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Abstract—A novel approach to controlling chaos in discrete-time nonlinear autonomous systems
is proposed. A desired unstable periodic orbit is stabilized by small control using the predicted
trajectory of the system. The exact knowledge of the periodic orbit is not assumed, just
its existence is required. The method developed is validated for one-dimensional and multi-
dimensional mappings; its efficacy is demonstrated via numerical simulations of the mappings
known from the literature, such as logistic, tent, cubic, and Hénon maps. The method is simple
in implementation, but its application is limited to systems with no exogenous disturbances
and uncertainties in the model description. The approach looks highly promising and may have
diverse applications.

1. INTRODUCTION

Deterministic chaos is one of the fundamental concepts in the modern natural science. In fact,
the existence of extremely intricate motions in simple deterministic systems prejudices the overall
ideology of the deterministic Nature. First instances of such a complicated behavior exposed by
systems having simple and transparent models have been observed quite a long time ago. Thus,
as early as 1876, A. Cayley has discovered the irregular structure of the convergence domains of
Newton’s method when applied to solution of very simple equations (of the kind z3 = 1) in the
complex variable. The modern-language formulation of this phenomenon is that the boundaries
of these domains are represented by fractals. Later, in 1917–1920, two French scientists, G. Julia
and P. Fatou performed a detailed analysis of the iterations of rational fractional mappings, with
the Newton iterations being their special case. An important contribution to the theory of chaos
was made by the Ukrainian mathematician A. Sharkovskii with his paper [1] on the co-existence of
cycles of one-dimensional mappings, which was published in 1964. His studies demonstrated how
complicated the behavior of a dynamic system may be even in one dimension. However, the true
burst of interest to chaos arose after the publication of the works by E. Lorenz (1963), D. Ruelle
and F. Takens (1971), and B. Mandelbrot (1970). Since that time, the terms “chaos,” “strange
attractor ,” “fractal” have got common acceptance, and at present they are the subject of discussion
in a vast literature; among others, we mention some of the Russian-language monographs in the
area, [2–15].

The theory of chaos and its analysis techniques were being developed by joint efforts of mathe-
maticians and physicists. In the last ten to fifteen years a new research direction had sprung in the
area, and control theorists were involved in its exploration. This new topic is control of chaos; the
problem was presumably first formulated in [16]; also, see survey papers [17–21]. Controlling chaos
differs dramatically from the traditional statements of problems in control, both in the goals and
methods. First, this theory is intrinsically nonlinear so that the standard linear theory techniques
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are not applicable. Second, the control objectives are pretty much different, i.e., these problems
may have nothing in common with optimal control, but relate to the stabilization of chaos, syn-
chronization of the chaotic motions, or, conversely, forcing trajectories to be chaotic. Third, we
admit only small controls that still completely change the nature of system’s behavior. In what
follows, we devote our attention to the most important problem of stabilizing or controlling chaos.
As stated in [20], “controlling chaos consists in perturbing a chaotic system in order to stabilize a
given unstable periodic orbit embedded in the chaotic attractor.”

In this paper, we propose a novel approach to solving this problem for nonlinear discrete-time
autonomous systems, which, in the absence of control are given by

xk+1 = f(xk). (1)

The idea is to predict the trajectory of the system and apply an additive control action in the
following form:

u(x) = ε
(
fm+s(x) − fm(x)

)
, (2)

where ε is the small step-size (a simple rule for its calculation will be given below), m is the
prediction horizon, and s is the desired period of the cycle. Hereinafter, fm denotes the mth
iteration of the mapping f , i.e.,

f1(x) = f(x), fm(x) = f
(
fm−1(x)

)
.

In contrast to the control based on the previous iterations (the so-called delayed feedback control,
or DFC, which was devised by K. Pyragas in 1992 for continuous-time systems and extended later
to the discrete-time case in [22]; see [23] for recent developments), the control in (2) exploits the
predicted iterations for the point xk. Many difficulties and limitations peculiar to the DFC-method
can be surmounted along these lines; for instance, a stabilizing control (2) can be devised for small ε.
A particular case of control in the form (2) with m = 0 was studied in [24] (for further results,
see [25]); however, the quantity ε cannot be made small. Some additional essential features that
distinguish the method from many others including the original OGY-method elaborated in [16]
are worth noting. The control is applied at all time instants, not only in the vicinity of the desired
cycle (in the latter case, the cycle must be known in advance). On top of that, the function f is
not assumed to contain a parameter which is used to control the behavior of the system.

One of the prospective applications of our approach is not control itself but rather checking the
existence of periodic orbits of nonlinear iterations. It is quite hard to reveal such an orbit if it
is unstable, while with the method developed, the orbit is stabilized and, hence, becomes easily
detectable. Moreover, one may attempt to detect all unstable periodic orbits; below, it will be
shown that a system may possess many such orbits.

The first (conference) version of this paper, [26] was presented at the 16th World Congress of
IFAC; originally, it was my student V.P. Maslov, who suggested to make use of predictive control
in the form (2). Later, S.V. Efremov, N.A. Meshcheryakov and E.N. Gryazina were involved in
computer simulations and discussion.

The paper is organized as follows. In Section 2, method (2) is analyzed as applied to scalar
systems; the results of numerical simulations are given for a number of classical specimens of
chaotic systems such as those specified by the logistic, tent, and cubic mappings. Section 3 is
devoted to the analysis of the n-dimensional case, and the Hénon map is taken as an illustrating
example. Various issues of computer implementation are discussed in Section 4.
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2. THE SCALAR CASE

We consider the following open-loop nonlinear scalar discrete time system:

xk+1 = f(xk), xk ∈ R
1, k = 1, . . . , (3)

which possesses an s-cycle (a periodic orbit of length s) x∗
1, x

∗
2, . . . , x

∗
s, i.e., x∗

i+1 = fi(x∗
1) for i =

1, . . . , s − 1, x∗
1 = fs(x∗

1), and x∗
1 6= fm(x∗

1) for m < s. The case s = 1 corresponds to a fixed
point of the function f . Throughout the paper, the knowledge of the cycle is not assumed; the
only requirement is the existence of a cycle with period s. Such information about the system
is often available in advance; for instance, the famous Sharkovskii’s theorem on the ordering of
cycles (see [1]) testifies to this possibility. The exposition to follow concentrates on unstable cycles
(unstable periodic orbits), and the primary goal is to stabilize them using small controls.

We assume that the differentiable function f is defined on a bounded interval [a, b] and maps
it onto itself: f : [a, b] → [a, b], f ∈ C1. The number µ = f ′(x∗

s) × . . . × f ′(x∗
1) is referred to as the

multiplicator of the cycle. The condition |µ| < 1 is sufficient for the cycle to be stable, and we say
that the cycle is an attractor , while the condition |µ| > 1 is sufficient for instability of the cycle,
in which case it is referred to as a repeller . Hereinafter, by stability we mean local convergence of
trajectories to the cycle; i.e., there exists ε > 0 such that ρ(xk) < ε implies lim

m→∞ ρ(xm) = 0, where
ρ(x) = min

i
|x − x∗

i |. Let the cycle under consideration be unstable and |µ| > 1. To stabilize it, we

add a control term of the form (2) to the function f at the right-hand side of (3). The resulting
closed-loop system takes the form

xk+1 = F (xk), F (x) = f(x) − ε
(
f(p+1)s+1(x) − fps+1(x)

)
, (4)

|ε − ε∗|
|ε∗| <

1
|µ|1/s

, ε∗ =
1

µp(µ − 1)
, (5)

where p is a nonnegative integer. It is important to note that the quantity ε∗ becomes arbitrarily
small for sufficiently large values of p ; respectively, the control also becomes small, since fm are
bounded for all m, and ε decreases together with ε∗.

Theorem 1. Assume that f ∈ C1 and system (3) possesses an unstable s-cycle with multipli-
cator µ, |µ| > 1. Then this same cycle is stable for system (4) with arbitrary p ≥ 1 and any ε
satisfying (5).

The proof of this and the subsequent theorems are relegated to the Appendix.
An important distinguishing feature of the proposed control setup is its global behavior. Note

that Theorem 1 ensures only local convergence of the method; however, if it is applied to the
stabilization of chaotic motion having the so-called mixing property , then the system with the
added control is expected to retain this property (since F is close to f), i.e., after a certain number
of iterations the trajectory enters the domain of attraction of the stabilized orbit.

We illustrate the considerations above by several well-known examples of scalar chaotic systems.

Example 1 (logistic map). Considered is the function

f(x) = λx(1 − x), 0 ≤ λ ≤ 4, (6)

with f : [0, 1] → [0, 1]. The behavior of iterations (3) of this mapping is well studied, being the
subject of discussion in many books on chaos; e.g., see [2–15, 27, 28]. For λ < 1, there exists a fixed
point x∗ = 0, which is stable; for 1 < λ < 3, there appears another stable fixed point x∗ = 1− 1/λ;

AUTOMATION AND REMOTE CONTROL Vol. 66 No. 11 2005



1794 POLYAK

Fig. 1. Stabilization of the fixed point of the logistic map.

with further increase of λ we observe bifurcation, and the system acquires a stable 2-cycle, etc.
Importantly, for λ > 3.84, mapping (6) possesses s-cycles for all s, and all of them are unstable so
that the system exhibits a completely chaotic behavior. Therefore, stabilization of periodic orbits
of (6) for λ close to 4 is of the most interest, so that the value λ = 3.9 was taken in the simulation.
The experiments were organized as follows. For each of the 100 initial points x0 picked on the
uniform grid over [0, 1], we performed K iterations of method (4), (5) with various values of s, p
and µ, and plot the points xK . We set ε = ε∗ = 1/µp(1− µ) in formula (5), and the value of µ for
the desired s-cycle was calculated according to the rules given in Section 4 below.

Let us discuss the typical results of simulation. For s = 1 (stabilization of a fixed point), the
value of µ = 2 − λ = −1.9 for the fixed point x∗ = 1 − 1/λ = 0.7436 can be obtained in closed
form; moreover, quite quickly the method succeeds to stabilize the desired fixed point globally ; see
Fig. 1, where K = 150 and p = 10 were taken. The 2-cycle also stabilizes very quickly; we can
manage with p ' 15 leading to ε ' 10−10. For s = 3, the system possesses two 3-cycles, and the
estimate µ = −5.17 was obtained for one of them; global stabilization was observed for K = 2000
and p = 5; see Fig. 2. For s = 7 we were able to stabilize two cycles of length 7 (with µ = −90 and
µ = 95). However, to secure global convergence, more iterations were needed, namely, K = 10000.
At the same time, for certain initial approximations, the fixed point x∗ = 1 − 1/λ = 0.7436 was
stabilized along with the 7-cycle. Cycles of higher periods can also be detected; for example, eight
cycles of length 11 were revealed. As far as the “record” cycle length is concerned, a systematic
study of cycles with period 31 was performed; we managed to detect and stabilize 133 such cycles
by choosing p = 0, and the value of µ achieved the orders of 108, i.e., ε ∼ 10−8.

Example 2 (tent map). Let us consider

f(x) = λ(1 − |2x − 1|), 0 ≤ λ ≤ 1, (7)

where f : [0, 1] → [0, 1]. The iterations of this mapping have much in common with those of the
logistic mapping; e.g., the chaotic behavior is observed for the values of λ close to unity. However,
there is a substantial difference: all cycles of (7) are unstable for any λ > 0.5. Indeed, we have
|f ′(x)| = 2λ > 1 for any point x 6= 0.5 so that |µ| = (2λ)s > 1 for any s-cycle. Nevertheless, these
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Fig. 2. Stabilization of a 3-cycle of the logistic map.

cycles can be stabilized by control of the form (4), (5); this can be done easily, since the values
µ = ±(2λ)s suffice. Let us take λ = 1, then none of the cycles contains the point 0.5 and Theorem 1
applies (it is seen from the proof that f(x) need only be differentiable at the points of the cycle).
The quantities ns (the number of s-cycles) and the respective values of the multiplicators µ are
known [27], see table below.

The number of s-cycles and the values of multiplicators

s 1 2 3 4 5 6
ns 2 1 2 3 6 9
µ ±2 −4 ±8 ±16 ±32 ±64

For s = 1 we stabilized the fixed point x∗ = 0 if µ > 0, and the point x∗ = 2/3 if µ < 0. For
s = 2 we detected a 2-cycle with µ < 0, and two cycles in each of the cases s = 3 and s = 4.
Also, 5-cycles can be stabilized; all six of them were detected (for each of the two signs of µ, three
5-cycles were stabilized simultaneously). In the experiments, the value of p was chosen from the
condition ps ∼ 25, and we obtained ε ∼ 10−8.

In Examples 1 and 2, the cycles of the original (open-loop) system were subject to stabilization.
However, sometimes the closed-loop system may possess extra cycles (i.e., there are cycles of F (x)
which are not the cycles of f(x)), and they are stabilizable. The example below illustrates this
rather exotic situation.

Example 3 (cubic map). We consider the mapping

f(x) = x3 − 2x + c. (8)

For c = c∗ = 1/
√

3 ≈ 0.57735 this mapping is shown to have a 3-cycle, see [29]; however, there
is no such a cycle for other values of the parameter, even for those arbitrarily close to c∗. The
experiments with this mapping were conducted for the values s = 3, p = 3, c = 0.57, ε = 0.002;
in that case, the function F (x) has a 3-cycle, which is quite close to the cycle of f(x) with c = c∗.
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Fig. 3. Comparison of the functions f3(x) and F3(x) for the cubic map.

–

–

Fig. 4. Uncontrollable iterations of the cubic map.

Moreover, this cycle is stable, and we observe quite fast convergence (in no more than 50 steps) of
the iterations of algorithm (4) to this cycle for any initial conditions from the segment [−0.6 1.5].
Although the value of ε = 0.002 is relatively large, the plots of f3(x) and F3(x) are almost coincide;
see Fig. 3, where the zoomed area around one of the points of the cycle is also depicted. It is
interesting to analyze the behavior of iterations (4) for the same value of the parameter c = 0.57
in the absence of control, see Fig. 4. The “phantom” cycle is seen to have a definite effect on the
trajectories, which are attracted to it from time to time with the subsequent prevalence of the
chaotic behavior. This effect is called intermittence.
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3. THE VECTOR CASE

We turn to the n-dimensional counterpart of system (3):

xk+1 = f(xk), xk ∈ R
n, k = 1, . . . . (9)

The definitions of s-cycle and multiplicator are the same as in the scalar case with the difference
that the multiplicator is now represented by the n × n Jacobi matrix M = f ′(x∗

s) × . . . × f ′(x∗
1).

We stress that in multi-dimensional case, the multiplicator depends on the order of the points x∗
i ,

i.e., it is important which of them is taken as the initial point of the cycle. For instance, if x∗
i is

chosen as the starting point, we obtain Mi = f ′(x∗
i−1) × . . . × f ′(x∗

i ), where the subscript at x
changes in cyclic order, i.e., i − 1, i − 2, . . . , 1, s, s − 1, . . . , i. Hence, we have M = M1 and,
generally speaking, Mi 6= M1 for i 6= 1, but the matrices M1, . . . ,Ms have the same eigenvalues
(indeed, for any n×n matrices A,B, their products AB and BA have the same eigenvalues: given
ABe = λe, premultiplying by B yields BABe = λBe so that BAf = λf , where f = Be). Let µi,
i = 1, . . . , n, denote the eigenvalues of any of the matrices Mj . The cycle is stable if the spectral
radius ρ

.= max
i

|µi| < 1, and unstable if ρ > 1. Below, we use the representation of the matrix Mi

in the form Mi = AiBi, where Ai = f ′(x∗
i−1) × . . . × f ′(x∗

1), Bi = f ′(x∗
s) × . . . × f ′(x∗

i ), A1 = I,
B1 = M , BiAi = M . The same control as in the scalar case is applied:

xk+1 = F (xk), F (x) = f(x) − ε
(
f(p+1)s+1(x) − fps+1(x)

)
, (10)

|ε − ε∗|
|ε∗| <

1
|µ|1/s

, ε∗ =
1

µp(µ − 1)
;

the choice of µ will be detailed later. We now formulate a simplest result on the stabilization of
cycles.

Theorem 2. Assume that f ∈ C1 and system (9) possesses an unstable s-cycle with multiplica-
tor M , and ρ > 1. Let µn = µ be real, |µ| = ρ, and |µi| < 1, i = 1, . . . , n − 1. Then for p large
enough, this cycle is a stable cycle of system (10).

The behavior of ε is the same as in the scalar case, i.e., the value of ε decreases as p grows.
The boundedness of the function f (which is assumed for chaotic systems) implies the smallness of
control. Moreover, keeping in mind local stability and the mixing property of chaotic systems, one
may expect method (10) to have global rather than only local convergence.

It is instructive to analyze the structure of the method as applied to linear problems. For
example, let f(x) = Ax with nonsingular A; then x∗ = 0 is the only fixed point, and there are no
higher order cycles. Assume that µ is a unique unstable real eigenvalue of A having the property
|µ| > 1, and the rest of the eigenvalues are less than one by absolute value. Then method (10) can
be slightly modified (simplified for this special case) to take the form

xk+1 = Axk − εAp+1xk, ε∗ =
1
µp

,
|ε − ε∗|
|ε∗| <

1
|µ| . (11)

These iterations converge to zero for p large enough (while the original iterations xk+1 = Axk

diverge), and such a method seems to be new. However, in contrast to the nonlinear case (in which
the function f(x) was assumed to be bounded), the term εAp+1xk is no longer small at the initial
iterations though it tends to zero as k grows.

Example 4 (the Hénon map). This classical two-dimensional example was first analyzed in [30];
at present, it is the subject of discussion in all books on chaos. We consider the mapping

yk+1 = 1 − 1.4y2
k + zk, zk+1 = 0.3yk, k = 1, . . . . (12)
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Fig. 5. Strange attractor of the Hénon map.
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–
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Fig. 6. An individual trajectory of the Hénon map.

For various initial x1 picked on the uniform grid over S = [−1.4 1.4]× [−0.4 0.4], the points x40,
x = (y, z)T, are shown in Fig. 5; the structure of the “strange attractor” is also visible. Figure 6
depicts the trajectory of the system for a fixed initial x1; an intricate quasirandom walk over the
points of the strange attractor is typical. This mapping is known to have an unstable fixed point
x∗ = (0.6314 0.1894); the eigenvalues of the associated matrix M are equal to (−1.92 0.15) so
that the conditions of Theorem 2 are satisfied with µ = −1.92. There is also one 2-cycle x∗

1 =
(−0.4758 0.2927), x∗

2 = (0.9758 − 0.1427), which is unstable. Figure 7 shows the behavior of
the y component for a typical trajectory in course of stabilization of the fixed point by method (10)
(with multiplicator µ = −1.92); this point possesses the global stability. Similar results were
observed when the 2-cycle was stabilized (the case s = 2, µ = −3.01). For s = 4, the existence of
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–

–

–

Fig. 7. Stabilization of the fixed point of the Hénon map.

–

–

–

Fig. 8. Stabilization of a 4-cycle of the Hénon map; the y coordinate.

cycles and the values of their multiplicators µ are not known. By trial and error, we managed to
obtain the value µ = −9 such that a 4-cycle becomes stable. The results of simulation are presented
in Fig. 8, where the first component for a typical trajectory is depicted, and Fig. 9, which shows
the last 20 iterations of the same trajectory on the x-plane; it is seen that all of them are within
the 4-cycle. In all the experiments, the typical value of ε was found to be ε ∼ 10−4 ÷ 10−5.

Theorem 2 assumes the presence of a single dominating eigenvalue of M , which is greater than
one by absolute value and is real-valued, while the absolute values of the rest of the eigenvalues
are less than one. Such a situation is quite typical, though the multiplicators with arbitrarily
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–
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–
– –

Fig. 9. Stabilization of a 4-cycle of the Hénon map; the x plane.

located eigenvalues are also encountered. Theorem 2 can be extended to cover this latter case at
the expense of sophisticating the algorithm, since the whole matrix M need to be known.

First of all, without loss of generality, we let s = 1 and restrict our attention to the case of the
fixed point x∗ (indeed, in the general situation, by replacing the function f with fs, the problem
reduces to seeking a fixed point of the mapping fs). In that case, the multiplicator is given by the
n × n Jacobi matrix

M = f ′(x∗)

with eigenvalues µ1, . . . , µs. The fixed point is stable if ρ = max
i

|µi| < 1 and unstable if ρ > 1.

We make use of the control law

xk+1 = F (xk), F (x) = f(x) − E
(
fp+2(x) − fp+1(x)

)
, (13)

which differs from (10) in that the scalar ε is changed for the matrix E. Let us represent M =

TΛT−1, where T ∈ R
n×n, Λ = diag(λi), λi = µi for µi ∈ R, i = 1, . . . , t, and λi =

(
ui vi

−vi ui

)
for

µi = ui±jvi, i = t+1, . . . , n, j =
√−1. In other words, by means of a real linear transformation T ,

the multiplicator M is converted to the real block diagonal form, where the real eigenvalues are
represented by diagonal entries, and every pair of complex conjugate eigenvalues µi = ui ± jvi is
represented by a real 2×2 block, which is also located on the diagonal. Then the matrix E is taken
in the following form:

E = T Λ̃T−1, Λ̃ = diag (εi),

where εi = 0 for |µi| < 1 and

ε∗i =
1

µp
i (µi − 1)

,
|εi − ε∗i |
|ε∗i |

<
1
|µi| ,

otherwise. All manipulations over complex numbers µi are to be understood as those performed
over their realizations in the form of 2 × 2 real-valued matrices λi.
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Theorem 3. Assume that x∗ is an unstable fixed point of the mapping f , and the eigenvalues of
the matrix M = f ′(x∗) are all distinct and do not belong to the unit circumference. Then x∗ is a
stable fixed point of (13).

4. IMPLEMENTATION MATTERS

Estimation of µ. In some of the examples above, the value of the multiplicator of a stabilized
cycle was either known in advance or could be easily calculated; for instance, this was the case
with the fixed points or 2-cycles as well as with all cycles of the tent map. In the general case,
the quantity µ is not available. For example, the value of s may be large; the function f may
not be specified in closed form and its values are generated by a certain algorithm, etc. However,
the value of µ still can be evaluated efficiently; most straightforwardly this is doable in the scalar
case, n = 1. Let us introduce the function g(x) = fs(x) − x and compute its values on the
uniform grid a = x0 < x1 < . . . < xN = b, xi+1 − xi = d (the interval S = [a, b], f : S → S
is assumed to be known). We next detect the points of change of sign: g(xi)g(xi+1) < 0, which
are the candidate zeros of the function g, i.e., the candidate points of s-cycles of the function f .
Since the points of t-cycles (for t < s being divisors of s) are also zeros of g, they are excluded
from consideration. Hence, the quantities (g(xi+1)− g(xi))/d can be taken as reasonably accurate
estimates of µ provided that d is small enough.

This approach extends to the multi-dimensional case, where the minimization of the func-
tion ‖g(x)‖ can be accomplished either on a grid or using one or another optimization routine
such as fmin in Matlab. Let x0 be a local minimum and ‖g(x0)‖ ≈ 0. We perform m iterations
(m ∼ 10) to obtain x1 = fs(x0), . . . , xm = fs(xm−1), and compute a = (xm −xm−1, xm−1 −xm−2),
r1 = ‖xm − xm−1‖, r2 = ‖xm−1 − xm−2‖ and q = a/(r1r2). Then for the values of |q| close to
unity, the quantity a/r2

2 is an acceptable estimate of µ.
Choice of p. From expressions (5) and (10) it is seen that the higher p, the smaller ε. However,

due to the computer roundoff errors, the value of p should not be chosen too large, since otherwise
the function fm(x) cannot be accurately computed for large values of m. We turn to examples.
For f(x) = 4x(1 − x) we have fm(0) = 0 for any m ≥ 1; however, fm(ε) ≈ 4mε for small ε and
moderate values of m. Therefore, the roundoff error in computing x, equal to the floating-point
accuracy eps = ε = 2−52 induces the error in computing fm(x), equal to 22m−52. Hence, the
prediction horizon m should be taken as small as m ∼ 20 in order not to yield too rough results. In
some cases, these limitations on m are not that severe. For instance, if the points xi, xi+1 = f(xi),
i = 1, . . . ,m, are distributed approximately uniformly on [0, 1], then E|f ′(x)| = 2 and E|f ′

m(x)| = 2m

so that the values of m ∼ 40 are admissible (here, E is the symbol of the mathematical expectation).
This consideration is equally valid for the tent map f(x) = (1 − |2x − 1|), |f ′

m(x)| = 2m for any x
and m. We may conclude that choosing s(p+1) ∼ 25 is relatively safe for the two examples above;
this conclusion was supported by the numerous experiments. On the whole, the growth of roundoff
errors depends on the so-called Lyapunov indices, which could be efficiently evaluated. Notably,
the condition s(p + 1) ∼ 25 imposes limitations on the lengths of cycles under stabilization; e.g.,
the value s = 31 for the logistic mapping discussed above is close to the maximal computable (in
the experiments, we had to take p = 0).

The number of iterations K. Above it was noted that Theorems 1–3 ensure only local stability
of the periodic orbits. As a rule, the higher s and p, the narrower the basin of attraction of the
stabilized cycle. Because of the chaotic nature of the motion, the trajectories nevertheless enter
the basin of attraction of the stable orbit, although after a large number of iterations K. This
explains the fact that as s and p get larger, higher values of K are required to stabilize a cycle.
Thus, to stabilize globally a 7-cycle in Example 1, we had to perform K = 10000 iterations, while
the stabilization of the fixed point required only K = 150 iterations.
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Highly remarkably, due to the fact that the control is applied at all time instants (not only at
the instants of closeness to the cycle, as with all other methods of controlling chaos known from the
literature) hitting the domain of local convergence is observed much earlier than in the absence of
control. Respectively, the number of iterations required to achieve stability is substantially smaller.
Thus, to stabilize the fixed point of the Hénon map (see Example 4), the number of iterations was
100 to 1, 000 times as small as compared to the method in the pioneering paper [16] (for the same
level ε of control).

5. CONCLUSIONS

In this paper, we proposed a simple and efficient method of stabilization of unstable s-cycles in
nonlinear discrete time systems, which uses small additive controls. It is based on predicting the
trajectory by m and m+s iterations ahead, where m is of the form ps+1 and p is sufficiently large.
The cornerstone assumption of the approach is the ability to perform such a prediction accurately
enough. Said another way, the function f(x) is assumed to be known (or, alternatively, specified
by a certain algorithm) and free of perturbations. The method can as well be used for detecting
and counting all cycles in the system.

Among the directions for future research in the framework of the approach, we mention the
global behavior of the proposed algorithms, problems related to synchronization of chaotic motions,
stabilization in continuous-time systems (i.e., those described by ordinary differential equations),
and a great body of applications of the method to the problems of mechanics, economics, physics,
communication theory, etc. The author intends to address these issues in the publications to follow.

APPENDIX

Proof of Theorem 1. The cycle x∗
1, x

∗
2, . . . , x

∗
s of the mapping f remains a cycle for fm for all m;

therefore, we have F (x∗
i ) = f(x∗

i )− ε
(
fp(s+1)+1(x∗

i )− fps+1(x∗
i )
)

= x∗
i+1, i.e., it is also a cycle of F .

We next find the multiplicator of (4): ν = F ′(x∗
s)× . . .×F ′(x∗

1). Since f ′
s(x

∗
i ) = µ, f ′

ps(x
∗
i ) = µp and

f ′
ps+1(x

∗
i ) = µpf ′(x∗

i+1), we obtain F ′(x∗
i ) = (1− εµp(µ− 1))f ′(x∗

i ). Multiplying these equalities for
i = 1, . . . , s, we arrive at the expression for the multiplicator F :

ν = (1 − εµp(µ − 1))sµ.

To make certain that the cycle is stable, it is sufficient to show that |ν| < 1. Indeed, we have

|ν| = |(1 − εµp(µ − 1))|s|µ| < |(1 − ε∗(1 ± (1/|µ|1/s))µp(µ − 1))|s|µ| = 1,

since the function |1 − cε|s attains its maximum at the extreme values of ε. �

Proof of Theorem 2 follows the logic of that of Theorem 1; the only difference is that the matrix
product is non-commutative. In order to calculate the matrix multiplicator N = F ′(x∗

s)×. . .×F ′(x∗
1)

for the cycle x∗
1, x

∗
2, . . . , x

∗
s of the mapping F , we calculate each term of the product. Using the chain

rule f ′
m(x∗

i ) = f ′
m−1(x

∗
i+1)f

′(x∗
i ) and the definition of the multiplicator Mi, we find f ′

ps(x
∗
i ) = Mp

i ,
f ′

ps+1(x
∗
i ) = Mp

i+1f
′(x∗

i ) = f ′(x∗
i )M

p
i , Mp

i = AiM
p−1Bi, whence F ′(x∗

i ) = f ′(x∗
i )(I − εAi(Mp −

Mp−1)Bi). By induction, we obtain F ′(x∗
i−1)× . . .×F ′(x∗

1) = Ai(I −εMp(M − I))i−1 and arrive at
the expression N = F ′(x∗

s)× . . .×F ′(x∗
1) = As+1(I − εMp(M − I))s = M(I − εMp(M − I))s. The

eigenvalues νi of the multiplicator N are expressed via the eigenvalues µi of the multiplicator M
in the following way:

νi = µi(1 − εµp
i (µi − 1))s.
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Next, for i = n we have µn = µ, and in accordance with (10) we obtain |νn| < 1 similarly to the

scalar case, while for i 6= n we have |νi| ≤ |µi|
(

1 +
|µi|p
|µ|p

|1 − µi|
|µ − 1|

)
. Since |µi| < 1 by the conditions

of the theorem, the quantity |µi|p/|µ|p tends to zero as p increases, i.e., |νi| < 1 for p large enough.
We conclude the proof by noting that r = max

1≤i≤n
|νi| < 1 for such p ; i.e., x∗

1, x
∗
2, . . . , x

∗
s is a stable

cycle of the mapping F . �

Proof of Theorem 3 is based on the formula

νi = λi(1 − εiλ
p
i (λi − 1))

obtained above, which is seen to be valid for the method under consideration. For |λi| < 1, we take
εi = 0, i.e., |νi| = |λi| < 1, while for |λi| > 1 we have |νi| < 1 by the calculations similar to those
in the proof of Theorem 1. �
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