at-zero and stuck-at-constant are equally likely
to occur. Each run consists of 1000 control cycles and for
each control cycle the sensory data, control signals, and the
current fault state are recorded. In the find perimeter setup
1000 cycles correspond to 100 seconds, while for the follow
the leader and in the connect to s-bot setups 1000 cycles
correspond to 150 seconds, due to the longer control cycle
period.

6.2 Training and evaluation data

The data sets recorded in each setup are partitioned into two
subsets, one consisting of data from 40 runs, which is used

for training; and one consisting of the data from the remain-
ing 20 runs, which is used for a final performance evalua-
tion. The TDNNs all have a hidden layer of 5 neurons and
an input layer with 10 input groups.

6.3 Performance evaluation

The performance of the trained neural networks is computed
based on the 20 runs in each setup reserved for evaluation.
A network is evaluated on data from one run at a time, and
the output of the network is recorded and compared to the
fault state.

The two main performance criteria for a fault detection
are reliability of detection and speed of detection. In our ap-
proach, the interpretation of the output of the trained neural
network has an important impact on both criteria. The sim-
plest interpretation mechanism is to define a threshold. An
output value above this threshold is considered an indica-
tion that a fault is present, whereas an output value below
the threshold is considered an indication that the robot is in
a nominal state. In the next section, we present results for
five such thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90.

A graphical representation of TDNN’s output during an
evaluation run is shown in Fig. 5. In the run shown, a fault
was injected at control cycle 529. The number of false pos-
itives is the number of control cycles before a fault is in-
jected for which the output of the TDNN exceeds the given
threshold. Choosing a threshold of 0.50 would, for example,
result in one false positive since the output of the network
is higher than 0.50 for one control cycle (cycle number 304)
before the fault was injected. If we choose a higher thresh-
old, either 0.75 or 0.90, false positives are avoided. How-
ever, choosing a higher threshold has a negative impact on
another aspect of a fault detector’s performance, namely its
latency. Latency is the number of cycles between the occur-
rence and detection of a fault. In the example in Fig. 5 the
fault is detected at control cycle 553, 561, 570, 572, and 574
for the thresholds 0.10, 0.25, 0.50, 0.75, and 0.90, yielding
latencies of 24, 32, 41, 43, 45 control cycles, respectively.1

For some tasks, the recovery procedure is costly, and
fewer false positives might be desirable even at the cost of
a higher latency. For other tasks, undetected faults can have
serious consequences and a low latency is more important
than reducing the number of false positives. We can gain
fine control over the balance between latency and number of
false positives by choosing an appropriate threshold.

1It is important to note that a latency of 24 control cycles may seem
long, but the faults that we are trying to detect do not always have an
immediate impact on the performance of a robot. If, for instance, the
fault injected causes a treel to block (a fault of the type stuck-at-zero),
the fault can only be detected if the control program tries to set the treel
to a non-zero speed. In particular, if the control program is setting low
speeds (values close to zero) it might take a long time before a fault
can be detected.

Auton Robot (2008) 24: 49–67 57

Fig. 5 An example of the output of a trained TDNN during a run.
The dotted line shows the optimal output. At control cycle 529 a fault
is injected. Five different thresholds are indicated, 0.10, 0.25, 0.50,
0.75, and 0.90, and a false positive for threshold 0.50 is shown at
control cycle 304 (the output has a value greater than 0.50 before the
fault was injected at control cycle 529). The latency for a threshold

is the number of control cycles from the moment the fault is injected
till the moment the output value of the TDNN becomes greater than
the threshold. In the example above, the latency for threshold 0.75 is
43 control cycles because the output of the TDNN reaches 0.75 only
at control cycle 562, that is, 43 control cycles after the fault was in-
jected

7 Results

We first evaluate the effect of the input group distance
on the performance of a fault detector with respect to
its latency and number of false positives (Sect. 7.1). The
input group distance determines how far into the past a
fault detector “sees”. We then evaluate the performance
of the fault detectors in the follow the leader and con-
nect to s-bot setups (Sect. 7.2). In some situations false
positives can be costly and we show how the output of a
TDNN can be reinterpreted to avoid nearly all false pos-
itives (Sect. 7.3). We test if the proposed method is ap-
plicable when faults in both sensors and actuators are con-
sidered (Sect. 7.4). We show that it is possible to obtain
a fault detector that can generalize if the task varies be-
tween runs (Sect. 7.5). Finally, we demonstrate that fault
detection through fault injection and learning can be ex-
tended to exogenous fault detection, that is, the capacity for
a robot to detect faults in another, physically separate ro-
bot.

7.1 Tuning the input group distance

To find an input group distance that performs well, we
trained fault detectors with input group distances ranging
from 1 to 10. Fig. 6 and Fig. 7 show respectively a box-plot

of the latencies2 and a box-plot of the number of false posi-
tives observed during 20 evaluation runs in the find perime-
ter setup. Results are shown for the five thresholds: 0.10,
0.25, 0.50, 0.75, and 0.90. The median latencies and num-
ber of false positives for each configuration of input group
distance and threshold are summarized in Table 1 and Ta-
ble 2, respectively.

The latency results in Fig. 6 show no clear correlation
between latency and input group distance. The false positive
results in Fig. 7, however, show that for low input group
distances, 1 and 2 in particular, the fault detector in general
detects a large number of false positives. No clear trend is
observed regarding the number of false positives for fault
detectors with input group distances above 4.

An input group distance of 1 means that the TDNN is
provided with data from the past 10 control cycles (because
there are 10 input groups). 10 control cycles are equal to 1
second in the find perimeter setup. Similarly, an input group
distance of 2 means that the TDNN is provided with data
from the past 2 seconds, but only from every other control
cycle. The false positive results indicate that data from a
period longer than 2 seconds (i.e., an input group distance
higher than 2) is needed for accurate classification.

The results in Fig. 6 and Fig. 7 show that the performance
of the fault detectors, both in terms of latency and in terms

2For the latency results, we only include data from runs in which the
fault was detected. See Table 3 for the number of undetected faults for
different input group distances and thresholds.

58 Auton Robot (2008) 24: 49–67

Fig. 6 Box-plot of the latencies
observed in 20 evaluation runs
in the find perimeter setup using
fault detectors with input group
distances from 1 to 10. Results
are shown for the thresholds
0.10, 0.25, 0.50, 0.75, and 0.90.
Each box comprises
observations ranging from the
first to the third quartile. The
median is indicated by a
horizontal bar, dividing the box
into the upper and lower part.
The whiskers extend to the
farthest data points that are
within 1.5 times the interquartile
range. Outliers are shown as
dots. The results show that the
input group distance does not
have a major influence on the
latency of a fault detector, while
larger thresholds yield longer
latencies

Fig. 7 Box-plot of the number
of false positives observed in 20
evaluation runs in the find
perimeter setup using fault
detectors with input group
distances from 1 to 10. Results
are shown for the thresholds
0.10, 0.25, 0.50, 0.75, and 0.90.
For low input group distances, 1
and 2 in particular, the fault
detector in general detects a
large number of false positives,
while no clear trend is observed
for fault detectors with input
group distances above 4. See the
caption of Fig. 6 for details on
box-plots

of the number of fault positives, is clearly affected by the
choice of the classification threshold: the lower the thresh-
old, the lower the latency of the fault detector and the more
false positives are observed. For the fault detector with an
input group distance of 5, for instance, the median latency is
13 control cycles when a threshold of 0.10 is used, whereas
the median latency is 21 when a threshold of 0.90 is used.

For the same fault detector, the median number of false pos-
itives is 11 if a threshold of 0.10 is used, while no false pos-
itives are observed when a threshold of 0.90 is used.

In a few cases, a fault is never detected. Undetected
fault occur when a TDNNs output never exceeds the cho-
sen threshold after a fault has been injected. The number
of undetected faults for different thresholds and input group

Auton Robot (2008) 24: 49–67 59

Table 1 Median latencies during 20 evaluation runs in the find perime-
ter setup with fault detectors using input groups distances from 1 to 10
and for the thresholds: 0.10, 0.25, 0.50, 0.75, and 0.90

Input group Threshold

distance 0.10 0.25 0.50 0.75 0.90

1 10.5 12.0 17.0 17.5 20.5

2 8.0 12.0 14.0 17.0 20.0

3 11.5 12.0 14.5 16.0 18.5

4 13.0 14.0 15.0 16.0 19.0

5 13.0 16.0 17.5 20.0 21.0

6 13.5 15.0 16.0 20.0 24.0

7 11.5 13.0 15.5 20.0 23.5

8 12.5 12.5 18.5 21.0 22.5

9 11.0 13.0 14.5 17.5 21.5

10 10.5 12.5 16.5 18.0 22.5

Table 2 Median number of false positives observed during 20 evalu-
ation runs in the find perimeter setup with fault detectors using input
groups distances from 1 to 10 and for the thresholds: 0.10, 0.25, 0.50,
0.75, and 0.90

Input group Threshold

distance 0.10 0.25 0.50 0.75 0.90

1 34.0 16.0 4.0 0.0 0.0

2 23.5 5.0 0.0 0.0 0.0

3 13.0 8.0 0.0 0.0 0.0

4 4.0 2.0 0.0 0.0 0.0

5 11.0 3.0 0.0 0.0 0.0

6 9.5 0.0 0.0 0.0 0.0

7 11.0 1.5 0.0 0.0 0.0

8 9.0 3.5 0.0 0.0 0.0

9 10.5 2.5 0.0 0.0 0.0

10 9.0 4.0 1.5 0.0 0.0

Table 3 Number of undetected faults observed during 20 evaluation
runs in the find perimeter setup with fault detectors using input group
distances from 1 to 10 and for the threshold: 0.10, 0.25, 0.50, 0.75, and
0.90

Input group Threshold

distance 0.10 0.25 0.50 0.75 0.90

1 0 1 1 2 2

2 1 1 1 3 3

3 0 0 0 1 3

4 0 0 1 1 2

5 0 0 0 1 1

6 0 0 0 0 0

7 0 0 0 0 0

8 0 0 0 0 0

9 0 0 0 0 0

10 0 0 0 0 0

distances is shown in Table 3. All undetected faults were
observed when low input group distances were used.

In the other two setups, follow the leader and connect
to s-bot, we did a similar study of the effect of the input
group distance and the performance of the fault detectors.
We found that an input group distance of 5 performed well
in all setups. The experiments that we present in the fol-
lowing sections are all, therefore, conducted using an input
group distance of 5. Since we use TDNNs with 10 input
groups, an input group distance of 5 means that a TDNN
can see 4.5 s into the past in the find perimeter setup, in
which the control period is 0.10 s. TDNNs in the follow the
leader and connect to s-bot setups see 6.75 s into the past
since the controllers in these setups run with a control pe-
riod of 0.15 s.

7.2 Fault detection performance in the follow the leader
and connect to s-bot setups

We trained a fault detector to detect faults in the follow the
leader setup and another fault detector to detect faults in
the connect to s-bot setup. Box-plots of the false positives
and the latency results observed in 20 evaluation runs in the
follow the leader and connect to s-bot setups are shown in
Fig. 8 and Fig. 9, respectively. In both setups, the fault detec-
tor was configured to use an input group distance of 5. The
number of undetected faults observed during the evaluation
runs in the two setups is shown in Table 4. Two interesting
tendencies can be seen: The number of false positives ob-
served in the follow the leader setup are comparatively high,
while in the connect to s-bot the observed latencies are high
when compared with the results obtained in the two other se-
tups. In the follow the leader setup there are two robots mov-
ing around and the fault detector for the follower, in which
faults were injected, has to infer the presence of faults based
on its interactions with the leader. Misclassification of the
follower’s state can occur in situations where, for instance,
the leader and the follower are moving at constant speeds in
a given direction. In these cases the follower receives sen-
sory data similar to those in situations where both its treels
are stuck-at-zero: The leader waits for the follower, but due
to the fault, the follower does not move. The fact that the
control program (and therefore the fault detector) depends
on a dynamic feature of the environment (the leader) seems
to complicate the classification of the robot’s state. However,
the performance of the fault detector is still quite good, es-
pecially considering that the leader is often the only object
perceivable by the follower (the proximity sensors will only
sense the presence of walls at distances lower than approxi-
mately 10 cm).

The comparatively high latencies observed in the connect
to s-bot setup are similarly due to a task-dependent feature:
After a successful connection has been made, the connect-
ing robot waits for 10 seconds before disconnecting, moving

60 Auton Robot (2008) 24: 49–67

Fig. 8 Box-plots of the latencies and number of false positives observed during 20 evaluation runs in the follow the leader setup for different
thresholds and an input group distance of 5. See the caption of Fig. 6 for details on box-plots

Fig. 9 Box-plots of the latencies and number of false positives observed during 20 evaluation runs in the connect to s-bot setup, for different
thresholds and an input group distance of 5. See the caption of Fig. 6 for details on box-plots

Table 4 Number of undetected faults observed during 20 evaluation
runs in the follow the leader and connect to s-bot setups, for different
thresholds, using an input group distance of 5

Threshold

0.10 0.25 0.50 0.75 0.90

Follow the leader 0 0 0 0 0

Connect to s-bot 1 2 2 2 3

back, and attempting to make a new connection. During the
waiting period it is not possible to detect if a fault has oc-
curred in the treels or not. Even if a stuck-at-constant fault
is injected, causing one or both treels to be assigned a ran-
dom and non-changeable speed, the outcome is the same:

The robot does not move because it is physically connected
to the other robot. Thus, it can take longer to detect a fault
due to these particular situations in which a fault does not
have an effect on the behavior of the robot.

7.3 Reducing the number of false positives

The simplest way to interpret the output of a TDNN trained
to detect faults, is to compare the value of the output neu-
ron against a threshold. Values above the threshold are in-
terpreted as evidence of a fault whereas values below the
threshold mean that no fault is detected. The fault detectors
presented so far follow this simple classification scheme and
results have been presented for five thresholds: 0.10, 0.25,
0.50, 0.75, and 0.90.

Auton Robot (2008) 24: 49–67 61

Fig. 10 Box-plots of false positives results observed in 20 runs in
each of the three setups using fault detectors in which the output of
the TDNN is used directly and fault detectors in which the output is
smoothed by computing the moving average over 25 control cycles. A
threshold of 0.75 was used for all fault detectors. False positives were
only observed during one run in the follow the leader setup when the
TDNN’s output was smoothed. The run is not shown in the figure since
it is out of scale (164 false positives were detected during this run). See
the caption of Fig. 6 for details on box-plots

For many robotics tasks, a latency of a few seconds does
not represent a risk: as long as a fault is eventually detected,
the robot is able to communicate this to a human operator
or to other robots, who can then take the necessary steps to
ensure that the task is progressed. Accommodating a fault,
on the other hand, is usually expensive, as other robots need
to take action or a human operator needs to evaluate and
solve the situation. Frequent false positives, therefore, are
likely to have a negative impact on the performance.

One way of reducing the number of false positives is
to choose a high threshold, e.g. 0.90, which results in
fewer false positives than lower thresholds (see for instance
Fig. 9). Many of the false positives observed occur for a sin-
gle or few consecutive control cycles only (like in the ex-
ample in Fig. 5). This suggests an alternative way of re-
ducing the number of false positives: to smooth the out-
put of the trained neural networks. We do this by comput-
ing the moving average of a trained TDNN’s output value
and basing the classification on this moving average rather
than on the TDNN’s output directly. We configured the
fault detectors to use a moving average over 25 control cy-
cles of the TDNN’s output and a threshold of 0.75. Fig-
ures 10 and 11 show respectively the number of false pos-
itives and the latencies observed in 20 evaluation runs for
each task.

By computing the moving average and thereby smooth-
ing the output of the TDNN, we almost completely elimi-
nate false positives. As the results in Fig. 11 show, however,

Fig. 11 Box-plots of latency results observed in 20 runs in each of the
three setups using fault detectors in which the output of the TDNN is
used directly and fault detectors in which the output is smoothed by
computing the moving average over 25 control cycles. A threshold of
0.75 was used for all fault detectors. See the caption of Fig. 6 for details
on box-plots

this is at the cost of a higher latency. Since the moving aver-
age increases latency, it can result in more undetected faults
as more runs finish before faults are detected. In the find
perimeter setup, 2 faults were not detected when averaging
the output over 25 control cycles, compared to only 1 when
averaging was not used. Similarly, in the connect to s-bot
setup, 5 faults were not detected when a moving average
was used, compared to 2 when the output of the TDNN was
used directly. In the follow the leader setup all faults were
detected in both cases.

7.4 Faults in both sensors and actuators

Possible faults are not limited to the mechanical systems that
propel robots; other hardware, such as sensors, can also fail.
In this section, we demonstrate that our approach is equally
applicable to faults in the sensors. We also show that a single
appropriately trained fault detector is capable of detecting
faults in both sensors and actuators. We first evaluate our ap-
proach when only faults in sensors are considered. We then
go on to evaluate the approach when faults in both sensors
and the treels are considered. All experiments are conducted
in the find perimeter setup.

We conducted a set of runs in which we injected faults in
the front infrared ground sensor, that is, the infrared ground
sensor located closest to the gripper (see Fig. 3). We con-
ducted another set of runs in which we injected faults in
the first and second light sensor counter-clockwise from the

62 Auton Robot (2008) 24: 49–67

Fig. 12 Box-plots of latency results for fault detectors trained to detect
faults in the treels only (from Sect. 7.1), in the ground and light sensors
only, and a fault detector trained to detect faults in both the ground
and light sensors and the treels. In each case, the fault detector was
evaluated on 20 runs in which faults corresponding to those the fault
detector was trained to detect were injected. All three fault detectors
were configured to use the output of the TDNN directly and to use a
threshold of 0.75. See the caption of Fig. 6 for details on box-plots

gripper when an s-bot is seen from above (see Fig. 3).3 We
trained a TDNN with a input group distance of 5 on 40 runs:
20 runs during which a fault was injected in the front ground
sensor and another 20 runs during which a fault was injected
in the light sensors. The fault detector was evaluated on 20
runs: 10 runs in which a fault was injected in the ground sen-
sor and another 10 runs in which a fault was injected in the
light sensors.

We performed a set of experiments to determine if a sin-
gle fault detector can be trained to detect faults in both the
sensors and actuators. We trained a fault detector on a train-
ing set consisting of 40 runs: 20 runs in which a fault was
injected in either one or both treels and 20 runs in which a
fault was injected in either the ground sensor or light sen-
sors. The fault detector was evaluated on 20 runs: 10 runs in
which a fault was injected in either the ground sensor or in
the light sensors, and another 10 runs in which a fault was
injected in either one of the treels or in both treels.

Figure 12 shows the latencies observed for the fault de-
tector trained to detect faults in the sensors only and for the
fault detector trained to detect faults in both the sensors and
actuators. For each detector, we performed 20 evaluation
runs. We have included the results for a fault detector trained

3We initially tried to inject faults in the first light sensor only, but a fault
in a single light sensor had no effect on the performance of the robot:
with seven out of eight light sensors working the robot still completed
the task. We therefore injected faults in both the first and the second
light sensor.

to detect faults in the actuators (treels) only from Sect. 7.1
to allow for comparison.

The results show that a fault detector can be trained to de-
tect faults in the ground sensor and faults in the light sensors.
Furthermore, we have shown that we can train a single fault
detector to detect faults in both the sensors and the treels.
When a threshold of 0.75 (or higher) is used, no false posi-
tives were observed during any of the evaluation runs using
the respective fault detectors. The median latency observed
for the sensor-only fault detector was 7 control cycles (0.7
seconds). The median latency observed for the sensor and
actuator fault detector was 20 control cycles (2.0 seconds),
when a threshold of 0.75 was used, which is equivalent to
the median latency observed for the treels-only fault detec-
tor (see Fig. 12).

7.5 Robustness to variations in the task

Autonomous mobile robots often navigate in environments
in which the exact conditions and task parameters are un-
known and sometimes even change over time. A fault detec-
tor has to be robust to such changes in order to be generally
applicable. We trained a fault detector on data from three
variations of the connect to s-bot setup. In addition to the
original setup in which one s-bot connects to another sta-
tionary s-bot (see Fig. 4), we collected data from runs in
two additional setups, namely connect to moving s-bot and
connect to swarm-bot, illustrated in Fig. 13.

In the connect to moving s-bot setup, the s-bot to which a
connection should be made (the seed) initially moves around
instead of being passive. The seed only stops moving when
the two robots get within a distance of 30 cm or less of one
another. In the connect to swarm-bot setup, the connecting s-
bot connects to a swarm-bot.4 In our experiment, the swarm-
bot consists of three s-bots connected in a linear formation.

We trained a fault detector with an input group distance
of 5 and 10 hidden nodes on a training set consisting of 60
runs: 30 runs in the original setup described in Fig. 4, and
15 runs in each of the two setups illustrated in Fig 13. The
fault detector was evaluated on data from 20 runs: 10 runs
in the original setup and 5 in each of the new setups. In or-
der to reduce the number of false positives the moving av-
erage of the TDNN’s output was computed (as explained in
Sect. 7.3) and compared against a threshold of 0.90. The
results observed in 20 evaluation using the output of the
TDNN directly and using a moving average window length
of 25 control cycles are shown in Fig. 14.

When the output of the TDNN was used directly one fault
was not detected, whereas two faults were not detected when
a moving average window length of 25 was used. When the

4A swarm-bot is a connected robotic entity consisting of multiple,
physically connected s-bots (Mondada et al. 2004).

Auton Robot (2008) 24: 49–67 63

Connect to moving s-bot: One s-bot attempts to physically connect to another s-bot (the seed)
using its gripper. As long as the connecting s-bot is farther than 30 cm from the seed, the
seed moves around. When the two robots get within 30 cm of one another, the seed stops.
When a successful connection has been made, the connecting s-bot waits for 10 seconds,
disconnects, moves back, and tries to connect again. Faults are injected in the connecting
s-bot only.

Connect to swarm-bot: One s-bot attempts to physically connect to a swarm-bot using its
gripper. In our experiment, the swarm-bot consists of three s-bots physically connected in a
linear formation. When a successful connection has been made, the connecting s-bot waits
for 10 seconds, disconnects, moves back, and tries to connect again. Faults are injected in
the connecting s-bot only.

Fig. 13 Two additional setups for the connect to s-bot controller used to evaluate if a fault detector can generalize over variations of the task

Fig. 14 Box-plots of the latencies and the number of false positives
observed during 20 evaluation runs using a fault detector trained on
data from a total of 60 runs in all three variations of the connect to. . .

setup. Results are shown for moving average window lengths of 1
(equivalent to using the output of the TDNN directly) and 25. A thresh-
old of 0.90 was used. See the caption of Fig. 6 for details on box-plots

output of the TDNN is smoothed over 25 control cycles,
false positives only occur in two out of the 20 evaluation
runs. Hence, our results indicate that it is possible to train
fault detectors that are robust to variations in the task.

7.6 Exogenous fault detection

In robotics, exogenous fault detection is the activity in which
one robot detects faults that occur in other, physically sep-

64 Auton Robot (2008) 24: 49–67

Fig. 15 Box-plots of the performance results in terms of latency
and number of false positives observed in 20 evaluation runs for the
follower performing endogenous fault detection and for the leader
performing exogenous fault detection during the same runs. For both

sets of results, the output of the TDNN is used directly and compared
against a threshold of 0.75. See the caption of Fig. 6 for details on
box-plots

arate robots. The s-bot hardware platform used for the ex-
periments in this paper was originally designed and built
in order to study multi-robot and swarm-robotics systems.
Such systems have the potential to achieve a high degree
of fault tolerance: if one robot fails while performing a
task, another robot can take over and complete the task.
Various approaches to fault detection and fault tolerance in
multi-robot systems have been proposed, such as Parker’s
ALLIANCE (Parker 1998), Lewis and Tan’s virtual struc-
tures (Lewis and Tan 1997), Gerkey and Matarić’s MUR-
DOCH (Gerkey and Matarić 2002b; Gerkey and Matarić
2002a), and Dias et al.’s TraderBots (Dias et al. 2004) among
others.

In order to evaluate the applicability of our method to ex-
ogenous fault detection, we attempted to get the leader to
detect faults injected in the follower in the follow the leader
setup. We recorded sensory data for the leader robot while
faults were injected in the follower. The sensory data (cam-
era and infrared proximity sensors) from the leader were
correlated with the fault state of the follower and a TDNN
was trained on 40 runs to detect exogenous faults.

Box-plots of the latencies and number of false positives
observed during 20 evaluation runs are shown in Fig. 15.
In the figure we have plotted results for the leader perform-
ing exogenous fault detection and the results for the follower
performing endogenous fault detection during the same runs
to allow for comparison. Both fault detectors were config-
ured to use an input group distance of 5 and a classifica-
tion threshold of 0.75. The median latency for the leader
performing exogenous fault detection is 19 control cycles,
while the median latency for the follower performing en-
dogenous fault detection is 14 control cycles. This difference
of 5 control cycles corresponds to 750 ms. The median num-

ber of false positives is 5 control cycles for both the exoge-
nous and endogenous detector. Visual inspection of Fig. 15
confirms that the performance of the two fault detectors is
comparable. In every trial, the fault injected was detected by
both the leader and the follower.

In order to reduce the number of false positives, we can
compute the moving average of the trained TDNN’s output
as explained in Sect. 7.3. If we configure the fault detector to
use the moving average of the trained TDNN’s output over
25 control cycles and a threshold of 0.75, false positives are
only observed in 2 out of the 20 evaluation runs. The results
show that a fault detector can be trained that enables one
robot to detect faults in another robot.

8 Conclusions

The detection of faults and the subsequent accommodation
in autonomous robots are central issues that need to be ad-
dressed before widespread adoption for both domestic and
industrial purposes can occur. Due to concerns over safety
and potential costs incurred by malfunctioning robots, the
scope of the tasks with which robots can be entrusted will re-
main fairly narrow until a high level of dependability can be
attained. In this paper, we have suggested a new method for
synthesizing fault detectors for autonomous mobile robots.
The method is based on learning from examples in which
robots operate normally and in which faults are present, re-
spectively.

Our results, obtained with real robots, suggest that fault
detection through fault injection and learning is a viable
method to generate fault detectors for autonomous mobile
robots. The robots need not be equipped with dedicated or

Auton Robot (2008) 24: 49–67 65

redundant sensors for the method to be applicable. For all
the results presented, only the information flowing between
the control program and the robots’ actuators and sensors
used for navigation was used. Although the performance
of fault detectors could probably be improved if data from
more (possibly dedicated) sensors were used, our results
show that a fairly small amount of key information is suf-
ficient to obtain good fault detectors.

We applied the proposed method in three different tasks
and we explored various aspects of the method: We showed
that it is possible to train fault detectors to detect faults in
both actuators and sensors. We demonstrated that a single
fault detector is capable of detecting faults of different types
and locations. We showed that we can train a fault detector
to be robust to variations in the task performed by a robot.
Finally, we showed how the proposed method can be ex-
tended to exogenous fault detection: In a follow the leader
task, we trained a fault detector for the leader robot to detect
faults that occurred in the follower robot.

In ongoing research, we are studying extensions to our
approach that will allow for fault diagnosis. Our aim is to
obtain neural networks that can not only detect the presence
of a fault but also the location of the fault. If the control
program is made aware that a component is broken, it could
direct the robot to perform tasks for which the component
is not needed or only use behaviors not requiring the faulty
component to be operational. For instance, in case a robot’s
gripper breaks while the robot is pulling an object, the con-
trol program could change the behavior from grasping and
pulling to pushing the object, if made aware of the presence
and the location of the fault. One way of extending the pro-
posed methodology to include fault diagnosis would be to
add more output neurons to the classifying neural network.
Different output neurons would then correspond to differ-
ent faults. Another approach could be to use multiple neural
networks, one for each component in which faults should be
diagnosed.

Acknowledgements This work was supported by the SWARMA-
NOID project, funded by the Future and Emerging Technologies pro-
gramme (IST-FET) of the European Commission, under grant IST-
022888. Anders Christensen acknowledges support from COMP2SYS,
a Marie Curie Early Stage Research Training Site funded by the Eu-
ropean Community’s Sixth Framework Programme (grant MEST-CT-
2004-505079). The information provided is the sole responsibility of
the authors and does not reflect the European Commission’s opinion.
The European Commission is not responsible for any use that might be
made of data appearing in this publication. This work was supported
by the ANTS project, an Action de Recherche Concertée funded by
the Scientific Research Directorate of the French Community of Bel-
gium. Mauro Birattari and Marco Dorigo acknowledge support from
the Belgian F.R.S.-FNRS, of which they are a Research Associate and
a Research Director, respectively.

References

Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., Mar-
tins, E., & Powell, D. (1990). Fault injection for dependability
validation: a methodology and some applications. IEEE Transac-
tions on Software Engineering, 16(2), 166–182.

Ashokaraj, I., Tsourdos, A., Silson, P., & White, B. A. (2004). Sen-
sor based robot localisation and navigation: using interval analy-
sis and unscented Kalman filter. In Proceedings of the 2004
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS 2004) (Vol. 1, pp. 64–70). Las Vegas: IEEE Press.

Canham, R., Jackson, A., & Tyrrell, A. (2003). Robot error detection
using an artificial immune system. In Proceedings of NASA/DoD
conference on evolvable hardware (pp. 199–207). Washington:
IEEE Computer Society.

Carlson, J., & Murphy, R. (2003). Reliability analysis of mobile robots.
In Proceedings of IEEE international conference on robotics and
automation, ICRA’03 (Vol. 1, pp. 274–281). Los Alamitos: IEEE
Computer Society Press.

Clouse, D., Giles, C., Horne, B., & Cottrell, G. (1997). Time-delay
neural networks: representation and induction of finite-state ma-
chines. IEEE Transactions on Neural Networks, 8, 1065–1070.

Dearden, R., Hutter, F., Simmons, R., Thrun, S., Verma, V., & Willeke,
T. (2004). Real-time fault detection and situational awareness for
rovers: report on the Mars technology program task. In Proceed-
ings of IEEE aerospace conference (Vol. 2, pp. 826–840). Los
Alamitos: IEEE Computer Society Press.

Dias, M. B., Zinck, M. B., Zlot, R. M., & Stentz, A. (2004). Robust
multirobot coordination in dynamic environments. In Proceedings
of IEEE conference on robotics and automation, ICRA’04 (Vol. 4,
pp. 3435–3442). Piscataway: IEEE Press.

Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre,
G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., &
Gambardella, L. M. (2004). Evolving self-organizing behaviors
for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.

Forrest, S., Perelson, A., Allen, L., & Cherukuri, R. (1994). Self-
nonself discrimination in a computer. In Proceedings of the 1994
IEEE symposium on research in security and privacy (Vol. 212,
pp. 202–212). Los Alamitos: IEEE Computer Society.

Gerkey, B., & Matarić, M. J. (2002a). Pusher-watcher: an approach
to fault-tolerant tightly-coupled robot coordination. In Proceed-
ings of IEEE international conference on robotics and automa-
tion, ICRA’02 (pp. 464–469). Piscataway: IEEE Press.

Gerkey, B. P., & Matarić, M. J. (2002b). Sold!: Auction methods for
multirobot coordination. IEEE Transactions on Robotics and Au-
tomation, 18(5), 758–768.

Gertler, J. J. (1988). Survey of model-based failure detection and iso-
lation in complex plants. IEEE Control Systems Magazine, 8,
3–11.

Goel, P., Dedeoglu, G., Roumeliotis, S., & Sukhatme, G. (2000).
Fault detection and identification in a mobile robot using multi-
ple model estimation and neural network. In Proceedings of IEEE
international conference on robotics and automation, ICRA’00
(Vol. 3, pp. 2302–2309). Los Alamitos: IEEE Computer Society
Press.

Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous
self-assembly in swarm-bots. IEEE Transactions on Robotics,
22(6), 1115–1130.

Hinchey, M., Rash, J., Rouff, C., & Truszkowski, W. (2004). NASA’s
swarm missions: the challenge of building autonomous software.
IT Professional, 6, 47–52.

Hsueh, M., Tsai, T., & Iyer, R. (1997). Fault injection techniques and
tools. Computer, 30(4), 75–82.

66 Auton Robot (2008) 24: 49–67

Isermann, R. (1997). Supervision, fault-detection and fault-diagnosis
methods—an introduction. Control Engineering Practice, 5(5),
639–652.

Isermann, R., & Ballé, P. (1997). Trends in the application of model-
based fault detection and diagnosis of technical processes. Control
Engineering Practice, 5(5), 709–719.

Julier, S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman
filter to nonlinear systems. In Proceedings of the 11th interna-
tional symposium on aerospace/defense sensing, simulation and
controls (Vol. 3, pp. 182–193). Bellingham: SPIE.

Kalman, R. (1960). A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1), 35–45.

Kochan, A. (2005). A bumper year for robots. Industrial Robot: An
International Journal, 32, 201–204.

Leonard, J. J., & Durrant-Whyte, H. F. (1991). Mobile robot localiza-
tion by tracking geometric beacons. IEEE Transactions on Robot-
ics and Automation, 7(3), 376–382.

Lerner, U., Parr, R., Koller, D., & Biswas, G. (2000). Bayesian fault
detection and diagnosis in dynamic systems. In Proceedings of the
7th national conference on artificial intelligence (pp. 531–537).
Cambridge: AAAI Press/MIT Press.

Lewis, M. A., & Tan, K. H. (1997). High precision formation control of
mobile robots using virtual structures. Autonomous Robots, 4(4),
387–403.

Li, P., & Kadirkamanathan, V. (2001). Particle filtering based like-
lihood ratio approach to fault diagnosis in nonlinear stochastic
systems. IEEE Transactions Systems, Man Cybernetics, Part C,
31(3), 337–343.

Marsland, S., Nehmzow, U., & Shapiro, J. (2005). On-line novelty de-
tection for autonomous mobile robots. Robotics and Autonomous
Systems, 51(2–3), 191–206.

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D.,
Deneubourg, J.-L., Nolfi, S., Gambardella, L., & Dorigo, M.
(2004). Swarm-bot: a new distributed robotic concept. Au-
tonomous Robots, 17(2–3), 193–221.

Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneubourg,
J.-L., & Dorigo, M. (2005). The cooperation of swarm-bots: phys-
ical interactions in collective robotics. IEEE Robots and Automa-
tion Magazine, 12(2), 21–28.

Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006).
Group transport along a robot chain in a self-organised robot
colony. In T. Arai, R. Pfeifer, T. Balch, & H. Yokoi (Eds.), In-
telligent autonomous systems (Vol. 9, pp. 433–442). Amsterdam:
IOS Press.

Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot
swarm: self-orgenized strategies to find your way home. Swarm
Intelligence, 1(2).

O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005).
Self-assembly on demand in a group of physical autonomous mo-
bile robots navigating rough terrain. In M. S. Capcarrere, A. A.
Freitas, P. J. Bentley, C. G. Johnson, & J. Timmis (Eds.), Lecture
notes in artificial intelligence: Vol. 3630. Advances in artificial
life: 8th European conference, ECAL 2005 (pp. 272–281). Berlin:
Springer.

Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant
multirobot cooperation. IEEE Transactions on Robotics and Au-
tomation, 14(2), 220–240.

Patton, R., Uppal, F., & Lopez-Toribio, C. (2000). Soft computing
approaches to fault diagnosis for dynamic systems: a survey. In
A. Edelmayer, C. Banyasz (Eds.), Proceedings of 4th IFAC sym-
posium on fault detection supervision and safety for technical
processes (Vol. 1, pp. 298–311). Oxford: Elsevier.

Roumeliotis, S., Sukhatme, G., & Bekey, G. (1998). Sensor fault de-
tection and identification in a mobile robot. In Proceedings of

IEEE/RSJ international conference on intelligent robots and sys-
tems (Vol. 3, pp. 1383–1388). Los Alamitos: IEEE Computer So-
ciety Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by back-propagating errors. Nature, 323,
533–536.

Skoundrianos, E. N., & Tzafestas, S. G. (2004). Finding fault—fault di-
agnosis on the wheels of a mobile robot using local model neural
networks. IEEE Robotics and Automation Magazine, 11(3), 83–
90.

Smith, R., & Cheeseman, P. (1986). On the representation and estima-
tion of spatial uncertainty. The International Journal of Robotics
Research, 5(4), 56.

Terra, M., & Tinos, R. (2001). Fault detection and isolation in robotic
manipulators via neural networks: a comparison among three
architectures for residual analysis. Journal of Robotic Systems,
18(7), 357–374.

Trianni, V., & Dorigo, M. (2006). Self-organisation and communica-
tion in groups of simulated and physical robots. Biological Cy-
bernetics, 95, 213–231.

Verma, V., & Simmons, R. (2006). Scalable robot fault detection and
identification. Robotics and Autonomous Systems, 54(2), 184–
191.

Verma, V., Gordon, G., Simmons, R., & Thrun, S. (2004). Real-time
fault diagnosis. IEEE Robotics and Automation Magazine, 11(2),
56–66.

Vemuri, A., & Polycarpou, M. (1997). Neural-network-based robust
fault diagnosis in robotic systems. IEEE Transactions on Neural
Networks, 8(6), 1410–1420.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989).
Phoneme recognition using time-delay neural networks. IEEE
Transactions Acoustics, Speech, and Signal Processing, 37, 328–
339.

Anders Lyhne Christensen is currently a re-
searcher at IRIDIA, CoDE, Université Libre de
Bruxelles, Belgium. He has spent several years
in the private sector and worked on software
projects ranging from 3D acoustics to high per-
formance computing. In 2002, he obtained his
first master’s degree in computer science and
bio-informatics from Aalborg University, Den-
mark. Later that year, he received a Marie Curie
Fellowship hosted by the Dependable Systems

Group at the Universidade de Coimbra and Critical Software, Portu-
gal. He completed his DEA at Université Libre de Bruxelles in 2005.
He has published work in bio-informatics, high performance comput-
ing, and autonomous robotics. His current research interests are in de-
pendable swarm robotics, autonomous self-assembly, and evolutionary
robotics.

Rehan O’Grady is a researcher at the IRIDIA,
CoDE, Université Libre de Bruxelles, Belgium.
He graduated in 1999 from Edinburgh Univer-
sity with First Class Honors in mathematics
and computer science. He received the Kevin
Clark memorial prize, awarded each year to the
top mathematics and computer science gradu-
ate. He subsequently worked in the software in-
dustry for several years. During his time at Mi-
cromuse PLC he developed a system for mon-

itoring usage outages in Internet network services which was subse-
quently patented. He received the DEA from the Université Libre de
Bruxelles in 2005. His current research interests are in swarm robotics
and self-assembling robotic systems.

Auton Robot (2008) 24: 49–67 67

Mauro Birattari received a master’s degree in
electrical and electronic engineering from the
Politecnico di Milano, Milan, Italy, in 1997, and
a doctoral degree in Information Technologies
from the Faculty of Engineering of the Univer-
sité Libre de Bruxelles, Brussels, Belgium, in
2004. He is currently with IRIDIA, CoDE, Uni-
versité Libre de Bruxelles, as a research asso-
ciate of the fund for scientific research F.R.S.-
FNRS of Belgium’s French Community. Dr. Bi-

rattari co-authored about 50 peer-reviewed scientific publications in
the field of computational intelligence. His research interests focus on
swarm intelligence, ant colony optimization, machine learning, and on
the application of artificial intelligence techniques to the automatic de-
sign of algorithms. Dr. Birattari is an Associate Editor for the journal
Swarm Intelligence and has served in the organizing committee of the
third, fourth, and fifth edition of the International Workshop on Ant
Colony Optimization and Swarm Intelligence.

Marco Dorigo received the master degree in in-
dustrial technologies engineering in 1986 and
the doctoral degree in information and systems
electronic engineering in 1992 from Politecnico
di Milano, Milan, Italy, and the title of Agrégé
de l’Enseignement Supérieur, from the Uni-
versité Libre de Bruxelles, Belgium, in 1995.
From 1992 to 1993 he was a research fellow
at the International Computer Science Institute
of Berkeley, CA. In 1993 he was a NATO-CNR

fellow, and from 1994 to 1996 a Marie Curie fellow. Since 1996 he has
been a tenured researcher of the F.R.S.-FNRS, the fund for scientific
research of Belgium’s French Community, and a research director of
IRIDIA, the artificial intelligence laboratory of the Université Libre de
Bruxelles. He is the inventor of the ant colony optimization metaheuris-
tic. His current research interests include swarm intelligence, swarm
robotics, and metaheuristics for discrete optimization. Dr. Dorigo is
the Editor-in-Chief of the Swarm Intelligence journal, and an Associate
Editor or member of the editorial board for many journals in computa-
tional intelligence and adaptive systems. In 1996 he was awarded the
Italian Prize for Artificial Intelligence, in 2003 the Marie Curie Excel-
lence Award, in 2005 the Dr A. De Leeuw-Damry-Bourlart award in
applied sciences and in 2007 the Cajastur International Prize for Soft
Computing.

	Fault detection in autonomous robots based on fault injection and learning
	Abstract
	Introduction
	Related work
	Methodology
	Formal definitions
	Sensory data, control signals and fault state
	Tapped delay-line and input group distance
	TDNN structure and activation function
	Classification and learning

	Robot hardware

	Faults
	The three experimental setups
	Data collection, training and performance evaluation
	Data collection
	Training and evaluation data
	Performance evaluation

	Results
	Tuning the input group distance
	Fault detection performance in the follow the leader and connect to s-bot setups
	Reducing the number of false positives
	Faults in both sensors and actuators
	Robustness to variations in the task
	Exogenous fault detection

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

