
Auton Robot (2007) 22:223–242
DOI 10.1007/s10514-006-9721-0

Safe and effective navigation of autonomous robots in hazardous
environments
Derek Seward · Conrad Pace · Rahee Agate

Received: 22 May 2006 / Revised: 28 June 2006 / Accepted: 10 July 2006 / Published online: 8 September 2006
C© Springer Science + Business Media, LLC 2006

Abstract The development of autonomous mobile ma-
chines to perform useful tasks in real work environments
is currently being impeded by concerns over effectiveness,
commercial viability and, above all, safety. This paper in-
troduces a case study of a robotic excavator to explore a se-
ries of issues around system development, navigation in un-
structured environments, autonomous decision making and
changing the behaviour of autonomous machines to suit the
prevailing demands of users. The adoption of the Real-Time
Control Systems (RCS) architecture (Albus, 1991) is pro-
posed as a universal framework for the development of in-
telligent systems. In addition it is explained how the use of
Partially Observable Markov Decision Processes (POMDP)
(Kaelbling et al., 1998) can form the basis of decision mak-
ing in the face of uncertainty and how the technique can be
effectively incorporated into the RCS architecture. Particular
emphasis is placed on ensuring that the resulting behaviour
is both task effective and adequately safe, and it is recognised
that these two objectives may be in opposition and that the
desired relative balance between them may change. The con-
cept of an autonomous system having “values” is introduced
through the use of utility theory. Limited simulation results
of experiments are reported which demonstrate that these
techniques can create intelligent systems capable of modi-
fying their behaviour to exhibit either ‘safety conscious’ or
‘task achieving’ personalities.

D. Seward (�) · R. Agate
Lancaster University
e-mail: d.seward@lancaster.ac.uk

C. Pace
University of Malta

Keywords Autonomous vehicles . Safety . Risk analysis .

Unstructured environments . Task effective . Partially
observable Markov decision processes . Real-time control
system . Robot architecture

1 Background

The advent of fast, accurate and reliable differential GPS sys-
tems for the location of construction plant provides the op-
portunity for significant advances in the autonomous move-
ment of such plant around construction sites. Such technol-
ogy was demonstrated as long ago as 1996 by Caterpillar
with its autonomous mining truck (AMT) (Geske, 2004),
however this has still not become a commercial reality. The
main reasons for this lack of success in the market are lin-
gering doubts about both safety and economic effectiveness.
This is despite the fact that this particular application was
designed for use on relatively simple haul roads in large
mines which are both isolated and largely free from other
traffic.

One of the first applications of GPS for the real-time con-
trol of heavy plant involves the positioning of a large piling
rig (Seward et al., 1996), however, largely because of safety
concerns, no attempt was made to make the vehicle driver-
less during significant movements of the vehicle. Current
work at Lancaster University is centred around LUCIE, the
Lancaster University Computerised Intelligent Excavator –
Fig. 1. This is a robot excavator that has demonstrated effec-
tive autonomous trenching in varying soil conditions, how-
ever, the focus of this paper concerns the work to achieve safe
navigation of the excavator platform around an unstructured
and dynamically changing construction site.

Springer

224 Auton Robot (2007) 22:223–242

Fig. 1 Robot excavator under ‘training’

As robots evolve into systems with enhanced mobility
and autonomy, their operational safety concerns increase and
change in nature. Advanced mobile robots operating in dy-
namic and unstructured environments are unlikely to be able
to rely on substantial robot isolation or motion constraints to
ensure adequate safety, having to rely more on their adapta-
tion to the environment to maintain safety. Thus behaviour
generation will have to carry most of the ‘responsibility’
to maintain safe operation, owing to the undesirability of
restricting availability through excessive environmental
and operational constraints. Consequently, the onus on
operational safety assurance will shift from an approach that
constrains the system to an approach more fundamentally
concerned with the robot’s behaviour. This brings about
various new challenges in developing safe robotic systems.

One challenge is that the priorities of the robot may change
depending upon its role and task. For example under normal
commercial conditions ‘values’ such as safety and cost effi-
ciency may dominate whereas for a military robot, under bat-
tlefield conditions, task achievement and self-preservation
may be more important. Relative priorities may vary from
day-to-day even for the same system.

Figure 15 shows an example of a simulated construction
site with hazards. The object of this work is to develop a

strategy, and a means of implementation, that will enable
an autonomous vehicle to move from the start point to a
nominated target point with behaviour appropriate to its des-
ignated ‘values’.

2 Excavator hardware architecture and sensors

The hardware platform used for this work was a standard JCB
801 tracked mini-excavator modified in the following ways:

� The standard manually operated hydraulic valves were
replaced by a proportional electro-hydraulic system. For
accuracy in control these are have ‘closed-centre’ spools.
The problem of dissipating excess energy during periods
of low activity was solved by replacing the existing fixed
displacement hydraulic gear pumps with a single variable
displacement swash-plate pump.

� Each joint in the excavator arm plus the slew and tracks
were fitted with simple potentiometer sensors, interfaced
to an analogue interface card, to provide closed-loop feed-
back control (Fig. 2).

� A two axis tilt-sensor was added to indicate the slope of
the vehicle platform (pitch and roll)

� A Rotoscan scanning laser sensor was used to detect
objects within the vicinity of the excavator (Seward et al.,
2002)

� A Trimble differential satellite Global Positioning System
(GPS) was added with an antenna on the roof of the vehicle.
This can provide X-Y position to an accuracy of about
25 mm at an update rate of 5 Hz. Elevation data (Z) is less
accurate at about 50 mm.

� A standard flux-gate compass was used to give orientation
data. Such data can be obtained from the GPS when the
vehicle is moving but not when the vehicle is turning-on-
the-spot. (A more expensive alternative is to adopt two
on-board GPS systems or multiple antennas).

� Two on-board compact PC104 computers, communicat-
ing via a CAN bus (Fig. 3), were added to perform the
following functions:

Fig. 2 Hardware components

Springer

Auton Robot (2007) 22:223–242 225

N

S

EW

CAN-Bus

Joysticks

Electrohydraulic Valves

Sensors

GPS

User Interface

Compass

 Laser
Scanner

LLC AM

Tilt
Sensor

Fig. 3 Architecture for robot
excavator

� The Activities Manager (AM) is responsible for tactical
decision making during both autonomous digging and
travelling. Behaviour is adapted in response to both sen-
sors of the external world (exteroceptive) and internal
performance monitoring (proprioceptive). This paper is
largely concerned with the operation of this module.

� The Low-level Controller (LLC) controls the feedback
loop formed by the joint/track sensors and the electro-
hydraulic valves to facilitate the desired movement of the
arm or vehicle platform. It thus manages servo-control
of the individual joints in addition to kinematic con-
trol of the entire arm or platform. Smooth and accurate
control has been achieved using a technique known as
Proportional Integral Plus (Ghu et al., 2004), but this is
not the focus of this work.

3 Robot architectures

Architectural structure can be defined as the method by which
a system is divided into subsystems, and how those subsys-
tems interact with each other and with the external world to
reach the set goal. A system ‘architecture’ primarily refers to
the software and hardware framework for controlling the sys-
tem. Architectural style refers to the computational concepts
that underlie a given system. In the last decade, a number of
system architectures have evolved (Arkin, 1998).

Architectural styles described in the technical literature
can be classified into three categories: deliberative (charac-
terised by top-down, hierarchical and model based control),
reactive (characterised by simple sense-act behaviours), and
hybrid. Hybrid style combines both reactive and deliberative
control in a heterogeneous architecture. It facilitates the de-
sign of efficient low-level control with a connection to high-
level reasoning. A problem is that there are about as many
different intelligent robot architectures as there are robots,
resulting in a lack of possibilities for reuse and collaboration.
An attempt to produce a universal architecture is RCS. RCS
(Real-time Control System) (Albus and Meystel, 2001) is a
hybrid architecture in that it combines deliberative with reac-

tive components. The approach was developed at the N.I.S.T.
(National Institute of Standards and Technology) laboratory
in the USA and has been applied to a wide range of intelligent
systems. The adoption of an existing framework such as RCS
means that there is more chance of reusability of modules
across different systems. In addition there have been moves
to generate an RCS communications protocol and to create
software design tools to facilitate system development.

3.1 Real-time control system-reference model architecture
(RCS-RMA)

RCS partitions the control problem into four basic functional
elements:

� behaviour generation (BG),
� world modelling (WM),
� sensory processing (SP),
� and value judgement (VJ),

along with sensors and actuators. RCS clusters these ele-
ments into computational nodes that have responsibility for
specific subsystems and arrange these nodes in hierarchi-
cal layers such that each layer has characteristic function-
ality and timing. Each layer provides a rich and dynamic
world model and a sensory processing hierarchy to keep the
world model up to date. Each layer provides a mechanism
for integration of deliberative (planning) and reactive (feed-
back) control. The RCS reference model architecture has
a systematic regularity and recursive structure expressed in
a canonical form that provides a basis for an engineering
methodology (Albus and Meystel, 2001).

The Functional Elements perform the following functions
(Albus and Meystel, 2001; Albus, 1991):

Value Judgment (VJ)
It is a process that

1. Computes cost, risk, and benefit of actions and plans.
2. Estimates the importance and value of objects, events, and

situations.

Springer

226 Auton Robot (2007) 22:223–242

3. Assesses the reliability of information.
4. Calculates the rewarding or punishing effects of perceived

states and events.

World Modelling (WM)
Is a functional process that constructs, maintains, and uses
a world model knowledge database (KD) in support of be-
haviour generation and sensory processing.

World modelling performs four principle functions:

1. It predicts (possibly with several hypotheses) sensory
observations based on the estimated state of the world.
Predicted signals can be used by sensory processing
to configure filters, masks, windows, and schema for
correlation, model matching, recursive estimation, and
focusing attention.

2. It generates and maintains a best estimate of the state of
the world that can be used for controlling current actions
and planning future behaviour. This best estimate resides
in a knowledge database describing the state and at-
tributes of objects, events, classes, agents, situations, and
relationships. This knowledge database has both iconic
and symbolic structures and both short and long-term
components.

3. It acts as a database server in response to queries for
information stored in the knowledge database.

4. It simulates results of possible future plans based on the
estimated state of the world and planned actions. Simu-
lated results are evaluated by the value judgement system
to select the best plan for execution.

Behaviour Generation (BG)
Performs the planning and control of actions intended to
achieve or maintain behavioural goals.

Behavioural goal: a desired result that a behaviour is in-
tended to achieve or maintain.

Desired result: a result that value judgment evaluates as de-
sirable or beneficial.

Command: a name, a commanded action, and a command
goal. Both commanded action and command goal may
include parameters.

Sensory processing (SP)
Is a set of processes by which sensory data interact with prior
knowledge to detect and recognize useful information about
the world.

Figure 4 illustrates the relationships within a single node
of the RCS architecture. Each node contains BG, WM, SP,
and VJ processes, plus a knowledge database (KD). Any
or all of the processes within a node may communicate
with an operator interface. The interconnections between
sensory processing, world modelling, and behaviour genera-
tion close a reactive feedback control loop between sensory
measurements and commanded action. The interconnections
between behaviour generation, world modelling, and value
judgment enable deliberative planning and reasoning about
future actions. The interconnections between sensory pro-
cessing, world modelling, and value judgment enable knowl-
edge acquisition, situation evaluation, and learning.

Within sensory processing, observed input from sensors
and lower level nodes is compared with predictions gener-
ated by world modelling. Differences between observations
and predictions is used by world modelling to update the
knowledge database.

Each RCS node looks upward to a higher level node from
which it takes commands, for which it provides sensory in-
formation, and to which it reports status. Each node also

Value
Jadgement

Sensory Processing World Model-
knowledge
database

Behaviour
Generation

P
lan

 results

Plan
Evaluation

Predicted input

Update

Sensory input

Sensory output

State

Plan

Commanded
action

S
tatus

Status

C
om

m
anded

taskSituation
evaluation

Perceived objects

and events
Peer input

output

Observed input

Operator
interface

To higher & lowerlevel worldmodelling

Fig. 4 An RCS node (Albus and Meystel, 2001)

Springer

Auton Robot (2007) 22:223–242 227

looks downward to one or more lower level nodes to which
it issues commands, and from which it accepts sensory infor-
mation and status. Nodes may also communicate with peer
nodes with which it exchanges information. A collection of
RCS computational nodes such as illustrated in Fig. 4 can be
used to construct a distributed hierarchical reference model
architecture.

Each node acts as an operational unit in an intelligent
system. Depending on where a particular node resides in
the hierarchy, it might serve as a controller for one or more
actuators, a subsystem, an individual machine, a group of
machines comprising a manufacturing workstation, a group
of workstations comprising a manufacturing cell, or a group
of cells comprising a manufacturing shop. The functional-
ity of each node can be implemented by a set of software
processes or by a person or group of persons.

Figure 5 shows the organizational hierarchy in more de-
tail; it illustrates both the hierarchical and horizontal rela-
tionships involved in the proposed architecture. Commands
and status feedback flow hierarchically up and down a
behaviour-generating chain of command. Sensory process-
ing and world-modelling functions have hierarchical levels
of temporal and spatial aggregation.

This is not a hierarchy in a classical sense of the term.
The classical representation of a hierarchy refers to a tree-
architecture, this is a multiscale organization in which verti-
cal branches have horizontal connections.

The architecture is horizontal in that data are shared hor-
izontally between heterogeneous modules at the same level.
At each hierarchical level, the architecture is horizontally
interconnected by wide-bandwidth communication between
BG, WM, SP, and VJ modules in the same node, and
between nodes at the same level, especially within the same
command subtree. The horizontal flow of information is vo-

luminous within a single node but less between related nodes
in the same command subtree. It has relatively low band-
width between computing modules in separate command
subtrees.

The volume of information flowing horizontally within a
subtree may be orders of magnitude larger than the amount
flowing vertically in the command chain. The volume of
information flowing vertically in the sensory processing
system can also be very high, especially in the vision
system.

3.2 Implementing RCS-RMA in LUCIE

The first step is to perform a task decomposition analy-
sis (Albus and Meystel, 2001) of the physical system to
be controlled. In other words, the designer must identify
the tasks or operations that this system performs and which
task is performed by which actuator(s) or subsystem(s). The
task knowledge is represented in the form of a hierarchical
task decomposition where higher-level tasks are decomposed
into lower-level subtasks (i.e., where the execution of a se-
quence of subtasks results in achieving the high-level task).
Figure 6 shows the Organizational Hierarchy based on task
decomposition analysis of an Excavator.

The next step is defining the controller architecture. The
first and most important thing to consider is the layout of
the physical subsystems and all the actuators and sensors of
the system to be controlled. Each subsystem will have its
own sensors and actuators (although these won’t be unique
to a specific subsystem). Then, based on the physical lay-
out of the subsystems, the connections between them, the
information flow, and the task decomposition analysis per-
formed in the previous step, we define the controller ar-
chitecture. This typically starts with assigning a control

Fig. 5 A RCS reference model architecture for intelligent systems (1991)

Springer

228 Auton Robot (2007) 22:223–242

Vehicle path planning and object
detection

Plan task segment

Operator interface

Digging

Travelling module Attention module Digging module

Track controller Object detection
Object

recognition
Arm controller

Sensors and actuators

VJ

SP
WM

BG

A

B

C

C

C

C

A

A

B

Plan global taskLevel 1

Level 6

Fig. 6 Organizational hierarchy showing internal structure of one of the modules

module to each actuator and sensor on the bottom of the
hierarchy.

Figure 7 shows the 5-level hierarchy of the controller
residing in mobile robot excavator. There is one or more
number of modules at each level. The Task Manager Module
(TMM) together with the Activity Manager-Navigation
(AM-N) and Activity Manager-Digging (AM-D) represents

the first 3 levels of the organizational hierarchy shown in
Fig. 6. The Attention Module (AM), Travelling Module
(TM) and Digging Module (DM) correspond to the fourth
level of the controller hierarchy.

As there are three independent operations of Attention,
Travelling and Digging that are performed by three different
subsystems at level 3 of the Controller Hierarchy, the cor-

Springer

Auton Robot (2007) 22:223–242 229

Task Manager (TM)

Activity Manager -
Navigation (AM-N)

Travelling
Module

Attention
Module

Digging
Module (DM)

Track
Controller

Object
Detection

Arm
Controller

Track
Sensors DGPS

Vision
Sensors (Bump

Sensors

Arm
Sensors

Activity Manager -
Digging (AM-D)

Object
Recognition

Video
Camera

Fig. 7 Controller architecture

responding Activity Manager is assigned as a coordinator to
each of these subsystems at one level higher in hierarchy as
shown.

The TM, AM and DM will play the role of carrying out
decisions made by the respective Activity managers. But the
actual task of controlling the vehicle motion is performed by
Track Controller. Also Object detection takes place in Object
Detection module OD. The Object recognition module OR
is responsible for recognising the shape, size and type of ob-
stacle. The excavator arm is controlled by the arm controller
AC. This is actually level 2 of the controller hierarchy. This
level along with the sensors can also be referred to as the
low-level controller.

3.3 Considering safety in RCS

“Although RCS is reasonably generalised and multi-
applicational system architecture, there are certain areas,
which are in the development stage. It does not take into
consideration safety in general.”

“There are several issues which need to be taken into ac-
count when analysing a system’s safety, particularly if the

system operates autonomously in an unpredictable and un-
controlled environment. The term safety is relative. There is
no absolute safety. Due to this inability in assuring complete
safety, it is necessary to secure a reliable degree of protection
which fits the circumstances in which the application under
development is being used (Pace, 2004)”.

The following questions in relation to embedding safety
within RCS were considered:

1. Should safety be an additional value in the value judge-
ment of the RCS? The value judgement parameter can
take the form of a risk measurement (in the field of risk
analysis, measurable risk values are considered so theo-
retically there are ways of quantifying the risk)

2. How would a safety value judgement be processed?—
Potentially through the evaluation of possible accident
risks for the proposed plans (i.e. the value judgement
process is nothing more than a risk assessment process
for the proposed plans with the resulting ‘value’ being the
risk measure).

3. What are the implications of including safety in decision-
making?—There will need to be some form of evaluation

Springer

230 Auton Robot (2007) 22:223–242

of the dependability of the world model created as well
as the sensory processing (i.e. how sure can one be that
the world model and the system perceptions are a true
reflection of reality).

4. How are risk measures integrated with decision-making?
How can other values such as task achievement be con-
sidered by VJ and how does BG employ these values to
generate actions?

5. How do the architectural layers influence safety man-
agement? Essentially this means operational risks can be
considered on various time and spatial scales. The ad-
vantage is that the architecture layers act as a form of
‘safety firewall’ as decisions and actions are passed down
the architecture, where each level has a role to play in
eliminating hazards to which the robot is exposed. This
is a very important issue and integral to the RCS as well
as to the philosophy of considering safety throughout,
planning and execution (which substantially departs from
many approaches which only consider safety at the level
of direct interaction with the environment).

The paper returns to these five questions later, however it is
first necessary to gain a better understanding of the safety
issues.

4 Implementation issues for ensuring safe behaviour

The distinctive features of mobile construction robotic sys-
tems when compared to conventional industrial systems, re-
quire an appropriate and systematic investigation and analy-
sis of the system operation from a safety perspective. Since
advanced robotic system behaviour is founded on the imple-
mentation of a computer based architecture, such systems
fall within the definition of programmable electronic sys-
tems (PES) and thus potentially require a similar develop-
ment strategy from a safety perspective (National Advanced
Robotics Research Centre, 1992). Gaskill and Went (1996)
highlights the complexity of robotic systems and the corre-
spondence of such systems to PES’s, indicating once more
the relevance of PES standards for managing the robotic
system’s safety. The basis of such approaches is an adequate
hazard analysis as the cornerstone to system safety.

4.1 Influential factors on robotic system
safety—Environmental interaction and uncertainty

The focus here is on operational safety, and thus hazards
originating from the interaction between robot and environ-
ment are of major interest. Hence a thorough definition of
the interaction between robot and environment is necessary
for defining any potential operational risks.

Defining the interaction between robot and environment is
highly complex specifically owing to the unstructured nature
of the environment and the inherent flexibility in the motion
of the robot and its possible behaviour (Seward et al., 2000).
The problem is further aggravated by the relatively high
complexity of autonomous robotic systems in the way that
they generate their own behaviour. It has been noted (ref 91)
that ‘robots capable of a high degree of adaptability and per-
forming a wide range of tasks, will also be capable of many
modes of failure’ potentially requiring novel perspectives
to the assurance of safety. Such complexity underlines the
potential inability to carry out a full and complete analysis
of the system-environment interaction and furthermore, in
developing a system that can be verified to act safely in such
interaction under all possible circumstances that may be
encountered. Consequently, there is likely to be an innate un-
certainty concerning the safe behaviour of such autonomous
robots.

In the application of autonomous mobile robots uncer-
tainty in the interaction of the robot with its surroundings
potentially arises from various sources and at various stages
in development. In [91] a number of implications regarding
the development of such systems that highlight the problems
related to uncertainty from a safety perspective are given,
these being:

1. The need for flexible and dynamic interaction with the
real world which requires real-time reactive abilities from
the system. This however highlights the problem of pre-
dictability, considered to be a key attribute for safety.

2. The heavy dependence on sensory information to compre-
hend and interact with the world. Such information can
rarely be guaranteed as certain and perceptual representa-
tion techniques generally require the need to allow certain
degrees of uncertainty in the sensory interpretation.

3. Definitions and assumptions on the system and operating
environment are required in order to bound the system
development and related analysis. However, due to the
potential nature of both system and environment, it may
not be possible to specify in exact terms such definitions.
For example, formally defining an unstructured envi-
ronment may be impractical. This can potentially lead
to problems at later verification and validation stages
where the lack of specificity may give rise to an inability
in confirming the achievement of the required system
characteristics.

4. The use of computing technology, which is essential in
achieving the required functionality of such autonomous
robotic systems, and the underlying knowledge rep-
resentation and management, can give rise to safety
concerns with regards to the integrity and reliability of the
software.

Springer

Auton Robot (2007) 22:223–242 231

4.2 A hazard analysis

An initial hazard identification was performed on the au-
tonomous excavator case study. The principle hazard classes
were defined as:

1. Collision with an object on the surface
2. Collision with an underground object during digging
3. Toppling of the excavator

A back-ward and top-down approach was then adopted using
Fault Tree Analysis (FTA) in order to define hazard causal
factors. The FTA provides a logical breakdown of a system’s
failure starting from a top event defining the accident or
hazardous event, and proceeding to the causal factors in the
form of a Boolean logic tree. Fault trees were constructed to
provide a better insight into the hazard dynamics, by identi-
fying;

1. at which point during an operation there is danger of a
hazard occurrence and

2. how the hazard might best be avoided from a system
dynamics point of view, or, failing that, detected and an
accident avoided.

A typical fault tree originating from this analysis can be
viewed in Fig. 8. What is immediately apparent from the
fault trees is the need to identify the environmental features
contributing to the causal branches leading to the accident/

hazard occurrence. In other words, most causal branches are
linked to specific environmental features and the limitations
in the system’s ability to perceive such environmental fea-
tures. This differs from conventional fault trees where the
events are mainly component failures. A typical example in
this case is the inability to correctly foresee the effect of ter-
rain conditions, such as traction, on the robot motion. This
makes the robot expect a certain path to be followed, when in
reality variations from the expected path are likely to occur
given the traction effects on system motion. Other exam-
ples include the various effects on the sensory suite resulting
from operation over rough terrain, potentially inducing in-
terference as well as anomalous data patterns, eventually
leading to misinterpretations of the sensory data. All such
features are directly linked to specific characteristics in the
environment, and thus, have to be represented in a manner
that clearly indicates such dependency.

Outcome of the hazard analysis
The principle conclusion from the hazard analysis is that
autonomous systems which offer some form of safety as-
surance need to exhibit safety control activities that mitigate
hazards. Such activities are based on the system’s operational
capabilities under the various possible states and conditions
that may be encountered during task execution. Knowledge
of the system’s operational state thus becomes an initial ob-
jective for achieving safe behaviour, where such knowledge

Obstacle Field
Interpretation Failure

4

Obstacles
straight ahead
of excavator

Lateral
Dimension incorrect

estimation

Obstacle
influences cancel out

Each other

Failure to
consider room for
possible rotation

between
obstacles

Incorrect
calculation of

distance between
obstacles

Wrong combination
of obstacle influences

Wrong estimation of
path width

Incorrect estimation
of maneuvering
space for robot

Failure in estimating
likelihood of getting

blocked

Maximising
effect of one obstacle

closest to robot

Ignoring
effect of other
obstacles in

vicinity

Failure to derive path
between obstacles

Fig. 8 A Typical Fault Tree applied for analyzing robot system safe behaviour

Springer

232 Auton Robot (2007) 22:223–242

is substantially dependent on the ability to identify faults
and failures within the system as well as anomalous system
operational states.

A system should additionally be capable of defining the
effect that its operational state has on the capacity to achieve
the required task objectives whilst maintaining system oper-
ational safety. Again, the safety analysis provides valuable
insights on how such a system ability is developed. An ef-
fective system must have:

1. The ability to detect both the system and environmental
states that generate hazards. This will require the inter-
pretation of sensor data and it is important to understand
the degree of confidence in this interpretation as a result
of underlying perceptual and cognitive uncertainties.

2. The ability to comprehend the safety related consequences
of specific system operations and actions, prior to action
execution. Knowledge of the safety consequences pro-
vides the basis for safety decision-making. Once more,
awareness of the degree of confidence in the interpre-
tation of action consequences is critical in providing an
appropriate representation of operational risks.

3. The ability to directly influence action decision-making,
so as to constrain or adapt actions deemed as unsafe
or dangerous. In this manner, the prior safety evalua-
tion would provide an approach to safety that reflects the
knowledge about the system operation and its limitations.

Overall the autonomous system must self-manage its be-
haviour so as to minimise risk, where risk is defined as the
combination of the likelihood of an accident occurring and
its severity. The system needs to select an action or plan for
execution, which, in conjunction to the achievement of the
operational task or goal, also aims to reduce risk, to an extent
that the operational ‘risk’ is justified given the expected ben-
efits from executing such an action. In this perspective, the
robotic system’s decision-making process from a safety point
of view, becomes nothing more than a self-risk evaluation
and reduction exercise. Figure 9 below provides a breakdown
of the principle steps in such a risk assessment process.

5 Implementing a safety management approach using
partially observable Markov decision processes

A clear approach is required for implementing the activi-
ties shown in Fig. 9. The lack of certainty with regard to
knowing both the operational state and the consequences
of actions leads to the adoption of a probabilistic model.
From a semantic viewpoint, probabilities give a representa-
tion of uncertainty in a coherent and comprehensible manner.
Furthermore, and as importantly, probability lends itself to
a strong formal, mathematical representation which, from
a safety management perspective, allows visibility in the
assessment of the system’s level of safety and consequent
decision-making. A suitable implementation technique is the
adoption of Partially Observable Markov Decision Processes
(POMDP).

5.1 Partially observable Markov decision processes

A Markov decision process (MDP) is a technique for
making decisions about actions or behaviour in the face of
uncertainty. It starts from the assumption that the world (the
system and its relevant surroundings) exists in the form of a
finite number of discrete states (S). Furthermore there is a set
of actions (A) each of which can transform the world from
one state (si) into another. However a particular new state is
not certain. Knowing the current state of the world, the pro-
cess evaluates probabilities for certain states resulting from
certain actions. The process always looks forward and does
not take account of states before the current one. Partially ob-
servable Markov decision processes (POMDP) additionally
assume that knowledge about which state the world is in at
any time is not certain, but also subject to probabilities. More
formally POMDP models a discrete state system operating in
discrete time. State identification uncertainty is based on a set
of observations and a related probabilistic observation func-
tion, and action consequence uncertainty is defined through a
probabilistic transition function that computes the transition
probability to future system states for each possible action.

Assess the
System and
Environment

State

Interpret the
state transition
as a result of
the potential
actions to be

executed

Assess the
potential
action

consequences

Estimate the
action risks

Influence
decisions to

reduce
operational

risks

Evaluate Integrity of the
assessment process

Fig. 9 The principle steps in a self-risk assessment and management process

Springer

Auton Robot (2007) 22:223–242 233

In mathematical terms the POMDP can be represented
(Kaelbling et al., 1998) as a tuple 〈S, A, T, R,�, O〉where

� S is a finite set of states si of the world,
� A is a finite set of actions ai which can be taken,
� T: S × Ad →�(S) is the state-transition function, where for

each state si and action a at time t, a probability distribution
over the states is given, where T(si, a, sj) represents the
probability of ending in state sj at time t + 1.

T (si , a, s j) = Pr(St+1 = s j |St = si , At = a) (1)

� R: S × Ad → � is the reward function, giving the expected
immediate reward gained by the system for taking each
action a in each state s, R(s, a).

� � is a finite set of observations that the system can make
of its world, and

� O: S × Ad → �(�) is an observation function, giving, for
each action and resulting state, a probability distribution
over possible observations. Here O(sj, a, o) signifies the
probability of making an observation o at time t + 1, given
that action a is taken at time t and with the system landing
in state sj at time t + 1;

O(s j , a, o) = Pr(�t+1 = o|At = a, St+1 = s j) (2)

The following sections describe the implementation of
POMDP’s within a safety reasoning and management frame-
work.

5.2 State definition

From an operational safety perspective, the scope of the
POMDP is that of modeling the system’s state of safety and
of serving as a basis for managing and ensuring adequate
operational safety. Consequently, within such a model, the
system states need to synthesize the system’s likelihood of an
accident (or accidents) and the accident outcome or severity.
In this respect, system states of interest can be defined from
the identification of the robot’s hazardous states that arise
out of the hazard analysis. A system state as defined within
the POMDP model would thus be a reflection of the presence
or absence of an operational hazardous state and consequent
accident event.

5.3 Mapping safety states into hazard state likelihoods

To facilitate the definition of the state, a set of state vari-
ables is introduced, where these variables and their values
embody the causal factors and conditions which give rise to
the hazardous state. For example, state variables can include
the state of specific sensors or actuators, their values reflect-
ing the level of integrity of the devices. By calculating the

Hazard -Toppling

Ground tilt value > smaller limit
with induced rocking of excavator

Induced Rocking

Sudden
rotation

Rugged
ground

Ground Tilt
Value > Limit

when in normal
drive conditions

Robot
Speed

Rocking from
linear motion

Ground
Tilt >

Smaller
Limit

Fig. 10 A Fault Tree used for mapping state variable values into a
hazardous event

likely values (and their probabilities) of these state variables,
from the sensory observations as well as from knowledge
of the intended actions, it is possible to extract the likeli-
hood of the system state, which in turn allows an estimate
of the likelihood of a hazardous state. A mapping between
state variables (and their values) and the occurrence of a haz-
ardous state is thus necessary to allow an appropriate safety
interpretation and to be able to evaluate the risks incurred in
system operation.

An effective mapping can and should generally be directly
‘extracted’ from the hazard analysis. The hazard analysis rep-
resents the link between the possible system hazardous states
and their causal factors, that is the system state variables. For
this purpose a fault tree model can be applied, as illustrated
in Fig. 10, where the fault tree logic provides the appropriate
function for converting the state variable value probabilities
(the basic events) into the hazard state probability (the top
event).

It is important to note that the fault tree mapping provides a
means of directly linking the results of the hazard analysis to
the system’s reasoning framework for detecting the presence
of hazardous states.

5.4 Observing system states and defining state uncertainty

As was indicated earlier on, it is necessary to provide a
state definition process which allows for the consideration
of the constraints in the perceptual and cognitive processes
used for identifying the system state. For this purpose, state
variable values can only be identified within a probabilistic
framework, through a set of observations, which in turn

Springer

234 Auton Robot (2007) 22:223–242

embody the sensory information and knowledge generated
from other sources (such as prior maps of the environment).

Defining such an observation function to evaluate state
probabilities from a set of observation variable values re-
quires the application of appropriate tools to handle the
underlying probabilistic computations. For this purpose,
Bayesian networks have been used to derive the state variable
value probabilities.

5.5 Transitioning to future states

Defining the action transition function in order to identify
the future probable states at future discrete time-steps, is
problematic owing to the need to estimate the individual
variable value probabilities for each possible system action.
Again, Bayesian network based models have been applied
for providing the transition probabilities computation.

Future actions generally depend on the operational abili-
ties of the system and are mostly task achievement related.
However system actions may not only represent physical
motion requirements but may also allow other forms of be-
haviour. Of particular interest here, and found in POMDP
applications, is the definition of explorative type actions that
consist of additional observations to reduce operational un-
certainties, rather than goal-directed physical actions. Such
actions can be of particular use when high risk consequences
of physical actions result from high uncertainties on the cur-
rent and future system states.

5.6 Decision-making within the POMDP

Through the probability distribution of future state variable
values as well as through the system state—hazardous state
mapping, the likelihood of future hazardous states for each
possible action is identified. Knowledge of the consequences
of such states helps define a ‘reward’ value function which
provides a quantification of such consequences. Such re-
wards as assigned to the individual states can be used as the
basis of decision-making and action selection.

Reward assignment, in practice can be allocated to the
individual hazardous states reflecting each hazard state con-
sequence severity. In this sense, system states can be clas-
sified as safe or as states leading to accidents (hazardous
states). Based on this approach it is logical to expect that a
safe state is allocated a higher reward than an unsafe state.
In the case of safe states there will be nothing to distin-
guish their level of preference from a safety perspective,
and therefore a common reward assignment R(ssafe) = 0 can
be used. For unsafe states, it is quite natural to assume
that the least preferred system state is the one that leads
to the worst hazard consequences. Penalties can thus be at-
tributed to hazard states based on their consequence and
allocated to the states in which such hazard states will occur.

Thus, if a state sAcc represents a set of state variable values
that indicate the occurrence of ‘k’ individual hazard states,
h1, h2,. . ..hk, then the corresponding ‘reward’ assigned to
such a state will be given by (4) where Sev() is the quan-
tified penalty that reflects the severity of the hazard state
consequence.

R(sAcc) =
∑

i=1...k

Sev(hi) < 0 (4)

Consequently, from the rewards values allocated to the indi-
vidual possible system states, defining the value attributable
to an action would simply require a weighted sum of the
possible future states arising from an action execution, the
weighting factor being the probability of occurrence of the
individual states.

Thus with a current state probability distribution Pr(St),
the expected reward to be gained by taking the action a in
the next time step, i.e. the value assigned to the action, V (a)
is given by;

V (a) =
∑

si ∈S

∑

s j ∈S

Pr(St = si)T (si , a, s j)R(s j) (5)

Given that the transition function in Eq. (5) provides an eval-
uation of the individual state variable value probabilities, to
facilitate the derivation of the value attributed to an action,
it is possibly to bypass the identification of the individual
future system states and their probabilities, and instead de-
rive the probabilities of the individual hazardous states di-
rectly from the probabilities of the individual state variable
values (though the fault tree mapping functions) Thus the
rewards (severity values) attributed directly to the individual
hazardous states can be applied as shown in (6). Here the in-
dividual hazardous state probabilities Pr(hi) are derived from
the future state variable value probabilities through the ap-
plication of the fault tree mapping tool, with the summation
being over all possible hazard states.

V (a) =
∑

i=1,...,k

Pr(hi)Sev(hi) (6)

5.7 Risk assessment and integration with task objectives

It is interesting to note that (6) represents in explicit terms
the risk taken in executing action a, since safety related risk
is defined as the combination of the accident probability
and accident consequence or severity (Arkin, 1993). The re-
sulting outcome is that the process of determining the action
consequence assessment reflects nothing more than an action
risk assessment process.

With a risk assessment on the individual possible actions,
based on the action consequences, it is possible to weight

Springer

Auton Robot (2007) 22:223–242 235

0 0.5 1 Safety Behaviour
factor WS scale

Equal
weighting to
safety and

goal
achievement

Complete safety
directed behaviour.
Goal requirements

Increase in safe behaviour
Decrease in task achievement ability

Completely
unsafe behavior.
Decisions purely

Fig. 11 A safety behaviour weighting factor (Ws) scale

such risks with the expected estimated gains of the system
performing such an action, primarily through task achieve-
ment. Given that actions will be positive or negative from
the perspective of task achievement, based on whether each
action brings the system closer to completing its task, the
balance between risk and task achievement can be achieved
through a simple weighting function of both the safety and
task achievement action values. The weighting function will
potentially take the following form;

VTot(a) = WS VSafe(a) + (1 − WS)VTask(a) (7)

where VTot, VSafe and VTask represent the total, safety re-
lated and task related values attributed to the action a. In
the above equation, WS is simply a weighting factor rang-
ing between 0 and 1. The weighting factor reflects the rela-
tive importance attributed to safety maintenance when com-
pared to task achievement, with WS = 1, indicating that task
achievement objectives are ignored when compared to safety
maintenance, and vice-versa for WS = 0. Figure 11 illus-
trates the effect of varying the weighting factor on a simple
scale.

It can be seen that the application of the weighting factor
allows the system to switch behavioural patterns from one
which is purely safety oriented to one which is purely oper-
ational task oriented. The use of fault trees from the safety
analysis provides a convenient measure of the risk associated
with an action, but further work is required to derive a similar
measure for task effectiveness. For the case of “travelling”,
a simple measure is to consider the degree to which a par-
ticular action takes the vehicle towards the target location.

5.8 A graphical representation of the process model

Figure 12 illustrates a computational process model that de-
picts the process of safety risk assessment and management
for the next time step, as described above. The process starts
with the estimation of the current state belief or probability
distribution through the observation function, given the ob-
servation information, the prior state and action knowledge.
Given the probability distribution of the current state Pr(St)

Observation
Evidence
Values ‘o’

Current
State Belief
Pr(St=si)

Possible

Actions

State belief at t+1
Pr(St+1=sj)

Action Selection

()arg max ()
n

tot n
a

V a

Observation
Function
O(si,am,o)

Transition
Function
T(si,an,sj)

Accident Severity
Evaluation

At = an

Fault Tree
Mapping ϕ

Safety Value Assignment

Pr() ()Acc Sev Acc∑

Accident Event
prob. Pr(Acc)

Accident Severity
Sev(Acc)

Value Integration

() (1) ()S Safe n S Task nW V a W V a+ −
WS

Task Related
Action Value
Assignment

Previous selected
action At-1=am

Vsafe(an)

VTask(an)

VTot(an)

Fig. 12 A POMDP computational process model for safety risk as-
sessment and management

described by the state variable value probabilities, the likely
future state probability Pr(St + 1) (and the corresponding
state variable value probabilities) can be evaluated through
the transition function for each possible action decision. With
the attainment of such a future state probability distribution,
the accident occurrence likelihood and the relevant accident
severity can be evaluated, in the former case by using a fault
tree based mapping between state variable values and the
top accident event. With both accident likelihood and sever-
ity ‘reward’ evaluated, the risk in taking each action can
be derived, giving the safety related value attributed to the
action. This is then integrated with the task achievement re-
lated value with the weighting factor indicating the relative
importance of the two operational objectives. Finally action
selection becomes just a process of selecting the action with
the maximum total value.

5.9 An example of a simple safety decision

To illustrate the above concepts an example of the vehicle
possibly moving over rough terrain is illustrated. Figure 13
shows an example of a much simplified fragment of a deci-
sion tree to illustrate the working of POMDP. The system is
95% confident that the current state is S1, which is defined
by state parameter values of traveling at ‘medium speed’
over ‘rough terrain’. It is faced with a choice between two
possible actions, A1 and A2. If A1 is chosen, which consists
of a gentle turn to the right, there is an 80% probability of
moving to state S2, or a 20% Chance of moving to state S3.
The former state is characterised by smooth terrain and the
latter by rough. As they are the only realistic results of action
A1, they sum to 100%. Action A2, also has two possible state

Springer

236 Auton Robot (2007) 22:223–242

State, S3
Medium speed

Gentle turn
Rough terrain

R = 0.5

State,S1

Medium speed

Rough terrain

Prob = 0.95
State, S4
Slow speed
Very rough

terrain
R = 0.3

Action A1

Left track 0.2 m/s
Right track 0.4m/s

(Prob = 0.2)

Action A2

Left track 0.2 m/s
Right track 0.2m/s

(Prob = 0.9)

State, S2
Medium speed

Gentle turn
Smooth terrain

R = 0.7
Action A1

Left track 0.2 m/s
Right track 0.4m/s

(Prob = 0.8)

State, S5
Slow speed

Human near
Rough terrain

R = 0.2

Action A2

Left track 0.2 m/s
Right track 0.2m/s

(Prob = 0.1)

Fig. 13 An example of decision making

outcomes, one of which, S5, takes the vehicle near a human.
Although there is only a 10% chance of this happening.

Each of the four possible new states are now subjected
to a safety assessment by interrogating a fault tree with the
future state parameters as the basic events. A ‘reward’ R
reflecting the severity consequences (or lack of) for each
state or its undesirability is then determined. By multiplying
the reward with the probability of occurrence of the state,
and summing up the values for each possible state outcome
for an action, the action value in terms of safety is obtained
(indicating how risky each action is). This process has to
be repeated for all possible current states, since this will
influence the interpretation of the transition to future states.
Finally, the risk related values for each action under different
current states are summed up and weighted according to the
probability of the current state, providing an action risk value
which incorporates both the current state uncertainty as
well as the future transition uncertainty. Actions will also be
assessed for task achievement (e.g., which action takes the
robot closest to the target) and the two assessments are com-
bined using the weighting factor to produce the action value
V for each possible action, on which action selection will be
based (i.e. selecting the action with the highest value V)

6 Integrating POMDP into RCS

We have already dealt with the choice of RCS-RMA (real-
time control system—reference model architecture) for de-
veloping mobile robot architectures. Although RCS is a rea-

sonably generalised and multi-applicational system architec-
ture, there is still room for increasing the robustness of the
architecture:

1. RCS does not explicitly take safety into consideration,
which, as demonstrated above, needs to be taken into
account, particularly if the system operates autonomously
in an unpredictable and uncontrolled environment.

2. RCS in its present form does not deal with uncertainty. An
interpretation of the world state based on partial informa-
tion from an economic suite of sensors invariably contains
a degree of uncertainty. This must affect behavioural de-
cision making and hence needs to be incorporated into the
framework.

As discussed above, partially observable Markov decision
processes (POMDP) provide an effective way of dealing
with uncertainty through probabilities. The assumption be-
hind the development of RCS was to develop an effective
and realistic method to map elements of natural intelligence
onto artificial systems. Utility theory (Joyce, 1999) argues
that humans make decisions in order to maximise benefits
(pleasure) and minimise costs (pain), or as stated by the eigh-
teenth century Utilitarian philosopher Jeremy Bentham, the
purpose of activity should be to “maximise the greatest hap-
piness of the greatest number” (Bentham, 1789). Inherent
within this decision process is an, often subconscious, con-
sideration of the probability of reaching the desired outcome.
Also different humans can reach different conclusions about
the most appropriate action to choose depending upon their
current “values” or personality. Thus a cautious and safety
conscious individual would make different decisions to one
who is bold and task focussed. Similarly, the POMDP ap-
proach to decision making utilises probabilities and rewards
actions that maximise benefits as perceived by the “values”
of the system. Hence the integration of POMDP within RCS
enhances its scope for dealing with decision making in the
face of uncertainty. Also, as shown below, POMDP model
maps very well onto RCS-RMA and can be modelled ro-
bustly and precisely using mathematical models.

6.1 Development of POMDP process in RCS-RMA

Owing to the above, RCS-RMA is used as a framework for
developing complex robotic systems and POMDP is pro-
posed for managing probabilistic decision making at appro-
priate hierarchical levels of RCS. So in essence, a POMDP
modification to RCS RMA is proposed which can deal with
uncertainties. This hence provides a strong basis for safety
management within the action selection/decision making
process of an RCS framework. Furthermore, the fact that this
POMDP decision making can be incorporated into several
hierarchical levels means that the system provides “defence
in depth” against accidents. I.e. an upper RCS level can take

Springer

Auton Robot (2007) 22:223–242 237

account of safety at the strategic planning level whereas a
lower level makes safe tactical decisions. Thus for the robot
to perform a safe and effective task, there is an increased ne-
cessity that safe behaviour should be intrinsic to the system
behaviour generation (Pace, 2004).

For the development of POMDP processes in RCS it is
important to be clear about definitions related to the model
development.

State: The state of the system comprises not only the ve-
hicle state but also the surrounding environment of the
vehicle. The action the robot decides to select is highly
affected by its knowledge of the surroundings. If a given
state only represents the vehicle state without represent-
ing environment then the expected state (from WM) and
evaluated state (to WM from SP, which consists of sen-
sory data regarding vehicle and surroundings) will be
conflicting.
The vehicle state consists of vehicle parameters, such
as position, speed, power requirements, angle of tilt
etc. It also consists of possible failure or fault states of
components.
The Environment state consists of the position of obstacles,
condition of the ground, weather conditions, map of the
area, planned paths etc.

Current system state: This is the information/data that the
system formulates regarding the vehicle state and environ-
ment at time t (current time step).

Updated state: This is update on the current state St depend-
ing on current observations. This is not just the vehicle
state, but also the environmental state. Note that this is in
the same time step t.

Future state: Future state is the estimated state in next time
step, i.e. t + 1 using the transition function. It is more
specifically the state St+1 the system estimates, depending
on the current state St and the observations made in time
step t.

Future Observed State: This is the future state calculated
using the Observation Function. This is the state dependent
on which the system chooses the action to take in time step
t + 1 so as to reach to time step t + 2. This is not required
to be calculated if only one time step is considered.

Plan: Plan is the action chosen or the command executed
in current time step. This also contains the list of actions
available to take in next time step.

Plan evaluation: Plan evaluation is the pruned list of actions
available with their respective values (rewards)

Figure 14 below represents the rough mapping of POMDP
and RCS.

As already explained, each level of RCS RMA has one
or more nodes and each module has one node (Albus and
Meystel, 2001). A node on the higher level communicates

RCS POMDP

BG

VJ

WM-KD

SP

Actions

States

Policy
Application

Policy
Generation

State Transition
Function

Rewards

Observations

Observation
Function

Fig. 14 Mapping RCS and POMDP

with nodes on the level below. One of the important and
special properties of RCS-RMA is reusability. This property
is very desirable as it makes the architecture cost effective
and also simpler to manage. It also reduces the designer’s
efforts, as the designer has to design the structure/software
only once and then repeat it in each module of RCS based
architectural hierarchy. By developing a generalised model
of RCS management using POMDP, the basic functional
property of RCS, i.e. reusability remains intact.

In the following sections a generalised POMDP process
model is developed in RCS (Fig. 15). Future work will con-
centrate on applying it to a ‘n’ level hierarchical RCS struc-
ture to demonstrate it.

The role of each element is as follows:

Sensory Processing: determines the current state and its
probability (vehicle and environment) based on expecta-
tions (from WM) and on actual observations (from Sen-
sors). If the expected state and observed state agree then
SP becomes more certain about its current state. If they are
in conflict the probability reduces, and the system becomes
less certain about its current state.

World Model: stores the current belief state and computes
the transition probabilities to new states given the avail-
able actions (from BG) by operating transition functions.
Hence identifies future expected states and environment
changes.

Value Judgement: determines the reward values to be as-
signed to the individual actions

Behaviour Generation: selects actions based on maximising
rewards and executes them.

Springer

238 Auton Robot (2007) 22:223–242

Fig. 15 POMDP process
development in an RCS
computational node

7 Experimentation with a case study and results

A software-based simulator was constructed for testing the
effectiveness of different control strategies. The simulator
consisted of three components:

1. An environment simulator that facilitates the creation of
a virtual world complete with contoured sloping ground,
various hazards and start and target points—see Fig. 15

2. A simulated robot vehicle that can be driven in the vir-
tual world and is equipped with a range of sensors for
the detection of features within the world. Realistic user
interfaces to the sensors were developed so that the user
can observe what the robot “sees”

3. An independent controller that can receive sensor data,
make decisions and command the vehicle. This controller
can be used in the simulated virtual world but could then
be transferred to a real physical robot with real sensors
and actuators.

The POMDP based reasoning model was adopted for a case
study analysis based on the excavator simulation. The case
study involved the consideration of the simulated excavator
traveling over terrain where a trench is present along
the predefined path of the excavator, and hence resulting

in the excavator being exposed to a potential toppling
accident.

7.1 The experiment

Figure 16 illustrates the simulated environment for the ex-
periment and consists of the virtual environment test layout,
indicating the starting configuration of the robot and the
target position. This test layout has been used for a num-
ber of comparative experiments to illustrate the effects of
the parameters of interest. The environment model has also
been used with different start and target positions, in or-
der to monitor the behaviour under different environmental
circumstances.

The scope of the experiment was to evaluate the robot
behaviour in trying to avoid the trench under diverse operat-
ing conditions. Avoiding the trench, and hence avoiding the
risk of a toppling accident is dependent on the knowledge on
the terrain conditions available to the robot. Based on such
knowledge, the robot is able to take evasive actions in order
to select a safe path towards the target.

Knowledge of the presence of the trench can be obtained
either by predefined maps or alternatively via actively search-
ing for terrain conditions through the use of a laser range

Springer

Auton Robot (2007) 22:223–242 239

Fig. 16 Simulated virtual
environment

sensor. These define diverse actions which the robot can ex-
ecute, depending on the values assigned to the individual
actions. Here value assignment for future actions is depen-
dent on safety and task achievement. The task achievement
reward is simply allocated on the basis of the extent to which
actions tend to bring the robot closer and more readily to its
target position. No consideration is given by the task value
assignment to the terrain conditions, and therefore avoid-
ance of the trench depends purely on the action safety value
assignment, based on the application of the POMDP safety
reasoning and management framework.

7.2 Representing environmental information uncertainty

Multiple experiments were carried out with different levels
of uncertainty in the robot’s knowledge of the environment
prior to execution of the task (i.e. the world map available to
the robot). Uncertainty in the knowledge of the environment
was based on

1. an uncertainty in the position of terrain features that in-
fluence the robot’s tilt, such as the trench position. Thus,
the robot is knowledgeable about the presence of environ-
mental features that induce toppling (i.e. the trench), but
is uncertain about the relative position of such features
with respect to the robot itself.

2. an uncertainty in the terrain conditions. Here the uncer-
tainty results in a lack of knowledge of the terrain tilt
features, and is not related to any other position or orien-
tation uncertainty.

Specific uncertainty levels were adopted during experimen-
tation, each identifying specific environment position and
tilt (terrain condition) related uncertainty parameters (i.e.
probability distributions). Thus, for each set of uncertainty
parameters, a different a-priori world representation would

have been available to the robot, influencing the risk as-
sessment ability of the robot in determining whether action
consequences would result in toppling. Furthermore, exper-
iments were carried out with different weighting factor Ws

values, in order to evaluate the influence of shifting robot’s
sensitivity to safety.

Within the simulation runs, both task and safety related de-
cision making occurs in discrete time steps of 2.5 s. Actions
selected for execution are then fed to a lower level control
which simply provides appropriate steering and drive signals
to the simulated robot.

7.3 Simulation test results

The motion patterns depicted in Fig. 17 illustrate the robot
behaviour under different uncertainty levels where (a) illus-
trates a positional uncertainty standard deviation of 0.25 m
and (b) illustrates a positional uncertainty standard deviation
of 0.5 m. The two graphs also illustrate the path followed for
different weighting factor (Ws) values, reflecting the varying
relative importance given to safety assurance with respect
to task achievement. From the diagrams it is noticeable that
the increase in uncertainty with regards to the position of
the trench causes the robot to steer away from the trench
at an earlier point along the path. Furthermore, in the case
of the system operation using a weighting factor value of
0.75, there is an increased ‘repelling’ action arising from the
trench (again the robot steers away at an earlier point along
the path).

At this stage it should be pointed out that the behaviour
of the system is dependent on a limited 2-step look-ahead
search in terms of safety assessment and therefore results
in a relative myopic view of the safety consequences of
actions. The effect is that the safety values assigned to actions
only reflect a limited look ahead and consequently, the robot

Springer

240 Auton Robot (2007) 22:223–242

Fig. 17 Effect of positional
uncertainty of environmental
features for a two step
look-ahead strategy for a
positional uncertainty of 0.25 m
standard deviation (dashed line)
and 0.5 m standard deviation
(solid line) with a weighting
factor (a) Ws = 0.5,
(b) Ws = 0.75

Fig. 18 Graphs Indicating the average and maximum action safety val-
ues (or penalties) during the simulation test runs for different weighting
factors and levels of uncertainty (Set 1—No uncertainty in terrain con-
ditions, Set 2—a tilt standard deviation of 3◦, Set 3—a tilt standard
deviation of 5◦, Set 4—a tilt standard deviation of 8◦). It can be noted

that for Ws = 0.1, the effect of the action safety values is insignificant
and therefore the robot does not succeed in avoiding the trench obstacle,
resulting in a high safety value (penalty) corresponding to the toppling
event

may be allowed to steer towards the trench. An additional
factor which can be noticed is the robot action just before
reaching the target position, particularly in the case of the
higher weighting factor. Here the robot aligns itself with
the slope to reduce the likelihood of lateral toppling, given
that it ‘knows’ it is more stable along the longitudinal axis.
However, once more due to the relative myopic view towards
safety, consideration is not given to the need to steer towards
the target position at a later stage.

Table 1 illustrates the effects of another scenario with a
high level of uncertainty in terrain conditions (here a standard
deviation of 8 degrees in the tilt position is included in the

Table 1 Action Decision Steps and observation related actions for
various weighting factors, given a prior ground tilt knowledge uncer-
tainty with an 8◦ tilt standard deviation

No. of observation
related action

Weighting factor No. of action decision steps decisions taken

0.25 21 0
0.5 22 1
0.75 31 9
0.9 49 23

system’s prior knowledge on terrain tilt). The table indicates
the number of total action decision steps during a simula-
tion run and the corresponding number of action decisions
which are purely observation related. It can be noted that due
to the high level of uncertainty, the robot starts acting very
tentatively and repeatedly selecting actions based purely on
stopping and observing the terrain conditions in order to re-
duce such terrain knowledge uncertainty. This is particularly
so when the weighting factor increases, ultimately resulting
in the robot having to stop almost after every traveling action
to observe the terrain ahead.

The graphs in Fig. 18 illustrate the average and maximum
safety related values (or penalties) during execution of the
simulated test runs. These values represent the level of safety
related risk that the system estimates itself to be in during
execution of the simulated test runs. The magnitude of the
average safety and maximum safety value (or penalty) are
plotted against the safety behaviour weighting factor Ws for
each simulated experiment. It should be reiterated here that
the action safety value assignment is independent of the
Ws, and simply reflects the level of safety that the system
estimates itself to be in, independent of the risk-averse nature
that the decision maker exhibits.

Springer

Auton Robot (2007) 22:223–242 241

What is apparent from these graphs, is that both the aver-
age and the maximum action safety values drop in magnitude
with respect to an increase in Ws. This indicates that as the
system becomes more risk-averse (increasing Ws), it tends
to expose itself to lower levels of risk. Additionally, the
system tends to experience only a minimal increase in risk
for the same value of Ws as the uncertainty in the environ-
ment prior world knowledge increases. What this signifies
is that a specific weighting factor value tends to result in
a fairly constant maximum estimated risk that is experi-
enced by the robot, no matter what the level of uncertainty
is.

8 Conclusions and further work

1. The problem of managing autonomous robots in un-
structured environments is a complex one, particularly
if they are to be both safe and effective in performing
worthwhile tasks. However such challenges must be
faced if autonomous mobile robots are to become a
commercial reality.

2. The adoption of a common framework or architecture
for intelligent systems encourages the use of reusable
modules across different systems. RCS-RMA is a flexible
framework that appears to be a suitable candidate for
adoption for a wide range of systems.

3. The design of mobile autonomous systems requires a
detailed and comprehensive safety analysis at the early
stages of the design lifecycle, so that self-safety manage-
ment can become an inherent part of system behaviour.
Fault trees appear to be very useful tools for real-time de-
cision making as they provide an explicit representation
of operational risk.

4. The partially observable Markov decision process
(POMDP) is a technique that can be used within
autonomous systems for probabilistic decision making
with regard to action selection. It has been shown to
be computationally tractable for real-time applications
although if there is a need to look more than one step
ahead, the processing time increases steeply. There is
also a need to prune less probable action selections to
speed-up solution times.

5. The use of a reward function, combined with a weighting
factor, within POMDP enables the behaviour (or person-
ality) of a system to be adapted easily to suit operational
requirements. For example it has been shown how focus
can be changed from safety consciousness to task achieve-
ment. Future work will concentrate on extending this con-
cept to multiple “values”. For example a system may need
to demonstrate the ability to take varying account of cost,
quality, time, self-preservation etc. as well as safety and
task achievement. Current intentions are to follow the util-

itarian lead and combine the rewards for multiple values
to create overarching “emotions” such as “goodness”.

6. It has been shown that POMDP can be integrated within
RCS to generate probabilistic decision making levels
where appropriate. Future work involves the construc-
tion and testing of a complete RCS system architecture.
Also the creation of a suitable software tool to enable
autonomous robot designers to build such systems, in a
straightforward manner, without having to construct the
underlying algorithms.

7. Finally a computer based simulation has demonstrated
that the POMDP technique can be successfully integrated
within a mobile robot controller and that the resulting au-
tonomous behaviour is sensitive to variations in both the
safety weighting factor and the degree of uncertainty in
sensor data. Where uncertainty is high, the value of per-
forming additional observation actions to increase confi-
dence in sensor data can be seen.

References

Albus, J.S. 1991. Outline for a theory of intelligence. IEEE Transac-
tions on Systems, Man and Cybernetics, 21(3): 473–509.

Albus, J.S. and Meystel, A.M. 2001. Engineering of Mind: An Intro-
duction to the Science of Intelligent Systems. Wiley, Chichester.

Arkin, R.C. 1993. Survivable robotic systems: Reactive and homeo-
static control. In: M. Jamshidi and P.J. Eicket (Eds.), Robotics
and Remote Systems for Hazardous Environments. Prentice Hall,
pp. 135–154.

Arkin, R.C. 1998. Behaviour-Based Robotics. MIT Press, Cambridge,
MA.

Bentham, J. 1789. An Introduction to the Principles of Morals and
Legislation from Utilitarianism, Fontana, 1973.

Gaskill, S.P. and Went, S.R.G. 1996. Safety Issues in Modern Ap-
plications of Robots reliability. Engineering and System Safety,
53:301–307.

Geske, D.M. 2004. The Future is Still in the Future for Autonomous
Haul Trucks. Diesel & Gas Turbine Publications, Gale Group.

Ghu, J., Seward, D.W., and Taylor, C.J. 2004. The automation of
bucket position for theintelligent excavator LUCIE using the
Proportional-Integral-Plus (PIP) control strategy. Journal of
Computer-Aided Civil and Infrastructure Engineering, 19:16–27.

Joyce, M.J. 1999. The Foundations of Causal Decision Theory. Cam-
bridge studies in probability, Induction, and Decision Theory.
ISBN 0-521-64164-0.

Kaelbling, L.P., Littman, M.L., and Cassandra, A.R. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence, 101:99–134.

National Advanced Robotics Research Centre, 1992. Safety and
Standards for Advanced Robots—A First Exposition.

Pace, C. 2004. Autonomous safety management for mobile robots.
Lancaster University, PhD Thesis.

Seward, D.W., Ward, J., Findlay, J., and Kinniburgh, H. 1996. The
automation of piling rig positioning using satellite GPS. 13th
International Symposium on Robotics in Construction, Tokyo pp.
223–230.

Seward, D.W., Pace, C., Morrey, R., and Sommerville, I. 2000.
Safety analysis of autonomous excavator functionality. Reliability
Engineering and Systems Safety, 70:29–39.

Springer

242 Auton Robot (2007) 22:223–242

Seward, D.W., Quayle, S.D., Zied, K., and Pace, C. 2002. Data
interpretation from leuze rotoscan sensor for robot localisation
and environment mapping. 19th International Symposium on
Robotics in Construction, Washington, USA, pp 343–348.

Derek Seward is Professor of Engineering Design at Lancaster Univer-
sity and currently holds the post of Director of Regional Outreach for
the University. He has spent over fifteen years researching in the field
of construction automation and robotics including the use of satellite
GPS guidance, artificial intelligence and system safety.

Conrad Pace received his M.Sc. Degree in Mechatronics and his Ph.D.
in Engineering from Lancaster University, U.K., in 1997 and 2004 re-
spectively. He currently holds the post of lecturer at the University of
Malta, Malta, where he lectures on Mechatronic systems and Safety En-
gineering. His main research interests include mobile robot navigation
and system safety.

Rahee Agate is PhD candidate at Lancaster University, UK, in the Intel-
ligent Control Group. Research interests include mobile robotics, con-
struction robotics, emotions modelling in artificial systems and safety
integration within mobile robot architectures.

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

