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Abstract We present a robot-assisted wayfinding system for

the visually impaired in structured indoor environments. The

system consists of a mobile robotic guide and small passive

RFID sensors embedded in the environment. The system is

intended for use in indoor environments, such as office build-

ings, supermarkets and airports. We describe how the system

was deployed in two indoor environments and evaluated by

visually impaired participants in a series of pilot experiments.

We analyze the system’s successes and failures and outline

our plans for future research and development.
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1. Introduction

Since the adoption of the Americans with Disabilities Act of

1990 that provided legal incentives for improvement in uni-

versal access, most of the research and development (R&D)

has focused on removing structural barriers to universal ac-

cess, e.g., retrofitting vehicles for wheelchair access, build-

ing ramps and bus lifts, improving wheelchair controls, and
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providing access to various devices through specialized in-

terfaces, e.g., sip and puff, haptic, and Braille.

For the 11.4 million visually impaired people in the United

States (LaPlante and Carlson, 2000), this R&D has done lit-

tle to remove the main functional barrier: the inability to

navigate dynamic and complex environments. This inability

denies the visually impaired equal access to many private and

public buildings, limits their use of public transportation, and

makes the visually impaired a group with one of the highest

unemployment rates (74%) (LaPlante and Carlson, 2000).

Thus, there is a significant need for systems that improve

the wayfinding abilities of the visually impaired, especially

in unfamiliar environments, where conventional aids, such

as white canes and guide dogs, are of limited use. In the re-

mainder of this article, the term unfamiliar is used only with

respect to visually impaired individuals.

1.1. Assisted navigation

Over the past three decades, considerable R&D effort has

been dedicated to navigation devices for the visually im-

paired. Benjamin et al. (1973) built the C-5 Laser Cane. The

cane uses optical triangulation with three laser diodes and

three photo-diodes as receivers. Bissit and Heyes (1980) de-

veloped the Nottingham Obstacle Detector (NOD), a hand-

held sonar device that gives the user auditory feedback with

eight discrete levels. Shoval et al. (1994) developed the Nav-

Belt, an obstacle avoidance wearable device equipped with

ultrasonic sensors and a wearable computer. The NavBelt

produces a 120-degree wide view ahead of the user. The view

is translated into stereophonic audio directions. Borenstein

and Ulrich (1994) built GuideCane, a mobile obstacle avoid-

ance device for the visually impaired. GuideCane consists of

a long handle and a ring of ultrasonic sensors mounted on a

steerable two-wheel axle.

Springer



30 Auton Robot (2006) 21:29–41

More recently, a radio frequency identification (RFID)

navigation system for indoor environments was developed

at the Atlanta VA Rehabilitation Research and Develop-

ment Center (Ross, 2001; Ross and Blasch, 2002). In this

system, the blind users’ canes are equipped with RFID re-

ceivers, while RFID transmitters are placed at hallway in-

tersections. As the users pass through transmitters, they hear

over their headsets commands like turn left, turn right, and go
straight. The Haptica Corporation has developed Guido c©,

a robotic walking frame for people with impaired vision and

reduced mobility (www.haptica.com). Guido c©uses the on-

board sonars to scan the immediate environment for obstacles

and communicates detected obstacles to the user via speech

synthesis.

While the existing approaches to assisted navigation have

shown promise, they have had limited success for the follow-

ing reasons. First, many existing systems increase the user’s

navigation-related physical load, because they require that

the user wear additional and, oftentimes substantial, body

gear (Shoval et al., 1994), which contributes to physical fa-

tigue. The solutions that attempt to minimize body gear, e.g.,

the C-5 Laser Cane (Benjamin et al., 1973) and the Guide-

Cane Borenstein and Ulrich (1994), require that the user ef-

fectively abandon her conventional navigation aid, e.g., a

white cane or a guide dog, which is not acceptable to many

visually impaired individuals. Second, the user’s navigation-

related cognitive load remains high, because the user makes

all final wayfinding decisions. While device-assisted naviga-

tion enables visually impaired individuals to avoid immediate

obstacles and gives them simple directional hints, it provides

little improvement in wayfinding over white canes and guide

dogs. Limited communication capabilities also contribute to

the high cognitive load. Finally, few assisted navigation tech-

nologies are deployed and evaluated in their target environ-

ments over extended time periods. This lack of deployment

and evaluation makes it difficult for assistive technology (AT)

practitioners to compare different solutions and choose the

one that best fits the needs of a specific individual.

1.2. Robotic guides

The idea of robotic guides is by no means novel. Horswill

(1993) used the situated activity theory to build Polly, a mo-

bile robot guide for the MIT AI Lab. Polly used lightweight

vision routines that depended on textures specific to the lab.

Thrun et al. (1999) built MINERVA, an autonomous tour

guide robot that was deployed in the National Museum of

American History in Washington, D.C. The objective of the

MINERVA project was to build a robot capable of educat-

ing and entertaining people in public places. MINERVA is

based on Markov localization and uses ceiling mosaics as its

main environmental cues. Burgard et al. (1999) developed

RHINO, a close sibling of MINERVA, which was deployed

as an interactive tour guide in the Deutsches Museum in

Bonn, Germany. The probabilistic techniques for acting un-

der uncertainty that were used in RHINO and MINERVA

were later used in Pearl, a robotic guide for the elderly with

cognitive and motor disabilities, developed by Montemerlo

et al. (2002).

Unfortunately, these robotic guides do not address the

needs of the visually impaired. The robots depend on the

users’ ability to maintain visual contact with them, which

cannot be assumed for the visually impaired. Polly has

very limited interaction capabilities: the only way users

can interact with the system is by tapping their feet.

To request a museum tour from RHINO (Burgard et al.,

1999), the user must identify and press a button of a spe-

cific color on the robot’s panel. Pearl also assumes that

the elderly people interacting with it do not have visual

impairments.

The approach on which Polly is based requires that a robot

be evolved by its designer to fit its environment not only in

terms of software, but also in terms of hardware. This makes

it difficult to produce replicable solutions that work out of

the box in a variety of environments. Autonomous solutions

like RHINO, MINERVA, and Pearl also require substantial

investments in customized engineering and training to be-

come and, more importantly, to remain operational. While

the software and hardware concerns may be alleviated as

more on-board computer power becomes available with time,

collisions remain a concern (Burgard et al., 1999).

Mori and Kotani (1998) developed HARUNOBU-6, a

robotic travel aid to guide the visually impaired on the

Yamanashi University campus in Japan. HARUNOBU-6

is a motorized wheelchair equipped with a vision system,

sonars, a differential GPS, and a portable GIS. Whereas the

wheelchair is superior to the guide dog in its knowledge of the

environment, as the experiments run by the HARUNOBU-

6 research team demonstrate, the wheelchair is inferior to

the guide dog in mobility and obstacle avoidance. The ma-

jor source of problems was vision-based navigation, because

the recognition of patterns and landmarks was greatly influ-

enced by the time of day, weather, and season. In addition, the

wheelchair is a highly customized piece of equipment, which

negatively affects its portability across a broad spectrum of

environments.

1.3. Robot-assisted wayfinding

Any R&D endeavor starts with the basic question: is it wor-

thy of time and effort? We believe that with respect to robot-

assisted wayfinding for the visually impaired this question

can be answered in the affirmative. We offer several reasons

to justify our belief. First, robot-assisted wayfinding offers

feasible solutions to two hard problems perennial to wearable
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assisted navigation devices for the visually impaired: hard-

ware miniaturization and portable power supply. The amount

of body gear carried by the user is significantly minimized,

because most of it can be mounted on the robot and powered

from on-board batteries. Therefore, the navigation-related

physical load is reduced. Second, since such key wayfinding

capabilities as localization and navigation are delegated to

the robotic guide, the user is no longer responsible for mak-

ing all navigation decisions and, as a consequence, can enjoy

a smaller cognitive load. Third, the robot can interact with

other people in the environment, e.g., ask them to yield or

receive instructions. Fourth, robotic guides can carry useful

payloads, e.g., suitcases and grocery bags. Finally, the user

can use robotic guides in conjunction with her conventional

navigation aids, e.g., white canes and guide dogs.

In the remainder of this article, we will argue that robot-

assisted wayfinding is a viable universal access strategy in

structured indoor environments where the visually impaired

face wayfinding barriers. We begin, in Section 2, with an on-

tology of environments that helps one analyze their suitability

for robot-assisted wayfinding. In Section 3, we describe our

robotic guide for the visually impaired. We specify the scope

limitations of our project and present the hardware and soft-

ware solutions implemented in the robotic guide. Section 4

discusses robot-assisted wayfinding and the instrumentation

of environments. In Section 5, we describe the pilot exper-

iments conducted with and without visually impaired par-

ticipants in two structured indoor environments. We analyze

our successes and failures and outline several directions for

future R&D. Section 6 contains our conclusions.

2. An ontology of environments

Our ability to operate in a given environment depends on

our familiarity with that environment and the environment’s

complexity (Tinbergen, 1976; Agre, 1988). When we began

our work on the robotic guide, we soon found ourselves at

a loss as to what criteria to use in selecting target environ-

ments. This lack of analytical framework caused us to seek

an operational ontology of environments. After conducting

informal interviews with visually impaired individuals on en-

vironmental accessibility and analyzing system deployment

options available to us at the time, we decided to classify

environments in terms of their familiarity to the user, their

complexity, and their containment.
In terms of user familiarity, the ontology distinguishes

three types of environments: continuous, recurrent, and tran-
sient. Continuous environments are environments with which

the user is closely familiar, because she continuously inter-

acts with them. For example, the office space in the building

where the user works is a continuous environment. Recur-

rent environments are environments with which the user has

contact on a recurrent but infrequent basis, e.g., a conference

center where the user goes once a year or an airport where the

user lands once or twice a year. Recurrent environments may

undergo significant changes from visit to visit and the user

may forget most of the environment’s topology between vis-

its. Transient environments are environments with which the

user has had no previous acquaintance, e.g., a supermarket

or an airport the user visits for the first time.

Two types of environmental complexity are distinguished

in the ontology: structural and agent-based. Structural com-

plexity refers to the physical layout and organization of a

given environment, e.g., the number of halls, offices, and el-

evators, the number of turns on a route from A to B, and

the length of a route from A to B. Agent-based complexity

refers to the complexity caused by other agents acting in the

environment, and is defined in terms of the number of static

and dynamic obstacles, e.g., boxes, pieces of furniture, and

closed doors, and the number of people en route.

Our ontology describes environmental complexity in

terms of two discrete values: simple and complex. Hence,

in terms of environmental complexity, the ontology distin-

guishes four types of environments: (1) simple structural,

simple agent-based; (2) simple structural, complex agent-

based; (3) complex structural, simple agent-based; and (4)

complex structural, complex agent-based. It should be noted

that, in terms of its agent-based complexity, the same envi-

ronment can be simple and complex at different times. For

example, the agent-based complexity of a supermarket at

6:00 am on Monday is likely to be much less complex than

at 11:00 am on Saturday. Similarly, the agent-based com-

plexity of a student center at a university campus changes

significantly, depending on whether or not the school is in

session.

In terms of containment, the ontology distinguishes two

types of environment: indoor and outdoor. Thus, our on-

tology distinguishes a total of eight environments: the four

above types classified according to environmental complex-

ity, each of which can be either indoor or outdoor.

Given this ontology, we proceed to the next basic question:

are all environments suitable for robot-assisted wayfinding?

We do not think so. There is little need for such guides in con-
tinuous environments, i.e., environments with which the user

is very familiar. As experience shows (Pfaffenberger et al.,

1976), conventional navigation aids, such as white canes and

guide dogs, are quite adequate in these environments, be-

cause either the user or the user’s guide dog has an accurate

topological map of the environment.

We do not think that robotic guides are suitable for outdoor

environments either. The reason is twofold. First, outdoor

environments are not currently within reach of robots unless

the robots are teleoperated, at least part of the time (Fong

and Thorpe, 2001). To put it differently, the state of the art

in outdoor robot navigation technology does not yet allow
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one to reliably navigate outdoor environments. Second, the

expense of deploying and maintaining such systems may be

prohibitive not only to individuals, but to many organizations

as well. Naturally, as more progress is made in vision-based

outdoor navigation, this outlook is likely to change.

We believe that recurrent or transient indoor environ-

ments, e.g., supermarkets, airports, and conference centers,

are both feasible and socially valid for robot-assisted navi-

gation (Kulyukin et al., 2005). Guide dogs, white canes, and

other navigation devices are of limited use in such environ-

ments, because they cannot help their users localize and find

paths to useful destinations. Furthermore, as we argue below,

such environments can be instrumented with small sensors

that make robot-assisted wayfinding feasible.

3. RG-I: A robotic guide

In May 2003, the Computer Science Assistive Technology

Laboratory (CSATL) at the Department of Computer Sci-

ence of Utah State University (USU) and the USU Center

for Persons with Disabilities (CPD) launched a collabora-

tive project whose objective is to build an indoor robotic

guide for the visually impaired. We have so far built, de-

ployed and tested one prototype in two indoor environments.

Our guide’s name is RG-I, where “RG” stands for “robotic

guide.” We refer to the approach behind RG-I as non-intrusive
instrumentation of environments. Our basic objective is to al-

leviate localization and navigation problems of completely

autonomous approaches by instrumenting environments with

inexpensive and reliable sensors that can be placed in and out

of environments without disrupting any indigenous activities

(Kulyukin and Blair, 2003). Additional requirements are: (1)

that the instrumentation be reasonably fast and require only

commercial off-the-shelf (COTS) hardware components; (2)

that sensors be inexpensive, reliable, easy to maintain (no

external power supply), and provide accurate localization;

(3) that all computation run onboard the robot; and (4) that

human-robot interaction be both reliable and intuitive from

the perspective of the visually impaired users.

3.1. Scope limitations

Several important issues are beyond the scope of our project.

First, robotic guides prototyped by RG-I are not meant for

individual ownership. Rather, we expect institutions, e.g., air-

ports, supermarkets, conference centers, and hospitals, to op-

erate such guides on their premises in the future. One should

think of RG-I as a step toward developing robotic naviga-

tional redcap services for the visually impaired in airport-like

environments.

Second, it is important to emphasize that robotic wayfind-

ing assistants prototyped by RG-I are not intended as re-

placements for guide dogs. Rather, these service robots are

designed to complement and enhance the macro-navigational

performance of guide dogs in the environments that are not

familiar to the guide dogs and/or their handlers.

Third, we do not address the issue of navigating large open

spaces, e.g., large foyers in hotels. While some references

in the localization literature suggest that ultrasonic sensors

could be used to address this issue (Addlesee et al., 2001),

the proposed solutions are sketchy, have been deployed in

small, carefully controlled lab environments, and do not yet

satisfy the COTS hardware requirement. In addition, the ul-

trasonic sensors used in these evaluations must have external

power sources, which makes both maintenance and deploy-

ment significantly harder. Thus, we currently assume that

all environments in which RG-I operates are structured in-

door environments, i.e., have walls, hallways, aisles, rows of

chairs, T- and X-intersections, and solid and static objects,

e.g., vending machines and water fountains, that the robot’s

onboard sensors can detect.

3.2. Hardware

RG-I is built on top of the Pioneer 2DX commercial robotic

platform (See Fig. 1) from the ActivMedia Corporation.

The platform has three wheels, two drive wheels in the

front and a steering wheel in the back, and is equipped

with three rechargeable Power Sonic PS-1270 onboard bat-

teries. What turns the platform into a robotic guide is a

Wayfinding Toolkit (WT) mounted on top of the platform

and powered from the on-board batteries. As shown in

Fig. 1, the WT resides in a polyvinyl chloride (PVC) pipe

structure attached to the top of the platform. The WT in-

cludes a Dell Ultralight X300 laptop connected to the plat-

Fig. 1 RG-I: A robotic guide
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form’s microcontroller, a SICK LMS laser range finder

from SICK, Inc., and a TI Series 2000 radio-frequency

identification (RFID) reader from Texas Instruments,

Inc.

The laptop interfaces to the RFID reader through a usb-

to-serial cable. The reader is connected to a square 200 mm

by 200 mm RFID RI-ANT-GO2E antenna that detects RFID

sensors (tags) placed in the environment. Figure 2 shows

several TI RFID Slim Disk tags. These are the only types

of tags currently used by the system. These tags can be at-

tached to any objects in the environment or worn on cloth-

ing. They do not require any external power source or di-

rect line of sight to be detected by the RFID reader. They

are activated by the spherical electromagnetic field gener-

ated by the RFID antenna with a radius of approximately 1.5

meters.

Several research efforts in mobile robotics have also used

RFID technology in robot navigation. Kantor and Singh used

RFID tags for robot localization and mapping (Kantor and

Singh, 2002). Once the positions of the RFID tags are known,

their system uses time-of-arrival information to estimate the

distance from detected tags. Tsukiyama (2003) developed a

navigation system for mobile robots using RFID tags. The

system assumes perfect signal reception and measurement.

Hähnel et al. (2003) developed a robotic mapping and lo-

calization system to analyze whether RFID can be used to

improve the localization of mobile robots in office environ-

ments. They proposed a probabilistic measurement model for

RFID readers that accurately localizes RFID tags in a simple

office environment.

3.3. Software

RG-I has a modular hybrid architecture that consists of three

main components: a path planner, a behavior manager, and a

user interface (UI). The UI has two input modes: haptic and

speech. The haptic mode uses inputs from a hand-held key-

pad; the speech mode accepts inputs from a wireless wearable

microphone coupled to Microsoft’s SAPI 5.1 speech recog-

Fig. 2 Deployed RFID tags

nition engine. The UI’s output mode uses non-verbal audio

beacons and speech synthesis.

The UI and the planner interact with the behavior man-

ager through socket communication. The planner provides

the robot with path plans from start tags to destination tags

on demand. The behavior manager executes the plans and

detects plan execution failures.

This architecture is inspired by and partially realizes

Kupiers’ Spatial Semantic Hierarchy (SSH) (Kupiers, 2000).

The SSH is a framework for representing spatial knowledge.

It divides spatial knowledge of autonomous agents, e.g., hu-

mans, animals, and robots, into four levels: the control level,

causal level, topological level, and metric level. The con-

trol level consists of low level mobility laws, e.g., trajectory

following and aligning with a surface. The causal level rep-

resents the world in terms of views and actions. A view is a

collection of data items that an agent gathers from its sen-

sors. Actions move agents from view to view. For example,

a robot can go from one end of a hallway (start view) to the

other end of the hallway (end view). The topological level

represents the world’s connectivity, i.e., how different loca-

tions are connected. The metric level adds distances between

locations.

The path planner realizes the causal and topological lev-

els of the SSH. It contains the declarative knowledge of the

environment and uses that knowledge to generate paths from

point to point. The behavior manager realizes the control and

causal levels of the SSH. Thus, the causal level is distributed

between the path planner and the behavior manager.

The control level is implemented with the following

low-level behaviors all of which run on the WT laptop:

follow-hallway, turn-left, turn-right , avoid-obstacles, go-
thru-doorway, pass-doorway, and make-u-turn. These be-

haviors are written in the behavior programming language of

the ActivMedia Robotics Interface for Applications (ARIA)

system from ActivMedia Robotics, Inc. Further details on

how these behaviors are implemented can be found in Ku-

lyukin et al. (2004) and Gharpure (2004).

The behavior manager keeps track of the global state of

the robot. The global state is shared by all the modules. It

holds the latest sensor values, which include the laser range

finder readings, the latest detected RFID tag, current veloc-

ity, current behavior state, and battery voltage. Other state

parameters include: the destination, the command queue, the

plan to reach the destination, and internal timers.

4. Wayfinding

Visually impaired individuals follow RG-I by holding onto a

dog leash. The leash is attached to the battery bay handle on

the back of the platform. The upper end of the leash is hung

on a PVC pole next to the RFID antenna’s pole. Figure 3
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Fig. 3 RG-I leading a guide dog user

shows a visually impaired guide dog user following RG-I.

RG-I always moves closer to the right wall to follow the flow

of traffic in structured indoor environments.

4.1. Instrumentation of environments

In instrumenting indoor environments with RFID tags, the

following four guidelines are followed:

1. Every tag in the environment is programmed with a

unique ID and placed on a non-metallic padding to

isolate it from metallic substances in the walls;

2. Every door is designated with a tag;

3. Every object in the environment that can serve as a

destination, e.g., a soda machine or a water fountain,

is also tagged;

4. Every turn is designated with a tag; the tags are placed

about a meter away from each turn.

After the tags are deployed in the environment, the knowl-

edge base of the environment is engineered manually. The

knowledge base represents an aerial view of the environ-

ment in which RG-I operates. The knowledge base for an

environment consists of a tag connectivity graph, tag to des-

tination mappings, and low-level behavior scripts associated

with specific tags. Figure 4 shows a subgraph of the con-

nectivity graph used in RG-I. The path is a tag-behavior-tag
sequence. In the graph, f, u, l and r denote follow-hallway,

make-u-turn, turn-left, and turn-right, respectively.

Fig. 4 A subgraph of a connectivity graph used in RG-I

The planner uses the standard breadth first search (BFS)

to find a path from the start tag to the destination tag. For

example, if the start tag is 4 and the destination tag is 17, (4 l
5 f 6 r 7 f 8 f 15 f 16 r 17) is a path plan. The plan is executed

as follows. The robot detects tag 4, executes a left turn until

it detects tag 5, follows the hallway until it detects tag 6, ex-

ecutes a right turn until it detects tag 7, follows the hallway

until it detects tag 8, follows the hallway until it detects tag

15, follows the hallway until it detects tag 16, and executes

a right turn until it detects tag 17. Given the tag connec-

tivity graph, there are only two ways the robot can localize

the user in the environment: (1) the user is approaching X,

where X is the location tagged by the next tag on the robot’s

current path; and (2) the user is at X, where X is the loca-

tion tagged by the tag that is currently visible by the robot’s

antenna.

As another example, consider Fig. 5. The figure shows a

map of the USU CS Department with a route that the robot

is to follow. Figure 6 shows a path returned by the planner.

Figure 7 shows how this path projected on the map of the

environment as it is followed by the robot. Figure 7 also

shows how the robot switches from one navigational behav-

ior to another as its RFID antenna detects the tags on the

path.

4.2. Obstacle avoidance

Obstacle avoidance is critical to robots navigating dy-

namic, structurally complex environments. Over the past two

decades several obstacle avoidance techniques have been

developed and tried on mobile robots in a variety of envi-

ronments. The most prominent of those techniques are the

potential fields approach (PF) (Khatib, 1985), the dynamic

window approach (μdWA) (Burgard et al., 1999), the vector

field histogram (VFH) (Borenstein and Koren, 1989), and the

curvature velocity method (CVM) (Simmons, 1996).

While navigation in RG-I utilizes PF techniques, the over-

all approach to navigation implemented in RG-I differs from

the above approaches in three respects. First, our approach
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Fig. 5 USU CS Department

does not focus on interpreting obstacles detected by sensors

and generating motion commands as a result of that interpre-

tation. Instead, we focus on empty spaces that define the nav-

igational landmarks of many indoor environments: hallways,

turns, X- and T-intersections, etc. The robot itself cannot in-

terpret these landmarks but can navigate them by following

paths induced by empty spaces. Second, navigation in RG-I

is not egocentric: it is distributed between the robot and the

environment insomuch as the environment is instrumented

with sensors that assist the robot in its navigation. Third,

navigation in RG-I is orientation-free, i.e., the robot’s sen-

sor suite does not include any orientation sensor, such as a

digital compass or an inertia cube; nor does the robot infer

its orientation from external signals through triangulation or

trilateration.

The robot’s PF is a 10 × 30 egocentric grid. Each cell in

the grid is 200 mm × 200 mm. The grid covers an area of

12 square meters (2 meters in front and 3 meters on each

side). The grid is updated continuously with each scan of

the laser range finder. A 180◦ laser scan is taken in front of

the robot. The scan consists of a total of 90 laser range finder

readings, taken at every 2 degrees. A laser scan is taken every

50 milliseconds, which is the length of time of an average

action cycle in the ARIA task manager.

The exact navigation algorithm for determining the direc-

tion of travel executed by RG-I is as follows:

1. Do the front laser scan.

2. Classify each cell in the grid as free, occupied, or un-

known and assign directions and magnitudes to the

vectors in occupied cells.

3. Determine the maximum empty space.

4. Assign directions to the vectors in free cells.

The robot’s desired direction of travel is always in the

middle of the maximum empty space, a sector of empty space

in front of the robot. Further details on the local navigation

algorithms used in RG-I can be found in (Kulyukin et al.,

2004) and (Gharpure, 2004).

Fig. 6 A path of RFID tags and behaviors

4.3. Dealing with losses

We distinguish two types of losses: recoverable and irrecov-
erable. A recoverable loss occurs when the robot veers from a

given path but reaches the destination nonetheless. In graph-

theoretic terms, a veering event means that the original path

is replaced with a different path. An irrecoverable loss oc-

curs when the robot fails to reach the destination regardless

of how much time the robot is given.

As shown in Fig. 8, there are two situations in which RG-I

gets lost: 1) failure to determine the correct direction of travel

and 2) RFID malfunction. The first situation occurs when

the robot, due to its current orientation, finds the maximum

empty space that causes it to veer from the correct path. In

Fig. 8(a), RG-I detects the turn tag and, as prescribed by the

plan, first executes the left turn behavior and then moves in

the desired direction. However, since the hallway is blocked,

RG-I veers away from the correct path. In Fig. 8(b), the turn

tag is blocked by obstacles, which triggers the obstacle avoid-

ance behavior. While avoiding the obstacle, the robot fails to

detect the turn tag, because the tag falls outside the range

of the RFID antenna, and does not make the left turn. The

second situation that causes a loss, the RFID reader’s mal-

function, arises when the reader misreads the tag’s ID or fails

to activate the tag due to some interference in the environ-

ment. In our target environments, the second situation was

rare.
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Fig. 7 Run-time behavior
switches

Fig. 8 Two situations leading to
a loss

A loss occurs when too many invalid tags are detected.

In general, RG-I always reaches B from A if the following

assumptions are true: (1) the robot’s batteries have sufficient

power (above 8 volts); (2) there is an actual path from A to B
in the current state of the world; and (3) the critical tags on

the path from A to B are not incapacitated. By critical tags

we mean the start tag, the destination tag, and the turn tags.

If either the second or third assumption does not hold and

the robot is lost, the loss is irrecoverable. To be more exact,

the robot will keep trying to recover from the loss until its

power drops down to 8 volts, which will cause a complete

shutdown.

5. Pilot experiments

Our pilot experiments focused on robot-assisted navigation

and human-guide interaction. The robot-assisted navigation

experiments evaluated the ability of visually impaired in-

dividuals to use RG-I to navigate unfamiliar environments

as well as the ability of the robot to navigate on its own.

The human-robot interaction experiments investigated how

visually impaired individuals can best interact with robotic

guides.

5.1. Robot-assisted navigation

We deployed our system for a total of approximately seventy

hours in two indoor environments: the Assistive Technology

Laboratory (ATL) of the USU Center for Persons with

Disabilities and the USU CS Department. The ATL occupies

part of a floor in a building on the USU North Campus. The

area occupied by the ATL is approximately 4,270 square

meters and contains 6 laboratories, two bathrooms, two

staircases, and an elevator. The CS Department occupies

an entire floor in a multi-floor building. The floor’s area

is 6,590 square meters. The floor contains 23 offices, 7

laboratories, a conference room, a student lounge, a tutor

room, two elevators, several bathrooms, and two staircases.

Forty RFID tags were deployed at the ATL and one hun-

dred tags were deployed at the CS Department. It took one

person 20 minutes to deploy the tags and about 10 minutes to

remove them at the ATL. The same measurements at the CS

Department were 30 and 20 minutes, respectively. The tags,

which were placed on small pieces of cardboard to insulate

them from the walls, were attached to the walls with regular

masking tape. The creation of the connectivity graphs took

one hour at the ATL and about two and a half hours at the CS

Department. One member of our research team first walked

around the areas with a laptop and recorded tag-destination

associations and then associated behavior scripts with

tags.

RG-I was first repeatedly tested in the ATL, the smaller

of the two environments, and then deployed for pilot ex-

periments at the USU CS Department. We ran three sets

of navigation experiments. The first and third sets did not

involve visually impaired participants. The second set did.

In the first set of experiments, we had RG-I navigate three
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Fig. 9 Path deviations in narrow hallways

types of hallways in the CS Department: narrow (1.5 meters),

medium (2.0 meters) and wide (4.0 meters), and we evalu-

ated its navigation in terms of two variables: path deviations

and abrupt speed changes. We also observed how well the

robot’s RFID reader detected the tags.

To estimate path deviations, in each experiment we first

computed the ideal distance that the robot has to maintain

from the right wall in a certain width type of hallway (nar-

row, medium, and wide). As shown in Fig. 12, the ideal dis-

tance was computed by running the robot in a hallway of the

type being tested with all doors closed and no obstacles en

route. RFID tags were placed along the right wall of every

route every two meters to help with interpolation and graph-

ing. During each run, the distance read by the laser range

finder between the robot and the right wall was recorded

every 50 milliseconds. The ideal distance was computed as

the average of the distances taken during the run. Once the

ideal distances were known, we ran the robot three times in

each type of hallway. The hallways in which the robot ran

were different from the hallways in which the ideal distances

were computed. Obstacles, e.g., humans walking by and open

doors, were allowed during the test runs. The average of all

the readings for each set of three runs, gives the average dis-

tance the robot maintains from the right wall in a particular

type of hallway.

Figures 9–11 give the distance graphs of the three runs in

each hallway type. The vertical bars in each graph represent

the robot’s width. As can be seen from Fig. 9, there is almost

no deviation from the ideal distance in narrow hallways. Nor

is there any oscillation. Figures 10 and 11 show some in-

significant deviations from the ideal distance. The deviations

were caused by people walking by and by open doors. How-

ever, there is no oscillation, i.e., sharp movements in different

directions. In both environments, we observed several tag de-

tection failures, particularly near or on metallic door frames.

Fig. 10 Path deviations in medium hallways

Fig. 11 Path deviations in wide hallways

However, after we insulated the tags with thicker pieces of

cardboard, the tag detection failures stopped.

Figures 13–15 give the velocity graphs for each hallway

type (x-axis is time in seconds, y-axis is velocity in mm/sec).

The graphs show that the narrow hallways cause short abrupt

changes in velocity. In narrow hallways even a slight dis-

orientation, e.g., 3 degrees, in the robot causes changes in

velocity because less empty space is detected in the grid. In

medium and wide hallways, the velocity is generally smooth.

However, several speed changes occur when the robot passes

or navigates through doorways or avoids obstacles.

The mean and standard deviation numbers for the hall-

way experiments were as follows: in wide hallways, μ =
708.94, σ = 133.32; in medium hallways, μ = 689.19, σ =
142.32; in narrow hallways, μ = 670.43, σ = 166.31. It

should be noted that the means are influenced by the fact that

the robot always started at 0 velocity. Thus, since the mean,

as a statistical measure, is influenced by outliers, these means

may be slightly skewed.

The second set of pilot experiments involved five visually

impaired participants, one participant at a time, over a period
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Fig. 12 Computing an ideal distance in hallways

Fig. 13 Velocity changes in narrow hallways

Fig. 14 Velocity changes in medium hallways

of two months. Three participants were completely blind and

two participants could perceive only light. The participants

had no speech impediments, hearing problems, or cogni-

tive disabilities. Two participants were dog users and the

other three used white canes. The participants were asked

to use RG-I to navigate to three distinct locations (an office,

a lounge, and a bathroom) at the USU CS Department. All

participants were new to the environment and had to navi-

gate approximately 40 meters to get to all destinations. Thus,

in the experiments with visually impaired participants, the

robot navigated approximately 200 meters. All participants

had to use a wireless wearable microphone to interact with

the robot: at the beginning of a run, each participant would

speak the destination he or she wanted to reach. All partici-

pants reached their destinations. In their exit interviews, all

participants said they liked the fact that they did not have

to give up their white canes and/or guide dogs to use RG-I.

Most complaints were about the human-robot interaction as-

pects of the system. For example, all of them had problems

with the speech recognition system and often had to repeat

destinations several times before the robot understood them

(Kulyukin et al., 2004; Sute, 2004).

Another problem with speech recognition occurs when

the person guided by RG-I stops and engages in conversa-

tion with someone. Since speech recognition runs continu-

ously, some phrases said by the person during a conversation

Fig. 15 Velocity changes in wide hallways

may be erroneously recognized as route directives, thereby

causing the robot to start moving. For example, once RG-

I erroneously recognized a directive and started pulling its

user away from his interlocutor until the user’s stop com-

mand pacified it. In another situation, RG-I managed to run

a few meters away from its user, because the user hung the

leash on the PVC pole when he stopped to talk to a friend in a

hallway. Thus, after saying “Stop,” the user had to grope his

way along a wall to the robot that was standing a few meters

away.

In the third navigation experiment, RG-I was made to pa-

trol the entire area of the USU CS Department on its own.

This experiment focused on recoverable and irrecoverable

losses on two types of routes: (1) simple structural, simple

agent-based and (2) complex structural, simple agent-based.

The first type was operationally defined as routes having 0,

1, or 2 turns, of less than 40 meters in length with no or few

people or obstacles. The second type was operationalized

as routes with more than 2 turns, of more than 40 meters in

length, with no or few people or obstacles. A total of 18 routes

(9 routes of the first type and 9 routes of the second type) were

set up. The robot continuously navigated these routes until its

battery voltage reached 8 volts. The robot navigated a total

of 6 kilometers for 4 hours and had 5 recoverable and 0 ir-

recoverable losses. All losses occurred on complex structural

and simple agent-based routes. During several separate trial

runs with visually impaired participants on different types of

routes, the robotic guide suffered several recoverable losses.

While we did not collect statistics on the participants’ reac-

tions to recoverable losses, we observed that the participants

did not complain. Two participants said that they would not

have known that the robot had to take a different route if the

robot had not announced it to them.

5.2. Human-robot interaction

After we tested speech-based interaction in navigation exper-

iments and received negative feedback from the participants,

we decided to evaluate the feasibility of speech more system-

atically. Therefore, our first human-guide experiment tested

the feasibility of using speech as a means of input for humans

to communicate with the robot. Each participant was asked
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to speak approximately sixty phrases while wearing a head-

set that consisted of a microphone and one headphone. The

phrase list was a list of standard phrases that a person might

say to a robotic guide in an unfamiliar environment, e.g., ”go

to the bathroom,” ”where am I?” etc. Each phrase was en-

coded as a context-free command and control grammar rule

in SAPI’s XML-based grammar formalism. Each participant

was positioned in front of a computer running SAPI. The test

program was written to use SAPI’s text-to-speech engine to

read the phrases to the participant one by one, wait for the

participant to repeat a phrase, and record a recognition result

(speech recognized vs. speech not recognized) in a database.

The speech feasibility experiment was repeated in two

environments: noise-free and noisy. The noise-free environ-

ment did not have any ambient sounds other than the usual

sounds of a typical office. To simulate a noisy environment,

a long audio file of a busy bus station was played on another

computer in the office very close to where each participant

was sitting. All five participants were native English speak-

ers and did not train SAPI’s speech recognition engine on

sample texts.

We found that the average percentage of phrases recog-

nized by the system in the noise-free environment was 38%,

while the average percentage of recognized phrases in the

noisy environment was 40.2%. Although the level of ambient

noise in the environment did not seem to affect the system’s

speech recognition, in both environments fewer than 50% of

phrases were correctly recognized. Even worse, some non-

phrases were incorrectly recognized as phrases. For example,

when one participant made two throat clearing sounds, the

system recognized the sound sequence as the phrase ”men’s

room.”

The statistics were far better for the participants under-

standing phrases spoken by the computer. The average per-

centage of speech understood in the noise-free environment

was 83.3%, while the average percentage of phrases under-

stood in the noisy environment was 93.5%. Clearly, in the

second trial (the noisy environment), the participants were

more used to SAPI’s speech recognition and synthesis pat-

terns. These results suggest that speech appears to be a better

output medium than input (Sute, 2004).

Audio perception experiments were conducted with all

five participants to test whether they preferred speech to au-

dio icons, e.g., a sound of water bubbles, to signify different

objects and events in the environment and how well par-

ticipants remembered their audio icon selections. A simple

GUI-based tool was built that allows visually impaired users

to create their own audio associations. The tool was used to

associate events and objects, e.g., water cooler to the right,

approaching left turn, etc., with three audio messages: one

speech message and two audio icons. A small number of ob-

jects was chosen to eliminate steep learning curves. All in

all, there were seven different objects, e.g., elevator, vending

machine, bathroom, office, water cooler, left turn, and right

turn.

Each object was associated with two different events: at
and approaching. For example, one can be at the elevator or

approaching the elevator. The audio icons available for each

event were played to each participant at selection time. The

following statistics were gathered:

1. Percentage of accurately recognized icons;

2. Percentage of objects/events associated with speech;

3. Percentage of objects/events associated with audio icons;

4. Percentage of objects/events associated with both.

The averages for these experiments were:

1. Percentage of accurately recognized icons − 93.3%;

2. Percentage of objects/events associated with speech

−55.8%;

3. Percentage of objects/events associated with icons

−32.6%;

4. Percentage of objects/events associated with both

−11.4%.

The analysis of the audio perception experiments showed

that two participants were choosing audio preferences es-

sentially at random, while the other three tended to follow

a pattern: they chose speech messages for at events and

audio icons for approaching events or vice versa. The ex-

periments also showed that the participants tended to go

either with speech or with audio icons, but rarely with

both. The experiments did not give a clear answer as to

whether visually impaired individuals prefer to be noti-

fied of objects/events via speech or audio icons. It is im-

portant to keep in mind, however, that our objective was

to collect preliminary descriptive statistics on the percep-

tion of audio cues in robot-assisted navigation. No attempt

was made to make statistically significant inferences. Fur-

ther work is needed on a larger and more representative

sample to answer this question on a statistically significant

level.

6. Conclusions

From our experiences with RG-I, we can make the following

preliminary observations.

First, orientation-free RFID-based navigation guarantees

reachability at the expense of optimality (Kulyukin et al.,

2004). If the path to the destination is not blocked and all

critical tags are in place, the robot reaches the destination.

The obvious tradeoff is the optimality of the path, because

the actual path taken by the robot may be suboptimal in terms

of time and distance due to a recoverable loss.

Second, the instrumentation of the environments with

RFID sensors is reasonably fast and requires only commer-
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cial off the shelf (COTS) hardware and software components.

RFID tags are inexpensive (15 USD a piece), reliable, and

easy to maintain, because they do not require external power

supplies. RFID tag reading failures are rare, and can be re-

covered from as long as a large number of tags are placed

in the environment. The placement of RFID tags in the envi-

ronment does not seem to disrupt any indigenous activities.

People who work in the environment do not seem to mind

the tags due to their small size.

Third, an alternative technique for recognizing such land-

marks as left turns, right turns, and T- and X-intersections will

make the navigation behavior more robust even when critcal

tags are not detected. We are investigating several landmark

recognition techniques that work on laser range finder signa-

tures. Another problem that we plan to address in the future is

the detection of irrecoverable losses. As of now, RG-I cannot

detect when the loss is irrecoverable.

Fourth, the robot is able to maintain a moderate walk-

ing speed during most of the route, except at turns and

during obstacle avoidance. The robot’s motion is relatively

smooth, without sideways jerks or abrupt speed changes.

However, obstacles that block a critical tag may cause the

robot to miss the tag due to obstacle avoidance and fail

to trigger an appropriate behavior. In addition, at intersec-

tions, RG-I can select a wrong open space due to obstacles

blocking the correct path. Adding other landmark recogni-

tion techniques is likely to improve the robot’s navigation at

intersections.

Fifth, at this point in time speech, when recognized by

Mircrosoft’s SAPI 5.1 with no user training, does not ap-

pear to be a viable input mode. As we indicated elsewhere

(Kulyukin, 2004; Sute, 2004), it is unlikely that speech recog-

nition problems can be solved on the software level until there

is a substantial improvement in the state-of-the-art speech

recognition. Our pilot experiments suggest that speech ap-

pears to be a viable output mode. We believe that for the

near future wearable hardware solutions may offer reliable

input modes. We are currently exploring human-robot inter-

action through a wearable keypad. The obvious advantage is

that keypad-based interaction eliminates the input ambigu-

ity problems of speech recognition. Additional experiments

with human participants are needed to determine the feasi-

bility of various wearable hardware devices for human-robot

interaction.

The previous conclusion is not to be construed as an ar-

gument that speech-based HRI is not an important venue of

research. It is. However, it is important not to confuse interac-

tion itself with a specific mode of interaction. Speech is just

one mode of interaction. Typed text, eye gaze, sipping and

puffing, gesture and touch are also valid interaction modes.

As assistive technology researchers, we are interested, first

and foremost, in effective and safe communication between

a disabled person and an assistive device. Consequently, to

the extent that speech introduces ambiguity, it may not be

appropriate as an interaction mode in some assistive robots.

Finally, the SSH construction is done manually. The obvi-

ous question is can it be completely or partially automated?

We are currently investigating a tool that would allow one

to generate a tag connectivity graph and associate tags with

behavior scripts through drag and drop GUIs. Another pos-

sibility that we are contemplating is equipping RG-I with an

orientation sensor and manually driving the robot with a joy-

stick on the previously chosen routes in an environment with

deployed RFID tags. As the robot is driven through the envi-

ronment, it senses the RFID tags and turns and associates the

detected tags with behavior scripts. In effect, the SSH is first

constructed as the robot is driven through the environment

and is subsequently edited by a knowledge engineer.
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