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SOLUTION OF THE EQUATIONS OF NUCLIDE KINETICS

E. F. Seleznev,1 Yu. Yu. Drobyshev,1 S. A. Karpov,1 and I. R. Bukhtiyarov2 UDC 621.039.51

Many methods and computational programs are now available for solving burnup equations. Three funda-
mentally different approaches are combined in a single control program OpenBPS: solution of the nuclide 
kinetics equation by expansion of a matrix exponential, an iterative method with the possibility of analyzing 
uncertainties, and a direct analytical solution. The matrix exponential solution is obtained using the mod-
ern Chebyshev rational approximation method CRAM. An iterative method taking into account the errors 
of the initial data and data on decay and cross sections, made possible by an exponential representation 
of the increment of the nuclide concentration at the BPSE computational step, affords the possibility of 
analyzing the uncertainty of the nuclear concentration. An analytical computational method based on the 
use of modifi ed Bateman functions, which is the basis of the ASBE computational code, was developed for 
the accelerated solution of the burnup equations. Using this program, a solution is obtained more than 100 
times faster than the solution speed of programs based on the iterative method with high solution accuracy.

 In practice, many methods and programs are available in the practice of solving the burnup equations. Three fundamen-
tally different approaches standout among them: the solution of the nuclide kinetics equation by means of a variety of methods 
of decomposition of the matrix exponential, an iterative method with the possibility of analyzing uncertainties, and a direct ana-
lytical method of solution. All three of these methods of solution were implemented in the all-inclusive code OpenBPS.
 Burnup equations. The system of equations of nuclide kinetics is an inhomogeneous linear system of equations

dyi

dt
= aij y j

j=1

n

+ qi (i = 1, 2, ..., n)

with the initial condition
yi(0) = yi0 (i = 1, 2, ..., n)

and an external source
qi (i = 1, 2, ..., n)

with constant coeffi cients aij [1–3]. It possesses a general analytical solution, which is the sum of a particular solution and a 
general solution of the corresponding homogeneous linear system of equations.
 Analytical solution method. An algorithm for obtaining an analytical solution of the system of equations of nuclide 
kinetics with a full matrix transitions – the fi rst algorithms for solving the burnup problem – was proposed in 1910 [1] with 
the use of Bateman functions of fi rst kind
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and second kind
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where
Aj = 1 – exp(–λjt)/λj;     dj = 1  (i = j = 1);
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 The currently best known program based on this method is DCHAIN [2]. This program shows the exact solutions, 
including during the fi rst few seconds of the burnup process.
 Since some nuclides decay at the same rate, the algorithm of the analytical solution has problems because the dif-
ference of the decay rates of nuclides occurs in the denominator. In [2] this problem is solved by representing the ratio of the 
difference of exponentials with the same exponent, divided by the difference of these exponents, by the duration of the con-
sidered time interval, which is correct from the standpoint of mathematics. But this algorithm has not previously considered 
the indicated problem for the next nuclides in the chain after these two, and for them the solution can no longer be represented 
by the indicated functions. Moreover, in this algorithm there exists the problem that such a solution is used when cyclic chains 
are considered.
 The solution algorithm for the program ASBE, created for calculating the burnup of actinides and fi ssion products, 
is based on an analysis of the physical decay process in nuclide chains and, in the absence of singularities, coincides with the 
solution based on modifi ed Bateman functions (1)–(3).
 An analysis of the physical process of the decay of a nuclide in the presence of features associated with the charac-
teristics of the decay rate of other nuclides in the chain affords individual solutions for each nuclide in the chain that are not 
Bateman functions.
 Let the nuclide k have an initial concentration yk(0) and, in addition, let there be a constant source qk of its formation. 
This source affords an increment of the nuclide number k over time τ as qkτ without taking into account decay over the time 
interval (0, τ). Taking into account the decay of this nuclide over time τ, we obtain its concentration at the time τ (Fig. 1):

yk(τ) = yk(0)exp(–λkτ) + qk[1 – exp(–λkτ)]/λk.

 Then the amount of the nuclide k decomposed in the time (0, τ) is determined as

dy0
k = yk(0) + qkτ – y0

k(τ).

 The increment of the nuclide k is due to the decay of other nuclides into the given nuclide in interval (0, τ). For the 
subsequent description of the transformation of nuclides, the increment of each nuclide i, j is simulated over one step in the 
interval, obtaining an exact solution, taking into account the probability of transitions (i → k) and (j → k) from the correspond-
ing nuclides (Fig. 2). The increment can also be modeled approximately in terms of the linear representation in the iterative 
solution (see curves 3, 4 in Fig. 2). As the number of time steps in increases, the increment of the nuclide k will approach the 
integral describing curve, which is implemented in the programs of the BPS series [3], but the describing curve can be repre-
sented as

dyk(t) = dyk(τ)[1 – exp(–λkt)],

where λ is the exponent of the describing curve.
 Such a representation should afford a faster solution, which is implemented in the BPSE program as an exponential 
representation.
 Some of the decayed nuclide k can transform into the nuclide l. Then the concentration of the nuclide l for the time 
τ will be determined as
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 To take into account the decay of the nuclei of the nuclide l formed during the time (0, τ) from the nuclide k, we shall 
consider the derivative of the decayed nuclide k as

 [dy0
k(t)]ʹ = yk(0)λkexp(–λkτ) + qk[1 – exp(–λkτ)], (5)

and we rewrite Eq. (4) as
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 We shall now introduce into the integrand an exponential function to take into account integral to take into account 
the decay of a nuclide l formed from a nuclide k over time (0, τ):
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 Considering in a similar way the addition of new nuclides to the chain, we obtain a generalized solution of type 
(1)–(3) with Bateman integral functions of the fi rst and second kind, respectively. The possible difference of their expressions 
in this case from those presented in (1)–(3) disappears on switching to a representation of the solution from a sum of the dif-
ference of exponents with their coeffi cients to a sum of exponents with the corresponding coeffi cients (1)–(3). An expression 
containing representation
 [exp(–λkτ) – exp(–λlτ)]/(λl – λk) (8)

is preferable due to possible problems arising for close values of the terms of the difference in the denominator and, together 
with the presence of a difference of exponentials with these values in the numerator, provides a defi nite solution even if the 
denominator is zero.
 The problem arising when the decay rates of nuclides k and l are equal will resolve itself in this case. If we use the 
presented algorithm for obtaining a solution, then for λl = λk we obtain from Eq. (8) the value τ.
 For the next nuclide in the chain this can be taken into account through Eqs. (5)–(7). After the indicated features, the 
solution has certain originality, which is also present in the consideration of the subsequent nuclides in the chain. Let us con-
sider two nuclide chains, each with two nuclides, having the same pairwise decay rates – the 3rd and 4th nuclides in the fi rst 
and 3rd and 5th in the second case (Fig. 3). Bateman’s equations will be the solution for nuclides 1 to 3 in the fi rst chain and 1 
to 4 in the second chain. For nuclides 3 and 4 of the fi rst chain and 3 and 5 of the second chain, respectively, the difference of 
the exponentials divided by the difference of their exponents can be replaced in the solution by the length of the interval (0, τ). 
For nuclides 5, 6, and 7 of the fi rst chain and 6, 7 of the second chain, the solution on the infl uence of the decay of nuclides 
from the 1st to the 3rd in both chains are original, not Bateman functions.
 For the problem of residual heat release, i.e., problems without a source and a stable nuclide at the end of the chain, 
we can write a separate solution:
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 This will be the third integral function for determining the concentration of the corresponding nuclide, although it is 
a consequence of the fi rst function for a stable nuclide in the chain. The use of such a representation in the program reduces 
the solution time in the problems of determining the residual heat release.
 If the cycle of two nuclides k and l is closed, then, using the presented method of solving (5)–(7), we obtain the con-
centration of the nuclide k in the form of three terms, the fi rst of which is the initial concentration, the second is the contribu-
tion to the concentration of the fi rst from the decay of the second nuclide l to the fi rst k, the third term is the contribution from 
the decay of the initial concentration, taking into account the external source of the formation of this nuclide into itself through 
another nuclide of the cycle. Such a defi nition is no longer represented by Bateman functions of the fi rst and second kind, but 
is a strictly individual solution. Thus, using the method presented in this work, the solution can be obtained for any cycles.
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 Iterative solution method. The essence of the method is to fi nd a solution through knowledge of the derivative, i.e., 
this is actually Euler’s method. This method with linear approximation is implemented in the BPS-series programs, where the 
solution is determined iteratively with a linear temporal representation of the concentration increment (8):

ynk ( ) yn 1
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1 exp( k )
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.

 As already noted, this method with exponential modeling of the nuclide concentration increment is implemented in 
the BPSE program.
 Matrix exponential method of solution. The modern Chebyshev method of rational approximation CRAM was 
chosen as an algorithm for solving the problem by the matrix exponential method [4–6]. Its features are that the accuracy of 
the solution weakly depends on the choice of the time step size, the solution time is a linear function of the dimension of the 
problem, the method is inapplicable for a rapid exponential increase in power, and it is possible to obtain negative concentra-
tion values for rapidly decaying nuclides.

Fig. 1. Relative change in concentration of a decaying nuclide 
over the time.

Fig. 2. Relative change in the increment of the concentration of 
the nuclide k on the transition of nuclides i and j into it: 1) exp; 
2) dyi; 3) dyj; 4) dy – lin 1; 5) dy – lin 2.

Fig. 3. Chains with nuclides with equal decay rate: 3rd and 4th 
in the fi rst, 3rd and 5th in the second chain.

Fig. 4. Time dependence of the residual energy release in a “fl ash” 
experiment, calculated using the BPSE (——), CARE (——), 
ORIGEN (——), and ASBE (——).
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 Control program. The open-source program OpenBPS was developed as a control program, which presents the 
user with a large number of tools for working with input data and when choosing a solution method. The code is based on 
programs with the initial code in the C++ and Python programming languages  and an open-source nuclear data library. The 
program provides a fl exible and user-friendly interface with a choice of any of the listed solution methods and has unlimited 
possibilities of application at all stages of the fuel cycle – from fabrication and installation into a reactor to assessing the level 
of activity and residual heat release during reprocessing and conservation of used material.
 The results of using the developed programs for calculating the residual energy release on well-known experiments 
of the “fl ash” type associated with short-term irradiation for 1 sec with 235U, 239Pu by thermal neutrons and 238U by neutrons 
with a fast-reactor spectrum are presented in Fig. 4 [6]. The results of calculations using the well-known programs ORIGEN 
(matrix exponential method) and CARE (analytical solution using Bateman functions) are presented for comparison [7, 8].
 Conclusion. The fi rst version of a universal complex of programs for solving the equations of nuclide kinetics was 
developed, containing the following:
 OpenBPS control code with a large number of tools for working with input data and choosing a solution method;
 CRAM code based on the Chebyshev rational approximation method when searching for a solution through a matrix 
exponent;
 BPSE code, in which the iterative method is upgraded to an exponential representation of the concentration increment;
 ASBE code with analytical solution of kinetic equations.
 For the algorithm of an analytical solution of the kinetic equations, the problems involved in solving them disappear 
when the decay rate of the nuclides in the chain is the same and when the chain is looping, an ASBE code with an analytical 
solution of kinetic equations was developed, the code volume is about 200,000 operators, the solution speed is 100 times 
higher than in the iterative method.
 Calculations of “fl ash” experiments were encouraging.
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