
Auton Robot (2006) 21:103–122
DOI 10.1007/s10514-006-9043-2

Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping
Udo Frese

Accepted: 27 January 2006 / Published online: 25 August 2006
C© Springer Science + Business Media, LLC 2006

Abstract This article presents a very efficient SLAM algo-
rithm that works by hierarchically dividing a map into local
regions and subregions. At each level of the hierarchy each
region stores a matrix representing some of the landmarks
contained in this region. To keep those matrices small, only
those landmarks are represented that are observable from
outside the region.

A measurement is integrated into a local subregion us-
ing O(k2) computation time for k landmarks in a subregion.
When the robot moves to a different subregion a full least-
square estimate for that region is computed in only O(k3 log
n) computation time for n landmarks. A global least square
estimate needs O(kn) computation time with a very small
constant (12.37 ms for n = 11300).

The algorithm is evaluated for map quality, storage space
and computation time using simulated and real experiments
in an office environment.

Keywords Mobile robots . SLAM . Information matrix .

Hierarchical decomposition

1. Introduction

The problem of building a map from local observations of the
environment is a very old one, as old as maps themselves.

This article is based on the authors studies at the German Aerospace
Center.

U. Frese
FB 3, Mathematik und Informatik, SFB/TR 8 Spatial Cognition,
Universität Bremen,
Bremen, Germany
e-mail: ufrese@informatik.uni-bremen.de

While geodesy, the science of surveying in general, dates
back to 8000 B.C., it was C.F. Gauss who first formalized
the problem from the perspective of statistical estimation in
his article “Theoria combinationis observationum erroribus
minimis obnoxiae”1 (1821).

In the much younger realm of robotics, the correspond-
ing problem is that of simultaneous localization and map-
ping (SLAM). It requires the robot to continuously build a
map from sensor data while exploring the environment. It
has been a subject of research since the mid 1980s gaining
enormous popularity in recent years. Most approaches ad-
here to the Gaussian formalization. They estimate a vector
of n features, e.g. landmarks or laser scan reference frames,
by minimizing a quadratic error function, i.e. by implicitly
solving a linear equation system. With this well established
methodology the main question is how to compute or approx-
imate the estimate efficiently. To make this more explicit, we
have proposed three important requirements which an ideal
SLAM algorithm should fulfill (Frese and Hirzinger, 2001;
Frese, 2006a).

(R1) Bounded uncertainty. The uncertainty of any as-
pect of the map should not be much larger than the min-
imal uncertainty that could theoretically be derived from
the measurements.

(R2) Linear storage space. The storage space of a map
covering a large area should be linear in the number of
landmarks.

(R3) Linear update cost. Incorporating a measurement
into a map covering a large area should have a computa-
tional cost at most linear in the number of landmarks.

1 “Theory of the combination of observations least subject to error.”

Springer

104 Auton Robot (2006) 21:103–122

(R1) binds the map to reality and limits approximations.
(R2) and (R3) regard efficiency, requiring linear space and
time consumption. We feel that one should aim at (R1) rather
than at the much weaker criterion of asymptotic convergence.
Even after going through the environment only a single time,
a useful map is desirable. Most sensor data allows this and,
according to (R1) so should the SLAM algorithm.

The contribution of this article is treemap, a hierarchical
SLAM algorithm that meets the requirements (R1)–(R3).
It works by dividing the map into regions and subregions.
When integrating a measurement it needs O(k2) computation
time for updating the estimate for a region with k landmarks,
O(k3log n) when the robot moves to a different region, and
O(kn) to compute an incremental estimate for the whole
map. The algorithm is landmark based and requires known
data association. It has two drawbacks. First, it requires a
“topologically suitable building” (Section 4); and second, its
implementation is relatively complex.

The article is organized as follows. After a brief review
of related work (Section 2), we derive the algorithm (Sec-
tions 3–6). It follows with a comparison to the closely re-
lated Thin Junction Tree Filter (Section 7) by Paskin (2003)
and an investigation of map quality and computation time
based on simulations (Section 8) and experiments in a 60 ×
45 m office building (Section 9). A companion technical
report (Frese, 2006b) supplements the discussion with an
improved—but more complicated—method for passing the
robot pose between regions, a nonlinear extension, and the
algorithm’s pseudocode.

2. State of the art

After the fundamental article by Smith et al. in 1988 most
work on SLAM was based on the Extended Kalman Fil-
ter (EKF) that allows SLAM to be treated as an estimation
problem in a theoretical framework. However, the problem

of large computation time remained. The EKF maintains the
posterior distribution of the robot pose and n landmarks as a
3 + 2n dimensional Gaussian with correlations between all
landmarks. This is essentially for SLAM but requires to up-
date the EKF’s covariance matrix after each measurement,
taking O(n2) time. This limited the use to the order of hun-
dreds of landmarks.

Recently, interest in SLAM has increased dramatically
and several more efficient algorithms have been developed.
Many approaches exploit the fact that observations are local
in the sense that from a single robot pose only a few (k)
landmarks are visible. In the following the more recent con-
tributions will be briefly reviewed (Table 1). An overview
is given by Thrun et al. (2005) and a discussion by Frese
(2006a).

To meet requirement (R1) an algorithm must maintain
some form of correlations in the whole map. To my knowl-
edge the first SLAM algorithm achieving this with a compu-
tation time below O(n2) per measurement was the relaxation
algorithm (Duckett et al., 2000, 2002). The algorithm em-
ploys an iterative equation solver called relaxation to the
linear equation system appearing in maximum likelihood es-
timation. One iteration is applied after each measurement
with O(kn) computation time and O(kn) storage space. Af-
ter closing a loop, more iterations are necessary leading to
O(kn2) computation time in the worst case. This was later im-
proved by the Multilevel Relaxation (MLR) algorithm (Frese
et al., 2004). This algorithm optimizes the map at different
levels of resolution, leading to O(kn) computation time.

Montemerlo et al. (2002) derived an algorithm called
FastSLAM from the observation that the landmark estimates
are conditionally independent, given the robot pose. Basi-
cally, the algorithm is a particle filter (M particles) in which
every particle represents a sampled robot trajectory plus a set
of n Kalman filters estimating the landmarks conditioned on
the trajectory. The number of particles M is a difficult trade-
off between computation time and map quality. However,

Table 1 Performance of
different SLAM algorithms with
n landmarks, m measurements, p
robot poses and k landmarks
local to the robot (cf. Section 2).
UDA stands for ‘Uncertain Data
Association’. A

√
means the

algorithm can handle landmarks
with uncertain identity. A C
means covariance is available
for performing χ2 tests

(R1) (R2) (R3)
UDA Non-linear Map quality Memory Update Global update Loop

ML C
√ √

m (n + p)3

EKF C
√

n2 n2

CEKF C
√

n
3
2 k2 kn

3
2

Relaxation
√ √

kn kn kn2

MLR
√ √

kn kn

FastSLAM
√ √

see Section 2 Mn M log n
SEIF kn k2

w. full update
√

kn kn kn2

TJTF C
√ √

k2n k3 k3n

Treemap C
√ √

kn k2 k3 log n

w. global map C
√ √

kn kn

Springer

Auton Robot (2006) 21:103–122 105

the algorithm can handle uncertain landmark identification
(Nieto et al., 2003), which is a unique advantage over the
other algorithms discussed. Later Eliazar and Parr (2003)
as well as Stachniss and Burgard (2004) extended the
framework to using plain evidence grids as particles (in a
compressed representation). Their approach constructs maps
in difficult situations without landmark extraction or scan
matching.

Guivant and Nebot (2001, 2003) developed the Com-
pressed EKF (CEKF) that allows the accumulation of mea-
surements in a local region with k landmarks at cost O(k2)
independent from n. When the robot leaves this region, the
accumulated result is propagated to the full EKF (global
update) at cost O(kn2). The global update can be approx-
imated more efficiently in O(kn3/2) with O(n3/2) storage
space needed.

Thrun et al. (2004) presented a “constant time” algorithm
called the Sparse Extended Information Filter (SEIF), which
represents uncertainty with an information matrix instead of
a covariance matrix. The algorithm exploits the observation
that the information matrix is approximately sparse requir-
ing O(kn) storage space. This property has later been proven
by Frese (2005). To compute a map estimate, a system of n
linear equations has to be solved. Thrun et al. use relaxation
but update only O(k) landmarks after each measurement (us-
ing so-called amortization). This can derogate map quality,
since in the numerical literature, relaxation is reputed to need
O(kn2) time for reducing the equation error by a constant fac-
tor (Press et al., 1992). Imagine closing a loop of length n and
going around that loop a second time. Still the estimate will
not have reasonably converged because only O(k2n) time has
been spent. If all landmarks are updated each step (SEIF w.
full update) performance is asymptotically the same as with
relaxation.

Leonard and Feder (2001) avoid the problem of updating
an estimate for n landmarks by dividing the map into
submaps. Their Decoupled Stochastic Mapping (DSM)
approach represents each submap in global coordinates
by an EKF and updates only the current local submap.
The approach is very fast (O(k2)) but, as they note, can
introduce overconfidence when passing the robot pose
between submaps.

Bosse et al. (2004) in contrast make submaps probabilis-
tically independent in their Atlas framework by using a local
reference frame. Then, links between adjacent frames are
derived by matching local maps. From the resulting graph
an estimate is computed. A similar approach is taken by
Estrada et al. (2005). Both systems are heterogenous. On
the local level a full least square solution is obtained. But on
the global level the complex probabilistic relation between
submaps is aggregated into a single 3-DOF link between
their reference frames.

Paskin (2003) derived the Thin Junction Tree Filter (TJTF)
from viewing the problem as a Gaussian graphical model.
This approach is closely related to treemap although both
have been independently derived from different perspectives.
They are compared in Section 7.

In the following the treemap algorithm will be introduced.
It can be used in the same way as CEKF providing an
estimate for k landmarks of a local region but with only
O(k3 log n) computation time when changing the region in-
stead of O(kn3/2) for CEKF. Alternatively the algorithm can
also compute a global estimate for all n landmarks. Com-
putation time is then O(kn), but with a constant so small
that this can be done for almost “arbitrarily” large maps
(12.37 ms for n = 11300, Intel Xeon 2.7 GHz). This is the
main contribution from a practical perspective. Note, that
while treemap can also provide covariance information, this
requires additional computation in contrast to CEKF.

3. Treemap data structure

3.1. Motivating idea

We will first discuss the general idea that motivates the
treemap approach. The description differs slightly from the
actual implementation but provides a large-picture under-
standing of the algorithm.

Imagine the robot is in a building (Fig. 1a) that is virtually
divided into two parts A and B. Now consider the following
question here:

If the robot is in part A, what is the information needed
about B?

Some of B’s landmarks are observable from A and in-
volved in measurements while the robot is in A. The algo-
rithm must have all previously gathered information about
these landmarks explicitly available. This information is
more than just the measurements that directly involve those
landmarks. Rather all measurements in B can indirectly con-
tribute to the information. So probabilistically speaking, the
information needed about B is the marginal distribution of
landmarks observable both from A and from B conditioned
on measurements taken in B.2

The idea can be applied recursively by dividing the build-
ing into a binary3 tree of regions (Fig. 1). The recursion stops
when the size of a region is comparable to the robot’s field
of view.

The marginal distribution for a region can be computed
recursively. The marginals for the two subregions are
multiplied and landmarks are marginalized out that are

2 This only holds strictly when there is no odometry (cf. Section 5).
3 Using a binary hierarchy simplifies bookkeeping.

Springer

106 Auton Robot (2006) 21:103–122

Fig. 1 Geometric view. (a) A building hierarchically decomposed in
two levels (L1, L2) and (b) respective tree representation with 7 nodes
(n1...7). The region corresponding to a node is shown next to the node.

Landmarks inside a region that are visible from outside are listed in the
node. Only the marginal distribution of these landmarks is needed if
the robot is outside the respective region

Springer

Auton Robot (2006) 21:103–122 107

not visible from the outside of that larger region anymore.
This core computation is the same as employed by TJTF.
The key benefit of this approach is that for integrating a
measurement only the region containing the robot and its
super-regions need to be updated. All other regions remain
unaffected.

Treemap consists of three parts: Core propagation of in-
formation in the tree (Sections 3–4); preprocessing to get
information into the tree (Section 5); and hierarchical tree
partitioning to find a good tree (Section 6).

3.2. Formal Bayesian view

In a preprocessing step the original measurements are con-
verted into probabilistic constraints p(X | zi) on the state
vector of landmark positions X. At the moment, let us take
an abstract probabilistic perspective as to how treemap com-
putes an estimate x̂ from these constraints. We will subse-
quently describe the Gaussian implementation as well as how
to get the constraints zi from the original measurements.

The constraints are assigned to leaves of the tree with the
intention to group constraints that share landmarks. With re-
spect to the motivating idea each leaf defines a local region
and correspondingly each inner node a super-region. How-
ever formally a node n just represents the set of constraints
assigned to leaves below n without any explicit geometric
definition. For a node n, the left and right child and the par-
ent are denoted by n�, n� and n↑, respectively. We often
have to deal with subsets of observations or landmarks ac-
cording to where they are represented within the tree relative
to the node n (Fig. 2). Thus, let z[n:↓], z[n:�], z[n:�], and
z[n:↑] denote the constraints assigned to leaves below (↓),
left-below (�), right-below (�), and above (↑) node n, re-
spectively. The term above n refers to all regions outside
the subtree below n(!). As a special case, for a leaf n, let
z[n:��� ↑] denote all constraints at n. Analogous expressions
X [n: . . .] denote the landmarks involved in the correspond-
ing constraints z[n: . . .]. While constraint sets for different
directions {�,�,↑} are disjoint, the corresponding landmark
sets may overlap because different constraints may involve
the same landmark. These shared features dictate the compu-
tations at node n as the tree is updated. With the assumptions
presented in Section 4, their number is small (O(k)) and, thus,
the overall computation involves many low-dimensional dis-
tributions instead of one high-dimensional.

3.3. Update (upwards)

Figure 3 depicts the data flow in treemap that consists of
integration (�) and marginalization (M©), i.e. multiplying and
factorizing probability distributions. We will now derive and
prove the computation.

Fig. 2 Bayesian view. In this example landmarks xa...g are observed.
They are connected by constraints z2...7 between consecutive landmarks
and two absolute constraints z1, z8. The arrows and circles show this
probabilistic input as a Bayes net with observed nodes in gray. The
dashed outlines illustrate the information from the view of a single
node n. It divides the tree into three parts, left-below �, right-below �

and above ↑ (more precisely not below). Hence the constraints z are dis-
jointly divided into z[n: �] = z1...2, z[n: �] = z3...4 and z[n: ↑] = z5...8.
The corresponding landmarks X [n: �] = Xa...b, X [n: �] = Xb...d and
X [n: ↑] = Xd...g however overlap (X [n: ��] = Xb, X [n: ↑�] = xd).
The key insight is, that X [n:↓↑] = X [n: �↑ ∨ �↑] = Xd separates the
constraints z[n:↓] and landmarks X [n:↓� ↑] below n from the constraints
z[n:↑] and landmarks X [n:� ↓↑] above n, so both are conditionally in-
dependent given X [n:↓↑].

As input, treemap receives a distribution pI
n defined as

p(X [n:↓]|z[n:↓]) at each leaf. It is computed from the prob-
abilistic model for the constraints assigned to n. The output
is the integrated information pn = p(X [n:↓]|z) at each
leaf. During the computation, intermediate distributions
pM

n and pC
n are passed through the tree and stored at the

nodes, respectively. In general, pI
n, pM

n , pC
n , and pn refer to

distributions actually computed by the algorithm, whereas
all distributions p(X [. . .]|z[. . .]) refer to the distribution of
the landmarks X [. . .] given the constraints z[. . .] according
to the abstract probabilistic input model shown in Fig. 2.
With this notion proving the algorithm means to derive
equations p...

n = p(X [. . .]|z[. . .]) expressing that the com-
puted result equals the desired distribution from the input
model.

Let us first consider the update operation that begins at
the leaves and is recursively applied upwards. The update
computes the marginal pM

n and conditional pC
n either from

the input distribution pI
n or from the children’s marginals

pM
n�

and pM
n�

.

pM
n = p(X [n: ↓↑]|z[n:↓]) (1)

pC
n = p(X [n:��� ↑]|X [n:↓↑], z). (2)

The marginal distribution (1) describes the posterior for
the landmarks both above and below X [n:↓↑] conditioned
upon the constraints z[n:↓] below n. These landmarks are
by definition also involved in constraints which are not yet

Springer

108 Auton Robot (2006) 21:103–122

Fig. 3 Data flow view. The
probabilistic computations
performed in the tree shown in
Fig. 1(b). The leaves store the
input constraints pI

n. During
updates (black arrows) a node n
integrates (�) the distributions
pM

n�
and pM

n�
passed by its

children. Then the result is
factorized (M©) as the product of
a marginal pM

n passed to the
parent and a conditional pC

n
stored at the node. To compute
an estimate (gray arrows) each
node n receives a distribution
pn↑ from its parent, integrates
(�) it with the conditional pC

n ,
and passes the result pn down to
its children. In the end estimates
x̂n for all landmarks are
available at the leaves

integrated into pM
n . So pM

n is passed to the parent for fur-
ther processing. In contrast, pC

n contains those landmarks
X [n:��� ↑] for which n is the least common ancestor of all
constraints involving them. These constraints have already
been integrated, so pC

n needs no more processing and can
be finally stored at n. Overall, a landmark is passed up-
wards in pM

n up to the node where all constraints involving
that landmark have been integrated and then it is stored in
pC

n .
We now derive the recursive computation of pM

n and pC
n

proving (1) and (2) by induction. An inner node n multi-
plies (�) the marginals pM

n� and pM
n� passed by its children.

Assuming (1) for n� we get

pM
n� = p(X [n� : ↓↑]|z[n� : ↓]). (3)

Being above n� means either to be above n or to be left-
below n.

= p(X [n: �↑ ∨ ��� ↑]|z[n: �]) (4)

To multiply pM
n� and pM

n� we must formally interpret both
as a distribution for the union of landmarks. This is possible,
since X [n: �� �↑] are by definition not involved in z[n: �] at
all.

= p(X [n: �↑ ∨ ��� ↑ ∨ �� �↑]|z[n: �]) (5)

= p
(
X [n: ↓↑ ∨ ��� ↑]|z[n: �]) (6)

This argument may appear rather technical at first sight
but it ensures that in defining pM

n by (1) we actually found
that part of p(X |z[n: ↓]) that cannot be fully processed below
n and has to be passed to the parent. Certainly a symmetric
result holds for pM

n�, so both can be multiplied (�) gathering
all information below n.

pM
n� · pM

n� = p(X [n: ↓↑ ∨ ��� ↑]|z[n�])

·p(X [n: ↓↑ ∨ ��� ↑]|z[n: �]) (7)

= p(X [n: ↓↑ ∨ ��� ↑]|z[n↓]) (8)

Let Y = X [n :↓↑ ∨ ��� ↑] be the vector of landmarks
involved in pM

n�
or pM

n�
. Treemap divides Y = (U

V) into those
landmarks V = X [n: ↓↑] involved in constraints above n
and those U = X [n: ��� ↑] for which n is the least common
ancestor of all constraints involving them. Landmarks U
are marginalized out (M©) factorizing the distribution as the
product

pM
n�

(
u
v

)
· pM

n�

(
u
v

)
= pM

n (v) · pC
n (u | v) (9)

of the marginal pM
n (V) passed to the parent and the

conditional pC
n (U |V) stored at n. We can verify, that

the computed pM
n satisfies (1) and pC

n satisfies (2) by
marginalizing respectively conditioning both sides of (8).

pM
n = p(X [n:↓↑]|z[n↓]) (10)

Springer

Auton Robot (2006) 21:103–122 109

pC
n = p(X [n:��� ↑]|X [n:↓↑], z[n↓]) (11)

= p(X [n:��� ↑]|X [n:↓↑], z) (12)

The second step (12) is the formal key point of the overall
approach. In Bayes net terminology (Fig. 2) X [n:↓↑] sepa-
rates the constraints z[n:↓] and landmarks X [n:↓� ↑] below n
from the constraints z[n:↑] and landmarks X [n:� ↓↑] above
n. So X [n:��� ↑], which is part of X [n:↓� ↑], is conditionally
independent from the remaining constraints z[n:↑].

Now we have established that if (1) holds for a given
nodes children, then (1) and (2) hold for pM

n and pC
n com-

puted by the node. We still have to verify these equations for
leaves. Then by induction they hold for all nodes. At a leaf
n all original constraints that were assigned to that leaf are
multiplied and stored as input distribution

pI
n =

∏

i assigned to n

p(X |zi) = p(X [n:↓]|z[n:↓]) (13)

= p(X [n:↓↑ ∨ ��� ↑]|z[n:↓]). (14)

For a leaf n we defined X [n:��] as those landmarks in-
volved in constraints assigned to that leaf. So for a leaf,
pI

n satisfies the same condition (8) as pM
n� · pM

n� for an inner
node. Hence, after marginalization (1) and (2) hold for leaves
with the same arguments as for inner nodes.

As a final remark, pM
root = () is empty by (1), because

there is nothing above root. So it is the end of the upward
update-arrows and the start of the downward state-recovery
arrows (Fig. 3).

3.4. State recovery (downwards)

Now let us consider how to compute a state estimate from
the pC

n (gray arrows pointing downwards). Here the goal is
that every node n passes

pn = p(X [n:↓↑ ∨ ��� ↑]|z) (15)

down. Hence a leaf computes the marginal of landmarks
involved since X [n:↓↑ ∨ ��� ↑] equals X [n:↓]. The final es-
timate x̂n is computed as

x̂n = E(pn) = E(X [n:↓]|z). (16)

Since every update changes pn, it is computed on the fly
and not stored.

Now we derive (15) by induction. Let us assume a node
n receives

pn↑ = p(X [n↑: ↓↑ ∨ ��� ↑]|z) (17)

from its parent. A landmark below n↑ is either below n or
below the sibling of n. The latter ones are marginalized out
resulting in

p(X [n:↓↑]|z). (18)

This step is not shown in Fig. 3 because it is implicitly
done in the actual Gaussian implementation (cf. Section 3.5).
The result is multiplied (�) with the conditional pC

n stored
at n and passed downwards as pn.

pn = p(X [n:↓↑]|z) · pC
n (19)

= p(X [n:↓↑]|z) · p(X [n:��� ↑]|X [n :↓↑], z) (20)

= p(X [n: ↓↑ ∨ ��� ↑]|z) (21)

We have shown, that if node n receives pn↑ with (15)
it passes a distribution pn to its children holding (15) too.
As the induction start X [root:↓↑] in (18) is empty, so by
induction (15) holds for all pn.

3.5. Gaussian implementation

Treemap uses Gaussians for all probability distributions.
Thereby the probabilistic computations reduce to matrix op-
erations and the algorithm becomes an efficient linear equa-
tion solver for a specific class of equations. The performance
is much improved by using different representations for up-
dates (pI

n, pM
n), for state recovery (pn), and for the con-

ditional pC
n linking both. We will now derive formulas for

the three operations � (update), M©, and � (state recovery)
involved.

Distributions pI
n and pM

n are stored in information form as

− log pM
n (y) = yT An y + yT bn + const. (22)

3.5.1. Update (upwards)

If treemap is used directly with landmark–landmark con-
straints, pI

n is computed as usual by linearizing the con-
straints, expressing the approximated χ2 error by an infor-
mation matrix and vector and adding these for all constraints
assigned to the leaf n (Thrun et al., 2005, Section 11.4.3). In
Section 5 we will discuss how to derive pI

n in a preprocessing
step from robot–landmark and robot–robot constraints.

To perform the multiplication � at node n, first (An�
, bn�

)
as well as (An�

, bn�
) are permuted and extended with 0-

rows/columns such that the same row/column corresponds
to the same landmark in both. Additionally landmarks of
X [n:��� ↑] are permuted to the upper rows/left columns and

Springer

110 Auton Robot (2006) 21:103–122

landmarks of X [n:↓↑] to the lower rows/right columns. This
will help later for marginalization. Then they are added.

− log
(

pM
n�

(y) pM
n�

(y)
)=− log pM

n�
(y)−log pM

n�
(y) (23)

= yT (An�
+ An�

)y + yT (bn�
+ bn�

) + const (24)

To perform the marginalization (M©), An�
+ An�

is viewed
as a 2 × 2 block matrix and bn�

+ bn�
as a 2 block vector

=
(

u
v

)T (
P RT

R S

) (
u
v

)
+

(
u
v

)T (
c
d

)
+ const. (25)

The first block row/column corresponds to landmarks
U = X [n:��� ↑] to be marginalized out and stored in pC

n .
The second block row/column corresponds to landmarks
V = X [n:↓↑] to be passed in pM

n . By a straight-forward
but rather lengthy calculation it follows that

= vT (S − R P−1 RT)v + vT (−R P−1c + d) + const

+ (Hv + h − u)T P(Hv + h − u), (26)

with H = −P−1 RT and h = −P−1c/2. (27)

The first line of (26) defines a Gaussian for v in informa-
tion form not involving u at all. The second line defines a
Gaussian for u with covariance P−1 and mean Hv + h. The
first does not contribute to the conditional p(U | V) and the
second not to the marginal p(v). Thus

− log pM
n (v) = vT (S − R P−1 RT)v + vT (−R P−1c + d)

+const (28)

− log pC
n (u|v) = (Hv + h − u)T P(Hv + h − u) (29)

holds. Algorithmically treemap computes the information
matrix AM

n and vector bM
n of pM

n by

AM
n = S − R P−1 RT , bM

n = −R P−1c + d (30)

and passes it to the parent node. This is the well known
marginalization formula for Gaussians (Thrun et al., 2005,
Table 11.6) which is also known as Schur-complement (Horn
and Johnson, 1990). Equation (29) is remarkable. It repre-
sents p(u | v) in terms of v as a single Gaussian in u with
mean Hv + h. For general distributions no such simple re-
lation will hold. Treemap stores pC

n as (P−1, H, h).

3.5.2. State recovery (downwards)

With this representation for pC
n state recovery � can be

implemented very efficiently in covariance form. The mean
v̂ = E(v | z) is passed by the parent node and the mean of u

is correspondingly

ŷ =
(

û
v̂

)
,

û = E(u | z)
Gaussian= E(u | v = E(v | z), z)

= H v̂ + h. (31)

Note, that E(u | z) = E(u | v = E(v | z)) only holds for
Gaussians. In general the full distribution p(v|z) is neces-
sary to compute E(u|z) from E(u|v, z). So for recovering
the global state estimate x̂ = E(X |z), it suffices to propa-
gate the mean downwards—it is not necessary to propagate
covariances at all. In this case, state recovery requires only a
single matrix-vector product in each node and is extremely
efficient.

If the covariance is desired, it can be propagated the same
way. If cov(v) = Cv is passed by the parent node, cov (u

v
)

can be computed as

C = cov ŷ = cov

(
u
v

)

= cov

((
Hv + h

v

)
−

(
Hv + h − u

0

))
(32)

=
(

HCv H T HCv

Cv H T Cv

)
+

(
P−1 0
0 0

)

=
(

HCv H T + P−1 HC
Cv H T Cv

)
. (33)

The last equation follows from pC
n defining a P−1 co-

variance Gaussian on Hv + h − u by (29). This Gaussian is
independent from the one passed by the parent node, since
the marginalization (M©) factorizes into two independent dis-
tributions pM

n and pC
n . The result of recursive propagation is a

covariance matrix for each leaf yielding correlations between
all landmarks involved in measurements at the same leaf.

3.6. Performance and discussion

As evident from the description in this section, there is no
approximation involved in the update and state-recovery op-
erations computing x̂ from the different pI

n. The estimate x̂
computed by this core part of treemap is the same as the
one provided by linearized least square or EKF when using
the same linearization point. Approximation errors are in-
troduced by linearization in computing pI

n from the original
non-linear landmark–landmark constraints. When, as usual,
the input are robot–landmark and robot–robot constraints, a

Springer

Auton Robot (2006) 21:103–122 111

Fig. 4 DLR Institute of
Robotics and Mechatronics—A
typical topologically suitable
building with the first three
levels (L1, L2, L3) of a suitable
hierarchical partitioning. It has
been mapped in the experiments
(Section 9), with the dashed line
sketching the robots trajectory.
The start and finish are indicated
by small triangles

further preprocessing step is necessary (cf. Section 5). This
step marginalizes out old robot poses and in doing so cre-
ates further landmark constraints. To avoid getting too many
constraints, a so called sparsification is necessary, which is
a second source of error. No further approximations are in-
volved.

Local and global levels are treated conceptually the same
way by least square estimation on landmarks. This is different
from Atlas and the algorithm by Estrada et al. (2005), that
use a graph over relations of reference frames on the global
level. So as with CEKF and TJTF the division into submaps
is mostly transparent for the user.

There are three key ideas that make this computation fast.

– Many small matrices instead of one large matrix. This
is the motivation. For the matrices actually to be small the
building must have a hierarchical partitioning with limited
overlap (cf. Section 4) and the partitioning subalgorithm
must actually find one (cf. Section 6.3).

– Only a single path from leaf to root needs to be updated
after a new constraint is added to that leaf. Since pM

n and
pC

n depend only on z[n:↓] all other nodes still remain
valid.4 So if the tree is balanced, only O(log n) nodes are
updated.

– State-recovery is fast, because it needs only a single
matrix-vector product per node (31) to propagate the
mean. Alternatively two matrix products are needed to
propagate the covariance (33). This makes computing
a global estimate extremely fast, because then recursive
propagation is the dominant operation O(n).

4 An exception is discussed in Section 6 but does not affect the O(log n)
claim.

Appendix A shows a worked out example for propagation
of distributions in the tree corresponding to the example in
Fig. 2.

4. Assumptions on topologically suitable buildings

The time needed for computation at a node n depends on
the size of the matrices involved, which is determined by
the number of landmarks in X [n:↓↑ ∨ ��� ↑] = X [n� : ↓↑ ∨
n� : ↓↑]. So for each node only few landmarks should at the
same time be involved in constraints below and in constraints
above n. Or intuitively speaking, the region represented by
a node should only have a small border with the rest of the
building.

As the experiments in Section 9 and the following consid-
erations confirm, typical buildings allow such a hierarchical
partitioning as a tree because they are hierarchical them-
selves, consisting of floors, corridors and rooms. Different
floors are only connected through a few staircases, different
corridors through a few crossings and different rooms most
often only through a single door and the adjacent parts of the
corridor. Thus, on the different levels of the hierarchy natu-
ral regions are: rooms, part of a corridor including adjacent
rooms, one or several adjacent corridors and one or several
consecutive floors (Fig. 4).

Let us formally define a “suitable hierarchical partition-
ing” and thus a “topologically suitable building” having
such a partitioning.

Definition 1 (Suitable hierarchical partitioning). Let the
measurements z be assigned to leaves of a tree. Let k be the
maximum number of landmarks involved in measurements

Springer

112 Auton Robot (2006) 21:103–122

from a single robot pose. Then the tree is a suitable
hierarchical partitioning, if

1. For each node n the number of landmarks in X [n:↓↑] is
O(k).

2. For each leaf n the number of leaves n′ for which X [n:↓]
and X [n′ : ↓] share a landmark is O(1).

Definition 2 (Topologically suitable building). A topologi-
cally suitable building is a building where a suitable hier-
archical partitioning exists regardless how the robot moves.

The parameter k is small, since the robot can only observe
a few landmarks simultaneously because its field of view is
limited both by walls and sensor range. In particular, k does
not increase when the map gets larger (n → ∞). Although
by this argument k = O(1), the asymptotical expressions in
this article explicitly show the influence of k. All expressions
hold strictly if two heuristic assumptions are valid.

– The encountered building is topologically suitable, i.e. a
suitable partitioning exists.

– The hierarchical tree partitioning (HTP) subalgorithm
(Section 6.3) succeeds in finding such a suitable parti-
tioning.

If Definition 1 is restricted only to leaves, it is mostly
equivalent to general sparsity in the information form as ex-
ploited by SEIF and other algorithms. In general it is stronger
since it demands O(k) connections even between large re-
gions. Still it is compatible with loops and nested loops as
evident from the experiments (Fig. 8 contains 200 medium
loops nested in 10 large loops) but it does preclude grid-like
structures. So large open halls as well as most outdoor envi-
ronments are not topologically suitable. If for instance an l
× l square with n landmarks is divided into 2 halves, the bor-
der involves O(l) = O(

√
n) landmarks. So there will be an√

n × √
n matrix at the root node increasing update time to

O(n3/2). Estimation quality will not be affected. However, if
outdoors the goal is to explore rather than to “mow the lawn”
the robot will operate on a network of paths. Treemap can
still be reasonable efficient then.

4.1. Computational efficiency

By Definition 1 there are O(n
k) nodes in the tree (part 2) and

each stores matrices of dimension O(k × k) (part 1). Thus,
the storage requirement of the treemap is O(k2 · n

k) = O(nk)
meeting requirement (R2). Updating one node takes O(k3)
time for (30) and (27). State-recovery by (31) needs O(k2)
time (mean only) and by (33) O(k3) time (covariance).

So after integrating new constraints into pI
n at some leaf n

O(k3 log n) time is needed for updating. An estimate for the
landmarks involved at some leaf n′ can be provided in the
same computation time. This way treemap can be used the

same way as CEKF maintaining only local estimates but
replacing CEKF’s O(kn3/2) global update with treemap’s
O(k3 log n) update. As long as n = n′ we skip the treemap
update and proceed as CEKF using the EKF equations in
O(k2) time.

In order to compute an estimate for all landmarks, (31)
must be applied recursively taking O(k2 n

k) = O(kn) (mean
only). It will turn out in the experiments in Section 8 that
the constant factor involved is extremely small. So while
the possibility to perform updates in sublinear time is most
appealing from a theoretical perspective, in practice treemap
can compute a global estimate even for extremely large maps.

Overall, Definition 1 is both the strength and weakness
of treemap. The insight that buildings have such a loosely
connected topology distinguishes indoor SLAM from many
other estimation problems and enables treemap’s impressive
efficiency. On the other hand it precludes dense planar map-
ping mainly ruling out outdoor environments.

5. EKF based preprocessing stage

The part of treemap discussed so far is very general. It can
estimate random variables with any meaning given some
Gaussian constraints with suitable topology. However it can-
not marginalize out random variables that are not needed any
more, i.e. old robot poses.

In this section we will derive an EKF based preprocessing
stage. It receives landmark observations and odometry mea-
surements and converts these into information on the current
robot pose and information on local landmarks marginaliz-
ing out old poses. The information on landmarks is passed
into the treemap as a Gaussian constraint.

In each moment there is one local region, i.e. one leaf c
that is active corresponding to where the robot currently is.
New landmark information is multiplied into pI

c and the EKF
maintains an estimate for all landmarks involved there. In this
sense, the framework is similar to that of the CEKF, Atlas,
and Feder’s submap algorithm. Unlike Atlas and Feder’s
algorithm treemap employs a full least square estimator on
top of this local estimate, namely the tree discussed so far. So
as with CEKF, the EKF’s local estimate includes information
from all measurements not just from measurements in the
current region.

We will first derive a simple solution where no robot pose
information is passed across regions. It follows the relocation
idea by Walter et al. (2005) as well as Frese and Hirzinger
(2001) and sacrifices odometry information to preserve spar-
sity when marginalizing out old robot poses. The companion
technical report (Frese, 2006b) discusses a more sophisti-
cated sparsification scheme. While the experiments used that
scheme, relocation is much easier and works very convinc-
ingly as we recently observed (Frese and Schröder, 2006).

Springer

Auton Robot (2006) 21:103–122 113

Fig. 5 Bayesian view. (a) A part of the example shown in (Fig. 2)
with landmarks Xl (a . . . d) and robot poses Xr (1 . . . 4). The odometry
constraint between pose 2 and 3 (shown outside both regions) is ignored.
In this manner the robot poses are involved only in their respective
region and are marginalized out. (b) The result for each region is a
single Gaussian (big circle) on all landmarks in that region

5.1. Bayesian view

Figure 5 shows an example as a Bayes net with landmarks
and robot poses for two regions. The odometry measurement
that connects poses in both regions is ignored. Then all poses
are only involved inside one region and can be marginalized
out. This means, that whenever the robot enters a new re-
gion, its position is only defined by the measurements made
there. The regions are however connected by overlapping
landmarks. Note, though, that odometry can still be used for
data association, so this does not mean the robot is actually
“kidnapped”. Odometry is only ignored in the sense that no
constraint is integrated.

5.2. Data flow view

This process can be conveniently implemented as a prepro-
cessing EKF (Fig. 6). When entering a region c, treemap
computes the marginal pc (mean and covariance) of land-
marks X [c : ↓] involved there.

pEKF = pc = p(X [c:↓]|z−) (34)

We write z− to indicate that the distribution is conditioned
on the measurements made before entering c and z+ for the
measurements made while operating c. The EKF is initialized
with this distribution and an ∞ -covariance prior for the
robot pose. While the robot stays in the region, the EKF
maintains

p′
EKF = p(Xr , X [c:↓]|z). (35)

After leaving c, information must be passed from the EKF
to the treemap. For that purpose we take the EKF’s marginal
on landmarks

p(X [c:↓]|z) =
∫

Xr

p(Xr , X [c:↓]|z) (36)

=
∫

Xr

p(X [c:↓]|z−) · p(Xr , X [c:↓]|z+) (37)

= p(X [c:↓]|z−)
∫

Xr

p(Xr , X [c:↓]|z+) (38)

= p(X [c:↓]|z−) · p(X [c:↓]|z+). (39)

This equation relies on the odometry constraint being re-
moved, because otherwise Xr would be involved in both fac-
tors and neither one could be moved out of the integral. The
marginal is then divided (
) by pc the information already
stored in the treemap. The result is

pM
EKF =

∫
xr

p′
EKF

pc
= p(X [c:↓]|z+) · p(X [c:↓]|z−)

p(X [c:↓]|z−)

= p(X [c:↓]|z+) (40)

the information obtained by new measurements. It is inde-
pendent from z− and can be multiplied into pI

c passing that
information to the treemap.

Fig. 6 Data flow view. The figure’s top shows the lower part of the
treemap (i.e. leaves) as depicted in Fig. 3. It illustrates how information
is passed from the treemap into the preprocessing EKF and vice versa.
When entering region c the EKF is initialized with the marginal pc

from the treemap. When leaving c again, the new information pM
EKF on

landmarks is multiplied into pI
c integrating it into the treemap. Each

time the robot pose is discarded and redefined by the next measurement

Springer

114 Auton Robot (2006) 21:103–122

6. Maintenance of the tree

In this section we will discuss the bookkeeping part of the
algorithm. It maintains the tree that is not defined a-priori
but built while the map grows. There are three subtasks.

1. Determine for which nodes to update pM
n and pC

n by (24)
(�), as well as (27) and (30) (M©). This task is pure book-
keeping.

2. Control the transition between the current region, c, and
the next region, cnext. This defines which constraints are
assigned to which leaf even though the assignment is not
explicitly stored. We rely upon a heuristic that limits a
region’s geometric extension by maxD.

3. Rearrange the tree so it is balanced and well partitioned,
i.e. x[n:↓↑] contains few landmarks in all nodes n. Bal-
ancing is not difficult but hierarchical tree partitioning
(HTP) is NP-complete. So we follow the tradition in
graph partitioning (Fiduccia and Mattheyses, 1982) and
optimize in greedy steps with each step being optimal.

The goal was to make treemap O(k3 log n) in a strict
asymptotical sense given that the HTP subalgorithm suc-
ceeds in finding a suitable tree (Definition 1). Unfortunately
this results in a relatively involved implementation. We there-
fore discuss the general approach and leave the details to the
pseudocode in the companion report (Frese, 2006b). In Frese
and Schröder (2006) we present a simplified HTP algorithm
that sacrifices the O(k3 log n) bound.

6.1. Update

Treemap has to keep track of which landmark is involved
where and when to marginalize out a landmark. So distri-
butions pM

n , pC
n contain a sorted list LM

n , LC
n denoting the

landmarks represented by the different rows/columns of the
corresponding matrices and vectors. For each landmark it
also contains a counter that is 1 in the leaves and added
when multiplying distributions (�). There is also a global
landmark arrayLwith corresponding counters. We treat both
as multisets writing � for union with adding counters and l#L
for the counter of l in L. Treemap detects when to marginal-
ize out a landmark by comparing the counters passed to the
node with the global counter.

L′
n = LM

n�
�LM

n�
(41)

LM
n = {l ∈ L′

n|0 < l #L′
n < l #L} (42)

LC
n = {l ∈ L′

n|0 < l #L′
n = l #L} (43)

It further maintains an array lca[l] storing for each land-
mark l the least common ancestor of all leaves involving l.

It is that node, that satisfies l#L′
lca[l]

= l#L and where l is
marginalized out.

If pI
n changes—for instance by multiplying pM

EKF into pI
c

– all pM
m and pC

m are updated from m = n up to the root. The
same applies if a new leaf has been inserted. Additionally
lca[l] can change for a landmark involved in pI

n and all nodes
from the old lca[l] to the root are updated too. By Definition
1.2, only O(1) leaves share landmarks with a given leaf so
O(log n) nodes are updated in O(k3log n) computation time.

In the following we need to find all leaves involving a
given landmark l. We recursively go down from m = lca[l]
as far as l ∈ LM

m . By Definition 1.2 this holds for only O(1)
leaves taking O(k log n) time.

6.2. Region changing control heuristic

Let treemap currently operate in a region, i.e. a leaf c. The
EKF directly handles odometry, observation of new land-
marks, and of landmarks in X [c : ↓]. There are two reasons
to leave c and enter another region cnext. First a landmark
may be observed that is not within c, i.e. X [c:� ↓]. In this
case we transition to a region containing this landmark so
as to pass information on that landmark from the treemap to
the EKF. A second reason is the need to limit the number
of landmarks in a region for efficiency. We actually limit
the distance maxD between landmarks in the same region
instead of directly limiting the number of landmarks. This
allows us to later add landmarks that have been overlooked.

As we transition from c to cnext, the two regions must
share at least two landmarks, to avoid disintegration of the
map due to the omitted odometry link. Thus, treemap checks,
whether c must be left for one of the two reasons above and
determines cnext with these steps:

1. Find all leaves sharing at least two landmarks with c.
2. For each of these leaves verify whether maxD would be

exceeded when adding the landmarks currently in the
robot’s field of view.

3. Among those where it is not exceeded, choose cnext as the
one that already involves most of the landmarks in the
robot’s field of view.

4. If all leaves would exceed maxD then add a new leaf as
cnext.

5. Leave c. Add landmarks observed to cnext and enter cnext.

When a new leaf is added, it is inserted directly above the
root node. It will then be moved to a better location by the
HTP subalgorithm.

6.3. Hierarchical tree partitioning (HTP)

The HTP subalgorithm optimizes the tree while the robot
moves. The goal is to meet Definition 1, which is the

Springer

Auton Robot (2006) 21:103–122 115

prerequisite for our O(. . .) analysis. The problem is
equivalent to the Hierarchical Tree Partitioning Problem
known from graph theory and parallel computing and being
NP-complete. However, successful heuristic algorithms have
been developed (Vijayan, 1991)—the most popular of which
is the Kernighan and Lin heuristic (Fiduccia and Mattheyses,
1982). It employs a greedy strategy in each step moving
that node which minimizes the cost function. Hendrickson
and Leland (1995) report that it works especially well when
applied hierarchically. We can do this easily since we opti-
mize an existing tree. Overall the HTP subalgorithm makes
O(1) optimization steps (5 in our experiments) whenever
changing regions, so the time spent in partitioning is limited.
It is heuristic experience and formally part of Definition 1
that this suffices to maintain a well partitioned tree.

In each optimization step we choose one node r to opti-
mize. We move a subtree somewhere left-below that node
to the right side or vice versa. This affects r and its descen-
dents but we only consider r itself, priorizing parents over
children. The cost function that is optimized is

par(r)= ∣∣LM
r�

∣∣+∣∣LM
r�

∣∣=|X[r� : ↓↑]|+|X[r� : ↓↑]| (44)

the number of landmarks involved in pM
r�

and pM
r�

. This
number determines the size of the matrices involved in com-
putation at r. The subtree that we choose to move from
one side of r to the other is that which minimizes par(r).
The cost function depends only on which subtree to move,
not on where to move it. Therefore the optimal subtree is
found by recursively going through all descendants s of r
that share a landmark with r. At each node, par(r) is eval-
uated for the situation that s was moved to the other side
of r.

l ∈ L′M
r�

⇔ 0 < l#LM
r�

∓ l#LM
s < l#L

l ∈ L′M
r�

⇔ 0 < l#LM
r�

± l#LM
s < l#L (45)

par(r)s = ∣∣{l
∣∣0 < l#LM

r�
∓ l#LM

s < l#L
}∣∣

+∣∣{l
∣∣0 < l#LM

r�
± l#LM

s < l#L
}∣∣ (46)

The case with − and + corresponds to moving from �

to �, + and − corresponds to the other way. Each evalua-
tion is performed by (46) in O(k) time using the counters in
LM

... . Node r involves O(k) landmarks each in turn involved
at O(1) leaves so overall O(k log n) nodes are checked in
O(k2 log n) computation time. The tree should be kept bal-
anced. Thus s is only considered, if after moving

1

2
r�size

≤ r�size
≤ 2r�size

(47)

where nsize is the number of leaves below n.

We still have to determine exactly where to insert s. For
par(n) it only matters, whether s is inserted somewhere left-
below (par(n)�), somewhere right-below n (par(n)�), or di-
rectly above (par(n↑)↑).

par(n↑)↑ = ∣∣LM
s

∣∣ + ∣∣LM
n

∣∣ (48)

par(n)� = ∣∣{l
∣∣0 < l#LM

n�
+ l#LM

s < l#L
}∣∣ + ∣∣Ln�

∣∣ (49)

par(n)� = ∣∣Ln�

∣∣ + ∣∣{l
∣∣0 < l#LM

n�
+ l#LM

s < l#L
}∣∣ (50)

So the insertion point that minimizes par(. . .) priorizing
parents over children can be found by descending through
the tree as follows:

1. Start with n = r� (or r� resp.)
2. Evaluate par(n) for each of the three choices directly

above (48), somewhere left-below (49), or somewhere
right-below (50).

3. If directly above is best and the new parent of n and s
would be balanced (47) then insert s. Update from old
and new s to the root.

4. Else set n to n� or n� whichever is better and go to
step 2.

7. Comparison with the Thin Junction Tree Filter

Paskin (2003) has proposed an algorithm, the Thin Junction
Tree Filter (TJTF), which is closely related to the treemap
algorithm, although both have been independently devel-
oped from completely different perspectives.5 Paskin views
the problem as a Gaussian graphical model. He utilizes the
fact that if a set of nodes (i.e. a set of landmarks) sepa-
rates the graphical model into two parts, then these parts are
conditionally independent given estimates for the separating
nodes. The algorithm maintains a junction tree, where each
edge corresponds to such a separation, passing marginalized
distributions along the edges.

Treemap’s tree is very similar to TJTF’s junction tree. The
most important difference is how treemap and TJTF ensure
that no node involves too many landmarks. TJTF further spar-
sifies thereby sacrificing information for computation time.
Treemap on the other hand tries to rearrange the tree with
its HTP subalgorithm to reduce the number of landmarks
involved. It never sacrifices information except when inte-
grating an observation into the tree the first time. There are
arguments in favor of both approaches. If treemap succeeds
in finding a good tree, that is certainly better than sacrificing

5 Originally I developed treemap from a hierarchy-of-regions and
linear-equation-solving perspective. I later added the Bayesian view
provided in this article.

Springer

116 Auton Robot (2006) 21:103–122

Fig. 7 Small noise simulation
results. (a)–(c) shows the
estimate of ML, EKF, and
treemap. (d) compares the
relative error as a generalized
eigenvalue spectrum. Treemap
performs well relative to EKF
but both suffer from
linearization error

information. However, if no such suitable tree exists, this
question is debatable.

Consider the example in Section 4 of densely mapping an
open plane. This is not topologically suitable and treemap’s
computation time will increase to O(n3/2). TJTF in contrast
will force each node to involve only O(k) landmarks by

Fig. 8 Large scale simulation experiment: Treemap estimate
(n = 11300)

sparsification, saving it’s O(k3 n) computation time. But is
the posterior represented still a good approximation?

Let us consider one node of TJTF’s tree that roughly di-
vides the map into equal halves. Originally these halves have
an O(

√
n) border where landmarks are tightly linked to both

halves of the map. The considered node represents only O(k)
landmarks, so most of these landmarks loose their proba-
bilistic link to one half of the map during sparsification. This
is not just slightly increasing the estimation error but actually
introduces breaks in the map, violating for instance (R1).

A further difference between treemap and TJTF is that
treemap views its tree as a part-whole hierarchy with a des-
ignated root corresponding to the whole building. For TJTF
on the other hand the tree is just an acyclic graph without des-
ignated root. This difference leads to the data flow structure
in treemap whereby the posterior is updated as information
matrices are passed upwards after which inference occurs
with the mean and, optionally covariance calculations down-
wards. Together with the representation of pC

n by H, h (27)
this reduces the computation time for the mean from O(k3)
per node to O(k2) per node compared to passing information
matrices downwards.

Treemap saves a further factor of O(k) by taking care that
each landmark is only involved in O(1) leaves, so there are
O(n

k) nodes. This is at least typically enforced by the region

Springer

Auton Robot (2006) 21:103–122 117

Fig. 9 Large scale simulation
experiment: Storage space and
computation time over number
of landmarks n

Fig. 10 Screen shot of the
SLAM implementation mapping
the DLR building. The
corresponding video can be
down-
loaded from the author’s website:
http://www.informatik.
uni-bremen.de/
∼ufrese/slam-
videos2 e.html

changing control heuristic, and for the analysis it is for-
mally assumed by Definition 1.2. Thereby, treemap groups
measurements as geometrically contiguous regions, whereas
TJTF chooses the node that minimizes the KL divergence
during sparsification. Overall this leads to a computation time
for mean recovery of O(kn) for treemap vs. O(k3n) for TJTF.

Treemap maintains a balanced tree thereby limiting up-
date and computation of a local estimate to O(k3 log n). Paths
in TJTF’s tree however may have a length of O(n) so it can-
not update that fast exactly.

Summarizing the discussion, treemap applies a more elab-
orate bookkeeping to reduce computation time. This book-
keeping on the other hand makes it considerable more diffi-
cult to implement than TJTF.

8. Simulation experiments

This section presents the simulation experiments conducted
to verify the algorithm with respect to the requirements (R1)–
(R3). Clearly space (R2) and time (R3) consumption are

straightforward to measure but how should one assess map
quality with respect to requirement (R1)? It should be kept in
mind, that our focus is on the core estimation algorithm, not
on the overall system. So relative, not absolute, error is the
quantity to be considered. This is achieved by generalized
eigenvalues.

We therefore repeat the same experiment with indepen-
dent measurement noise 1000 times passing the same mea-
surements to treemap, EKF and the optimal ML estimator.
We derive an error covariance matrix Ctreemap, CML, CEKF

for all three6 and compare the square root of the gener-
alized eigenvalue spectrum (Frese, 2006a). This spectrum
illustrates the relative error in different aspects of the map,
i.e. different linear combinations of landmark coordinates.
In particular the smallest and largest eigenvalue bound the
relative error of any aspect.

6 To limit the number of necessary runs, only eight selected landmarks
are used.

Springer

118 Auton Robot (2006) 21:103–122

Fig. 11 (a) Treemap estimate before closing the large loop having
an accumulated error of 16.18 m mainly caused by the robot leaving
the building in the right upper corner. (b) Final treemap estimate after
closing the large loop and returning to the starting position closing
another loop

The experiments use the more sophicasted scheme for
passing the robot pose described in the companion report.
They have been conducted on an Intel Xeon, 2.67 GHz pro-
cessor. The landmark sensor has 2.5% distance and 2◦ an-
gle noise. Odometry has 0.01

√
m continuous velocity noise

(robot radius = 0.3 m). The algorithm’s parameters are
optHTPSteps=5 optimization steps and maxD=5 m region
size.

8.1. Small noise experiment

The small noise simulation experiment allows statistical
evaluation of the estimation error and comparison with EKF
and ML (Fig. 7). At first sight all three appear to be of the
same quality (except for the left upper room in the treemap
estimate) and perfectly usable for navigation. The orientation
of the rooms appears to be an issue. There are no overlapping
landmarks between room and corridor. Thus the larger error
in treemap is likely caused when changing regions.

Figure 7(d) reports the relative error as a generalized
eigenvalue spectrum. When comparing treemap vs. ML, the
smallest relative error is 110% (87% vs. EKF) and the largest,
395% (181% vs. EKF). The median relative error is 137%
compared to ML with two outliers of 395% and 293% and
median 125% compared to EKF. The outliers are also appar-
ent in the plot comparing EKF to ML, so they are probably
caused by linearization errors occurring in EKF and treemap.

8.2. Large scale map experiment

The second experiment is an extremely large map consisting
of 10 × 10 copies of the building used before (Fig. 8). There
are n = 11300 landmarks, m = 312020 measurements and
p = 63974 robot poses. The EKF experiment was aborted
due to large computation time.

In Fig. 9(a) storage space consumption is clearly shown to
be linear for treemap (O(kn)) and quadratic (O(n2)) for EKF.
Overall computation time was 31.34 s for treemap and 18.89
days (extrapolated ∼mn2) for EKF. Computation time per
measurement is shown in Fig. 9(b). Time for three different
computations is given: Local updates (dots below <0.5 ms),
global updates computing a local map (scattered dots above
0.5 ms) and the additional cost for computing a global map
are plotted w.r.t. n. Note that the global updates have a very
fluctuating computation time because the number of nodes
updated depends on the subtrees moved by the HTP subal-
gorithm. The spikes in the global estimation plot are caused
by lost timeslices.7

Overall the algorithm is extremely efficient updating an
n = 11300 landmark map in 12.37 ms. Average computation
time is 1.21 µs · k2 for a local update, 0.38 µs · k3 · log n for a
global update, and 0.15 µs · kn for a global map (mean only),
respectively (k ≈ 5.81). The latter is surely the most impres-
sive practical result. It allows the computation of a global
map even for extremely large n, avoiding the complications
of local map handling. Recently, we could even improve this
result updating an n = 1033009 landmarks map in 443 ms
or in 23 ms for a local update of ≈ 10000 landmarks (Frese
and Schröder, 2006).

9. Real world experiments

The real world experiment reported in this section shows
how treemap works in practice by mapping the DLR
Institute of Robotics and Mechatronics’ building (Fig. 4)
that serves as an example of a typical office building. The
robot is equipped with a camera system (field of view:
± 45◦) at a height of 1.55 m and controlled manually. We

7 Processing time had 5 ms resolution, so clock time has been used.

Springer

Auton Robot (2006) 21:103–122 119

Fig. 12 Tree representation of
the map. The size of the node
ovals is proportional to number
of landmarks represented

Fig. 13 Real experiment
performance

set circular fiducials throughout the floor (Fig. 10) that
were visually detected by Hough-transform and a gray-level
variance criterion (Otsu, 1979).

Since the landmarks are identical, identification is based
on their relative position employing two different strategies
in parallel. Local identification is performed by simultane-
ously matching all observations from a single robot pose to
the map, taking into account both error in each landmark
observation and error in the robot pose. For global identifi-
cation we encountered considerable difficulties in detecting
closure of a loop. Before closing the largest loop, the accu-
mulated robot pose error was 16.18 m (Fig. 11) and the aver-
age distance between adjacent landmarks was ≈ 1 m. With
indistinguishable landmarks, matching observations from a
single image was not reliable enough.

Instead, the algorithm matches a map patch of radius 5 m
around the robot. When the map patch is recognized some-
where else in the map, the identity of all landmarks in the
patch is changed accordingly and the loop is closed (Frese,
2004). It is a particular advantage of the treemap algorithm
to be able to change the identity of landmarks already in-
tegrated into the map. This allows the use of the lazy data
association framework by Hähnel et al. (2003). The regions
were maxD = 7 m large.

The final map contains n = 725 landmarks, m = 29142
measurements and p = 3297 robot poses (Fig. 11). The
results highlight the advantage of using SLAM, because
after closing the loop the map is much better. Figure 12
shows the internal tree representation (k ≈ 16.39). The tree
is balanced and well partitioned, i.e. no node represents
too many landmarks. It can be concluded that the building

is indeed topologically suitable in the sense discussed in
Section 4.

If only a local update is performed, as is often the case
(Fig. 13), then computation time is extremely low. The av-
erage time is 0.77 µs· k2 for a local update, 0.02µs· k3log n
for a global update and 0.04 µs · kn for a global map (mean)
respectively. Accumulated computation time is 2.95 s for
treemap and 660 s (extrapolated ∼ mn2) for EKF.

10. Conclusion

The treemap SLAM algorithm proposed in this article works
by dividing the map into a hierarchy of regions represented
as a binary tree. With this data structure, the computations
necessary for integrating a measurement are limited essen-
tially to updating a leaf of the tree and all its ancestors up to
the root. From a theoretical perspective the main advantage
is that a local map can be computed in O(k3 log n) time.
In practice, it is equally important that a global map can be
computed in O(kn) time allowing the update of a map with n
= 11300 landmarks in 12.37 ms on an Intel Xeon, 2.67 GHz.
Treemap is exact up to linearization and sparsification where
some information on the landmarks is sacrificed to pass in-
formation on the robot pose between regions. Still despite
the sparsification, if two landmarks are observed together,
the fact that we know their precise relative location will be
reflected by the estimate after the next update.

With respect to the three criteria (R1)–(R3) proposed in
Section 1, the algorithm was verified theoretically, by sim-
ulation experiments, and by experiments with a real robot.

Springer

120 Auton Robot (2006) 21:103–122

Fig. 14 The probability
distributions involved in
computation at node n in Fig. 2.
The example assumes 1D
landmarks. Constraint z1

declares Xa to be 0 with
variance 2. Constraints z2...7

declare the difference between
successive landmarks to be 1
with variance 1. With only these
constraints the result would be
E(X | z1...7) = (0 1 2 3 4 5 6)T .
The last constraint z8 contradicts
by declaring Xg as 7 with
variance 2. Thus the estimate
stretches to E(X | z1...8) =
(0.2 1.3 2.4 3.5 4.6 5.7 6.8)T .
The text explains how treemap
computes this result

There are two preconditions for achieving these results. (a)
The environment must be topologically suitable, i.e. have
a hierarchical partitioning and (b) the HTP subalgorithm
must find one as explained in Section 4. This is indeed
a major drawback since it precludes mapping dense out-
door environments. The second drawback is that performing
the bookkeeping in O(k3log n) significantly complicates the
algorithm. Consequently we have simplified the algorithm
meanwhile (Frese and Schröder, 2006). We plan to general-
ize it so it can handle different SLAM variants such as 2D-,
3D-, landmark-, pose-, and bearing-only-SLAM and publish
the code as an open source implementation.

A major future challenge will be uncertain data-
association. Some authors address this issue with a frame-
work that evaluates the likelihood of several data association
hypotheses (Hähnel et al., 2003). Regardless of how the
overall framework is conceived, it needs a classical SLAM
algorithm as the core engine to evaluate a single hypothesis.
Efficiency is then even more crucial because updates must
be performed for each of the hypothesis considered.

Appendix

A. Example for propagation of distributions in the tree

Figure 14 shows the computation at node n in the example
from Fig. 2. Gaussians are denoted by N (µ, C) in covari-
ance form and by N−1(b, A) in information form. On the left
z[n� : ↓] = z1,2, X [n� : ↓] = Xa,b but X [n� : ↓↑] = Xb.
So n� passes

pM
n� = p(Xb|z1,2) = N−1

(
− 2

3
,

1

3

)
= N (1, 3) (51)

to n. On the right z[n� : ↓] = z3,4, z[n� : ↓] = Xb,c,d, and
X [n� : ↓↑] consists of Xb (shared with n�) and Xd (shared
with n↑). So n� passes

pM
n�

= p(Xb,d|z3,4) = N−1

((
2
−2

)
,

(
1/2 −1/2
−1/2 1/2

))
.

(52)

to n. This Gaussian is degenerate, because z3,4 contain no
absolute position information. It declares the difference Xd −
Xb as N (2, 2) plus an infinite uncertainty for Xd + Xb. This
is typical for SLAM and no problem in the information form.
Node n multiplies both (�) by (24).

pM
n� · pM

n�
= p(Xb,d|z1...4)

= N−1

((
4/3
−2

)
,

(
5/6 −1/2
−1/2 1/2

))

= N
((

1
3

)
,

(
3 3
3 5

))

The next step is to marginalize (M©) out X [n:��� ↑] = Xb

by (28).

pM
n = p(Xd|z1...4) = N−1(−6/5, 1/5) = N (3, 5) (53)

pC
n = p(Xb|xd, z) = N (3/5 xd − 4/5, 1) (54)

Springer

Auton Robot (2006) 21:103–122 121

Note, that the mean of pC
n is defined as a linear function

H xd + h of xd. In this example H = (3/5) and h = (−4/5)
by (27). H, h and the covariance P−1 = (6/5) are stored at
n. pM

n is passed to n↑. Up to now only z1...4 have been inte-
grated. Imagine pM

n was directly fed back into n using it as
pn↑, which should actually be computed by the parent. Then
z5...8 were bypassed and n would provide x̂a...d = (0 1 2 3).
Instead at some point above n the contradicting distribu-
tions p(Xd|z1...4) = N (3, 5) and p(Xd|z5...8) = N (4, 5) are
integrated and

pn↑ = p(Xd|z) = N (3.5, 5/2) (55)

is passed from n↑ to n. It is multiplied (�) with pC
n by (33)

yielding

pn = p(Xb,d|z) = N
((

1.3
3.5

)
,

(
21/10 3/2
3/2 5/2

))
(56)

which is passed down to n� and n�.

Acknowledgments I would like to thank Bernd Krieg-Brückner,
Robert Ross, Matthew Walter, and the anonymous reviewers for valu-
able comments.

References

Bosse, M., Newman, P., Leonard, J., and Teller, S. 2004. SLAM
in large-scale cyclic environments using the atlas framework.
International Journal on Robotics Research, 23(12):1113–1140.

Duckett, T., Marsland, S., and Shapiro, J. 2000. Learning globally
consistent maps by relaxation. In Proceedings of the IEEE
International Conference on Robotics and Automation. San
Francisco, pp. 3841–3846.

Duckett, T., Marsland, S., and Shapiro, J. 2002. Fast, on-line learning
of globally consistent maps. Autonomous Robots, 12(3):287–300.

Eliazar, A. and Parr, R. 2003. DP-SLAM: Fast, robust simulataneous
localization and mapping without predetermined landmarks. In
Proceedings of the International Joint Conference on Artificial
Intelligence. Acapulco, pp. 1135–1142.

Estrada, C., Neira, J., and Tardós, J. 2005. Hierarchical SLAM: Real-
time accurate apping of large environments. IEEE Transactions
on Robotics, 21(4):588–596.

Fiduccia, C. and Mattheyses R. 1982. A linear-time heuristic for im-
proving network partitions. In Proceedings of the 19th ACM/IEEE
Design Automation Conference, Las Vegas. pp. 175–181.

Frese, U. 2004. An O(log n) Algorithm for simulate-
neous localization and mapping of mobile robots
in indoor environments. Ph.D. thesis, University of
Erlangen- Nürnberg. http://www.opus.ub.uni-
erlangen.de/opus/volltexte/2004/70/.

Frese, U. 2005. A proof for the approximate sparsity of SLAM
information matrices. In Proceedings of the IEEE International
Conference on Robotics and Automation, Barcelona, pp. 331–337.

Frese, U. 2006a. A discussion of simultaneous localization and
mapping. Autonomous Robots, 20(1):25–42.

Frese, U. 2006b. Treemap: An O(log n) algorithm for indoor simulta-
neous localization and mapping. Technical Report 006-03/2006,
Universität Bremen, SFB/TR 8 Spatial Cognition.

Frese, U. and Hirzinger, G. 2001. Simultaneous localization and
mapping—A discussion. In Proceedings of the IJCAI Workshop
on Reasoning with Uncertainty in Robotics, Seattle, pp. 17–26.

Frese, U., Larsson, P., and Duckett, T. 2004. A multigrid algorithm for
simultaneous localization and mapping. IEEE Transactions on
Robotics, 21(2):1–12.

Frese, U. and Schröder, L. 2006. Closing a million-landmarks loop.
In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing. submitted.

Gauss, C. 1821. Theoria combinationis observationum erroribus
minimis obnoxiae. Commentationes societatis regiae scientiarum
Gottingensis recentiores, 5:6–93.

Guivant, J. and Nebot, E. 2001. Optimization of the simultaneous local-
ization and map-building algorithm for real-time implementation.
IEEE Transactions on Robotics and Automation, 17(3):242–257.

Guivant, J. and Nebot, E. 2003. Solving computational and memory
requirements of feature-based simultaneous localization and map-
ping algorithms. IEEE Transactions on Robotics and Automation
19(4):749–755.

Hähnel, D., Burgard, W., Wegbreit, B., and Thrun, S. 2003. Towards
lazy data association in SLAM. In Proceedings of the 10th
International Symposium of Robotics Research.

Hendrickson, B. and Leland, R. 1995. A multilevel algorithm for
partitioning graphs. In Proceedings of the ACM International
Conference on Supercomputing, Sorrento, pp. 626–657.

Horn, R. and Johnson, C. 1990. Matrix Analysis. Cambridge University
Press.

Leonard, J. and Feder, H. 2001. Decoupled stochastic mapping. IEEE
Journal of Ocean Engineering, 26(4):561–571.

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. 2002.
FastSLAM: A factored solution to the simultaneous localization
and mapping problem. In Proceedings of the AAAI National
Conference on Artificial Intelligence, Edmonton, pp. 593–598.

Nieto, J., Guivant, J., Nebot, E., and Thrun, S. 2003. Real time data
association for fastSLAM. In Proceedings of the IEEE Conference
on Robotics and Autonomation, Taipeh, pp. 412–418.

Otsu, N. 1979. A threshold selection method from gray-level his-
tograms. IEEE Transactions on Systems, Man and Cybernetics,
9(1):62–66.

Paskin, M. 2003. Thin junction tree filters for simultaneous localization
and mapping. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence, San Francisco, pp. 1157–1164.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 1992. Numer-
ical Recipes, 2nd edn. Cambridge University Press, Cambridge.

Smith, R., Self, M., and Cheeseman, P. 1988. Estimating uncertain
spatial relationships in robotics. In I Cox, and G. Wilfong (eds),
Autonomous Robot Vehicles. Springer Verlag, New York, pp.
167–193.

Stachniss, C. and Burgard, W. 2004. Exploration with active
loop-closing for fastSLAM. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
1505–1510.

Thrun, S., Burgard, W., and Fox, D. 2005. Probabilistic Robotics. MIT
Press.

Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., and Durrant-
Whyte, H. 2004. Simultaneous localization and mapping with
sparse extended information filters. International Journal of
Robotics Research, 23(7–8):613–716.

Vijayan, G. 1991. Generalization of min-cut partitioning to tree
structures and its applications. IEEE Transactions on Computers,
40(3):307–314.

Walter, M., Eustice, R., and Leonard, J. 2005. A provably consistent
method for imposing exact sparsity in feature-based SLAM
information filters. In Proceedings of the 12th International
Symposium of Robotics Research.

Springer

122 Auton Robot (2006) 21:103–122

Udo Frese was born in Minden, Germany
in 1972. He received the Diploma degree
in computer science from the University of
Paderborn in 1997. From 1998 to 2003 he
was a Ph.D. student at the German Aerospace
Center in Oberpfaffenhofen. In 2004 he
received his Ph.D. degree from University
of Erlangen-Nürnberg and joined SFB/TR 8
Spatial Cognition at University of Bremen.
He works on mobile robotics, SLAM and

computer vision.

Springer

