POPULATION IRRADIATION DOSE ASSESSMENT FOR ¹⁴C EMISSIONS FROM NPP WITH RBMK-1000 AND EGP-2 REACTORS

A. I. Kryshev,¹ I. I. Kryshev,¹ M. E. Vasyanovich,² A. A. Ekidin,² I. A. Kapustin,³ and E. L. Murashova⁴

UDC 621.039

The ¹⁴C emissions from NPP with RBMK-1000 and EGP-6 reactors as well as the yearly population irradiation dose due to these emissions are evaluated. A model is presented for calculating the population irradiation dose due to ¹⁴C emissions assuming an equilibrium ¹⁴C distribution between local food products and atmospheric air and absence of such an equilibrium for humans as a result of the consumption of imported food products. This model makes it possible to legitimately reduce the conservatism of the evaluation of the dose from standard NNP emissions as compared with the operating procedures and recommendations. The estimated population irradiation dose from ¹⁴C emissions is as follows, μ Sv/yr: 2.3 Smolensk, 1 Leningrad, 1.3 Kursk, and 0.034 Bilibino NPP. Irrespective of the computational model the ¹⁴C contribution in the total population irradiation dose due to emissions from NPP with RBMK-100 and EGP-6 reactors is significantly higher than 1%, so that it must be normalized and monitored.

¹⁴C is a radioactive isotope of carbon with half-life 5730 yr, emitting β-particles with average energy 49.3 keV. The main reaction resulting in its formation is the interaction of neutrons and nitrogen ¹⁴N(*n*,*p*)¹⁴C. Other reactions – ¹⁵N(*n*,*a*)¹⁴C, ¹⁶O(*p*, 3*p*)¹⁴C, ¹⁷O(*n*, α)¹⁴C, and ¹³C(*n*, γ)¹⁴C – make a very small contribution because of their small interaction cross section and the low content of the nuclei of these isotopes in the natural mixture of elements. Native ¹⁴C is formed when cosmic-ray neutrons interact with the Earth's atmosphere. Its total content in the atmosphere is equal to $(1.4-2.2)\cdot10^{17}$ Bq [1]. Technogenic ¹⁴C present in the atmosphere is mainly due to nuclear weapons tests. The total activity of ¹⁴C which entered the atmosphere as a result of nuclear weapons tests is estimated to be $(2.1-2.5)\cdot10^{17}$ Bq [1]. Currently, the source of technogenic ¹⁴C is the activity of the nuclear industry enterprises. The total emissions of ¹⁴C from NPP and spent nuclear fuel reprocessing enterprises is equal to $2.6\cdot10^{14}$ Bq/yr [1]. The yearly ¹⁴C specific emissions per unit energy produced is specific to NPP with different types of reactors. In terms of this index the NPP form the following sequence: GCR>AGR>LWGR(RBMK)> BWR>PHWR>PWR(VVER) [2–4].

The RBMK reactor with boiling water under pressure as the coolant and graphite as the moderator is characterized by the presence of a large amount of nitrogen in the core and the large mass of carbon in the moderator. These features result in significant formation of ${}^{14}C$ [5]. In NPP with RBMK ${}^{14}C$ is formed in the following systems [3]: coolant (multiple forced circulation loop), system cooling of the safety-and-control system [SCS] channels, loops for nitrogen-helium purging of the reactor space and nitrogen purging of the metal-structures of the circum-reactor space, and moderator. According to estimates [6], the main contribution in ${}^{14}C$ emissions into the environment is due to the coolant and the loops for nitrogen-helium purging of the reactor space and nitrogen purging of the metal structures of the circum-reactor space. During normal operation

¹ Taifun Scientific and Production Association, Obninsk, Russia; e-mail: kryshev@rpatyphoon.ru.

² Institute of Industrial Ecology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.

³ Moscow Technological University, Moscow, Russia.

⁴ Mayak Production Association, Ozersk, Chelyabinsk Oblast, Russia.

Translated from Atomnaya Énergiya, Vol. 128, No. 1, pp. 46-52, January, 2020. Original article submitted November 7, 2019.

of a power-generating unit with RBMK-1000, the main contribution in the formation of ¹⁴C is due to the nuclear reaction ${}^{14}N(n,p){}^{14}C$ owing to the large cross-section for the interaction of neutrons with ¹⁴N atoms and the high content of nitrogen isotopes in the natural mixture [7]. ¹⁴C egresses through the decay gas-holder, filter, and discharge pipes.

In Russia, in contrast to foreign countries, before 2017 systemic control and monitoring of atmospheric emissions of 14 C during standard operation of NPP were not conducted, Standards for the maximum admissible discharges were not established, and its contribution was neglected when estimating the yearly population irradiation dose [8, 9]. In accordance with Rostekhnadzor's current requirements, normalization and monitoring are necessary for all radionuclides which are present in the emissions and whose total contribution in the yearly effective irradiation dose of individuals in a critical group of the population is \geq 99% [10]. Since ¹⁴C is present in NPP emissions, its yearly ingress into atmospheric air and its contribution in the population irradiation dose must be determined.

IAEA's conservative approach is used in the procedures and recommendations for determining the norms for the maximum admissible emissions for calculating the population radiation dose from ¹⁴C. This approach assumes that equilibrium is established in the ¹⁴C distribution between the human organism and atmospheric air [11–14].

In the present article we present estimates of 14 C emissions from RBMK-1000 and EGP-6 as well as the yearly population irradiation dose formed by them. Both the conservative method of calculation [11–13] and an alternative method making it possible to legitimately reduce the conservatism of estimates, taking into account the local-product fraction of the population's food basket, are used.

Materials and measurement methods. Currently, there are 14 operating units with uranium-graphite reactors in four NPP: 10 units with RBM-1000 (Leningrad, Smolensk, and Kursk NPP) and four units with ERP-6 (Bilibino NPP). The objects of investigation were their ventilation systems. A mobile sampling stand was installed in the impulse line of the standard sampling system. A uniform laminar flow of a gas-air medium entered the system of the air intake setup in the ventilation tube. The gas-air mixture flowed along the impulse tube into the sampling stand. ¹⁴C was sampled in the form of carbon dioxide by the bubbling method based on the absorption of carbon monoxide (IV) from the gas-air mixture by solution based on the exchange reaction of carbon monoxide (IV) with sodium hydroxide with formation of sodium carbonate. Due to the continuous pumping of carbon monoxide (IV) through the bubbler and prolonged sampling, the ¹⁴C is concentrated in the bubbler solution.

The gas-air mixture was extracted from standard impulse tubes of the ventilation system. The gas-air mixture entered the sampling system through a filter with catching efficiency \geq 99.95% (HEPA filter) for preliminary purification from aerosols and then directed into a bubbler with distilled water to precipitate tritium in the form of HTO. Next, the gas-air mixture passed through silica gel to remove moisture and then entered a cascade consisting of two bubblers, filled with a solution of sodium hydroxide with molar concentration 2.5 mol/dm³, and a single bubbler filled with a barium hydroxide (II) solution with molar concentration 0.35 mol/dm³ in order to record the saturation of the solution in the two preceding bubblers. An insoluble white sediment precipitates when carbon dioxide gas enters the bubbler with barium hydroxide (II). At the completion of the sampling process, the contents of the bubblers were transferred into a plastic vessel for shipment to an analytical laboratory.

The volumetric activity of ¹⁴C in gaseous emissions was established from measurements of the activity of a counting sample prepared from a solution of a specimen taking into account the volume of the pumped gas-air mixture, catching factor, and volume of the solution in the bubbler. The activity in the counting sample was measured by the liquid scintillation method using a QUANTULUS 1220 (Finland) ultralow-background spectrometer. The activity of ¹⁴C was calculated from measurements of the counting rate of the impulses from the counting sample, the detection efficiency of the ¹⁴C β -radiation when a spectrometer, and the quenching parameter of the sample.

Methods of calculating the population irradiation dose. ¹⁴C enters the atmosphere as carbon dioxide ¹⁴CO₂ gas, mixing with stable carbon and native ¹⁴C. The stable carbon ¹²C together with the radioactive isotope ¹⁴C form a biological cycle, being the main chemical element of biological systems. The primary process whereby atmospheric ¹⁴C enters the human food chain is incorporation into the biomass of plants by means of photosynthesis. The radioactive carbon passes from the plant biomass into the animal biomass and then along the food chains into the human organism.

Theoretically, technogenic and native ¹⁴C rapidly arrive in equilibrium with stable carbon in all biological objects. The ratio of the content of radioactive and stable carbon in tissues becomes a constant quantity, equal to the ratio of the content of radioactive and stable carbon in air [14]. Under natural conditions, without the influence of the anthropogenic factor, the

equilibrium amount of ¹⁴C is equal to 0.233 Bq per 1 g of stable carbon [13]. The natural content of stable content in air is equal to 0.18 g/m³, and the native equilibrium activity of ¹⁴C in air is equal to 0.042 Bq/m³. In the presence of anthropogenic ¹⁴C in air in addition to native ¹⁴C, its content in biological objects increases proportionately.

The currently operative methods of calculating the maximum admissible emissions presuppose that for humans, just as for other biological objects, an equilibrium specific activity of ¹⁴C becomes established in tissues and atmospheric air. Then a conservative estimate of the expected yearly internal irradiation dose from ¹⁴C present in atmospheric air in the form of carbon dioxide ¹⁴CO₂ gas can be obtained using the simplified relation [13]

$$D = DCF \cdot C_{14Ca}/C_{12Ca},\tag{1}$$

where $DCF = 5.6 \cdot 10^{-5} (\text{Sv/yr})/(\text{Bq/g})$ is a conversion factor between the yearly internal irradiation dose from ¹⁴C (Sv/yr) and its concentration in human tissues per 1 g of stable carbon; $C_{14_{C,a}}$ is the computed volumetric activity of ¹⁴C in atmospheric air from NPP emissions at the individual's domicile, Bq/m^3 ; $C_{12_{C,a}} = 0.18 \text{ g/m}^3$ is the concentration of stable carbon in air. Most controversial is the problem of equilibrium content of ¹⁴C being established between the human organism and

Most controversial is the problem of equilibrium content of ¹⁴C being established between the human organism and atmospheric air. Most ¹⁴C, just as stable carbon, enters the human organism with food. In addition, a significant fraction of the food people consume is imported; the locally-produced fraction for some foods does not exceed 10%. For this reason, it is appropriate to suppose that the equilibrium is established between atmospheric air and local plant and animal products, while atmospheric air and the human body may not be in equilibrium with one another. In this case, Eq. (1) will strongly overstate the ¹⁴C contribution in the irradiation dose in people.

If ${}^{14}C$ equilibrium between atmospheric air and the human organism is not assumed, then the following relation can be used to calculate the yearly irradiation dose from ${}^{14}C$:

$$D_{14_{\rm C}} = \varepsilon_{\rm inh} C_{14_{\rm C,a}} + \varepsilon_{\rm f} \sum_{i} \alpha_i R_i C_{14_{\rm C,f,i}},\tag{2}$$

where ε_{inh} is the dose conversion factor on inhalation of ¹⁴C (for an adult human on inhalation of ¹⁴C in CO₂ form, 6.2·10⁻¹² Sv/Bq [15]); *U* is the breathing intensity (for an adult human, 8.1·10³ m³/yr [16]); $C_{14C,a}$ is the volumetric activity of ¹⁴C in air at the location of the person's domicile, Bq/m³; ε_f is the dose conversion factor for ¹⁴C intake with food (for an adult human, 5.8·10⁻¹⁰ Sv/Bq [16]); α_i is the *i*th local product fraction in the population food ration; R_i is the yearly consumption of the *i*th product by the population, kg; $C_{14C,f,i}$ is the specific activity of ¹⁴C in the *i*th local product, Bq/kg.

The ¹⁴C content in plant product assuming its equilibrium is established between ¹⁴C in atmospheric air and the local plant product is calculated from the relation [17]

$$C_{14C,f,i}^{p} = f_{p,i}C_{14C,a}/C_{12C,a},$$
(3)

where $f_{p,i}$ is the carbon fraction in the *i*th plant product, kg C/kg product; $C_{14C,a}$ is the volumetric activity of ¹⁴C in air at the location of the production of the plant product, Bq/m³; $C_{12C,a} = 1.8 \cdot 10^{-4} \text{ kg/m}^3$ is the carbon mass in CO₂ form per unit volume of air. The carbon fraction in vegetables is equal to 0.059, root vegetables and potatoes 0.046, fruits 0.062, and cereal grains 0.39 [17].

The ¹⁴C content in animal produce assuming equilibrium established between atmospheric air and local animal produce is calculated from the elation [17]

$$C_{14_{\rm C,f,i}} = f_{ap,i} f_{\rm con,i} C_{14_{\rm C,a}} / C_{12_{\rm C,a}}, \tag{4}$$

where $f_{ap,i}$ is the carbon fraction in the *i*th animal product, kg C/kg product: 0.065 milk, 0.2 meat [17]; f_{con} is the contaminated animal feed fraction (assumed to be 1 in the present work); $C_{14_{C,a}}$ is the volumetric activity of ¹⁴C in air at the production location of the animal product, Bq/m³; $C_{12_{C,a}} = 1.8 \cdot 10^{-4} \text{ kg/m}^3$ is the carbon mass in the CO₂ form per unit volume of air. The volumetric activity of ¹⁴C in air was taken to be the same at the individual domicile, the production location of

The volumetric activity of ¹⁴C in air was taken to be the same at the individual domicile, the production location of the local plant and animal product, i.e., farming by humans was taking place at the domicile location. The volumetric activity of ¹⁴C in air was calculated by the method of [13] using the standard gaussian model for the transport of radioactive substances in the atmosphere taking into account the local characteristics of impurity dispersion for each NPP. The population irradiation dose was determined for the formal critical point of the location – a hypothetical point of maximum yearly dose outside the sanitary-protection zone of the NPP.

Food product	NPP				
	Smolensk	Leningrad	Kursk	Bilibino	
Milk	361.1	330.3	254.8	216.5	
Meat	87.2	98.8	93.7	84.5	
Bread	110.3	89.3	89.5	106.4	
Potatoes	89.7	90.9	103.4	59.6	
Vegetables	84.1	106	101.9	63.2	
Fruits	83	83.7	72.9	51.6	

TABLE 1. Yearly Consumption of Food Products by the Rural Population (adults) near NPP with RBMK-1000 and EGP-6, kg [13]

TABEL 2. Local Food Product Fraction in the Food Ration of the Rural Population (adults) near NPP with RBMK-1000 and EGP-6 [13], %

Food product	NPP				
	Smolensk	Leningrad	Kursk	Bilibino	
Milk	8.8	2.8	34.3	0	
Meat	1.6	3.9	45.7	0.8	
Potatoes	60.8	50.6	90.7	0.8	
Vegetables	59.2	48.9	89.3	5	
Fruits	69.6	46.7	93.6	0.8	

The yearly consumption of food products by the population near NPP including the local product fraction was determined by the Federal Research Center for Nutrition, Biotechnology, and Food Safety in 2016 as part of work on the preparation of procedures and establishment of norms for the maximum admissible emissions of radioactive substances by NPP into atmospheric air [13] (Tables 1, 2). In the method of [13], the consumption factor for locally produced food products is not evaluated for bread, so that in the calculations this parameter was taken to be 0.5 for the Smolensk, Kursk, and Leningrad NPP and 0 for the Bilibino NPP.

Results and discussion. The measured volumetric activity of ¹⁴C in the ventilation pipes of NPP with RBMK-1000 and EGP-6 according to data from radiation-technical inspection is presented in Table 3. Since each NPP possess several sources of ¹⁴C emission, the following are shown in Table 3: zones – minimum and maximum ¹⁴C volumetric activity and an estimate of the total yearly emissions from NPP, obtained using data on the number of sources of emissions, yearly rate of emission and measured volumetric activity of ¹⁴C for each ventilation pipe of NPP. Conservative estimates obtained by formally combining the critical points of the location from the emissions from each source at NPP are presented. A critical point is taken to mean a point where the maximum volume metric activity of ¹⁴C in air obtains outside the sanitary-protection zone of the NPP.

The yearly population irradiation dose from ¹⁴C emissions from NPP was calculated by two methods (Table 4):

– assuming 14 C equilibrium between the human organism and atmospheric air – using Eq. (1);

- assuming 14 C equilibrium between local food products and atmospheric air but absence of such an equilibrium for the human organism – using Eqs. (2)–(4).

As one can see from Table 4, taking into account the local products consumed by the population strongly affects the yearly dose from 14 C emissions. The model supposing absence of 14 C equilibrium between the human organism and atmospheric air because of the significant imported food fraction gives an estimated yearly dose that is lower than the equilibrium model by a factor of 2.1 for the Kursk NPP, 2.9 Smolensk, 3.7 Leningrad, and 250 Bilibino.

The contribution of the dose from ¹⁴C intake with food as compared with inhalation is almost 100% for Kursk, Smolensk, and Leningrad NPP and 95.8% for the Bilibino NPP.

TABLE 3.¹⁴C Emissions from RBMK-1000 and EGP-6 According to Data from Radiation-Technical Inspection, Computed Volumetric Activity of ¹⁴C in Air at Critical Points of the Location near NPP

NPP	Reactor type	14 C volumetric activity in ventilation pipes, Bq/m ³		Discharge, TBa/vr	Volumetric activity
		minimum	maximum		in air, 10^{-2} Bq/m ³
Smolensk	- RBMK-1000	339	449	12.1	2.15
Leningrad		24	138	2.89	1.19
Kursk		27	457	2.28	0.897
Bilibino	EGP-6	1380	3900	2.46	2.72

TABLE 4. Computed Yearly Population Irradiation Dose from ¹⁴C Emissions from NPP with RBMK-1000 and EGP-6, µSv

NPP	Model				
	equilibrium, taking into account all the radiation paths	non-equilibrium			
		Inhalation intake	Food intake	Taking into account all irradiation pathways	
Smolensk	6.69	0.001	2.28	2.28	
Leningrad	3.7	0.0006	1.01	1.01	
Kursk	2.79	0.0005	1.31	1.31	
Bilibino	8.46	0.0014	0.0325	0.0339	

TABLE 5. Contribution of 14 C to the Total Yearly Population Irradiation Dose from Emissions from NPP with RBMK-1000 and EGP-6 at a Critical Location

NPP	Yearly dose, µSv			Contribution of ¹⁴ C to the dose according to the model,%	
	Neglecting ¹⁴ C	Taking into account ¹⁴ C by model			
		equilibrium	nonequilibrium	equilibrium	nonequilibrium
Smolensk	1.13	7.82	3.41	85.6	67
Leningrad	3.23	6.93	4.24	53.4	23.8
Kursk	6.21	9	7.53	31	17.5
Bilibino	0.19	8.65	0.224	97.8	15.1

In [7], the effective yearly dose from native ¹⁴C intake is estimated to be 9.7 μ Sv and the effective yearly dose from ¹⁴C due to nuclear tests 1.9 μ Sv. Thus, using the non-equilibrium model for estimation the additional contribution of emissions in the irradiation from ¹⁴C for the adult population living near NPP with RBMK-1000 does not exceed 20% and EGP-6 – 0.3%.

The ¹⁴C contribution in the total yearly dose of emissions from NPP with RBMK-1000 and EGP-6 was evaluated using data on the yearly emission of the technogenic radionuclides (H^3 , ⁶⁰Co, ¹³¹I, ¹³⁴Cs, ¹³⁷Cs, radioactive inert gases) [18]. As we can see from Table 5, ¹⁴C makes a significant contribution in the total yearly population irradiation dose from emissions from NPP with RBMK-1000 and EGP-6. For this reason, an adjustment of the method used to calculate the dose from

¹⁴C taking into account data on the consumption of local agricultural products by the population makes it possible to legitimately reduce the conservatism in the estimation of the population irradiation dose from the standard discharges from NPP. The computed total (taking all radionuclides into account) yearly dose from standard emissions from NPP with RBMK-1000 will decrease by a factor of 2.3 for the Smolensk NPP, 1.6 for Leningrad, 1.2 for Kursk, and 39 for Bilibino. The dose quota for the emissions from NPP with RBMK-1000 and EGP-6 reactors during normal operation was set at the level 200 μ Sv/yr [19]. The norms for the admissible emissions from NPP are calculated on the basis of the limits on the yearly radiation dose at a level of the minimum significant value 10 μ Sv/yr. Thus, in the adjustments to the model used to calculate the ¹⁴C contribution the sum of the ratios of the yearly NPP emissions to the admissible values will decrease from 0.78 to 0.34 for the Smolensk NPP, 0.69 to 0.42 for Leningrad, 0.9 to 0.75 for Kursk, and 0.87 to 0.022 for Bilibino.

It should be noted that irrespective of the model used for the calculations the ${}^{14}C$ contribution in the total population irradiation dose from emissions from NPP with RBMK-1000 and EGP-6 is significantly higher than 1%. For this reason, norms must be established for the maximum admissible emissions of ${}^{14}C$ and the ${}^{14}C$ content in the emissions from NPP with RBMK-1000 and EGP-6 must be controlled.

It is recommended that in the procedures and recommendations for normalizing the atmospheric emissions of radioactive substances provisions be made for using the described non-linear model, together with reliable data on the local product fraction in food consumption by the population, to calculate the population irradiation dose from the standard emissions of ¹⁴C by nuclear complex enterprises.

Conclusions. According to data from radiation-technical inspections, the atmospheric emission of ¹⁴C from NPP with different reactors is equal to $2.28 \cdot 10^{12} - 1.21 \cdot 10^{13}$ Bq/yr for RBMK-1000 and $2.46 \cdot 10^{12}$ Bq/yr for EGP-6. The model used to calculate the population irradiation dose, assuming the presence of ¹⁴C equilibrium between local food products and atmospheric air but no such equilibrium for the human organism, makes it possible to legitimately reduce the conservatism in the evaluation of the dose from standard NPP emissions as compared with the operating procedures and recommendations. The assessment of the ¹⁴C contribution in the yearly population irradiation dose confirms the need for normalization and control of this radionuclide in emissions from NPP with RBMK-1000 and EGP-6. The total yearly population irradiation dose near NPP with RBMK-1000 and EGP-6 taking into account the ¹⁴C contribution does not exceed the minimum significant value 10 μ Sv/yr.

REFERENCES

- 1. S. V. Panchenko, I. I. Linge, et al., *Radioecological Conditions in the Vicinity of Rosatom Enterprises*, I. I. Linge and I. I. Kryshev (eds.), SAM Poligrafist, Moscow (2015).
- 2. Setting Authorized Limits for Radioactive Discharges: Practical Issues to Consider, IAEA-TECDOC-1638, IAEA, Vienna (2010).
- 3. E. I. Nazarov, A. A. Ekidin, and A. V. Vasil'ev, "Estimation of carbon-14 release into the atmosphere due to NPP emissions," *Izv. Vyssh. Uchebn. Zaved. Fiz.*, **61**, No. 12–2 (732), 67–73 (2018).
- 4. A. A. Ekidin , M. V. Zhukovskii, and M. E. Vasyanovich, "Identification of the main dose-generating radionuclides in nuclear emissions," *At. Energ.*, **120**, No. 2, 106–108 (2016).
- 5. I. Ya. Vasilenko, V. A. Osipov, and V. P. Rublevskii, "Radioactive carbon," *Priroda*, No. 12, 59–65 (1992).
- 6. V. B. Gaiko, N. A. Korablev, E. N. Solov'ev, et al.,¹⁴C Formation and Release at Nuclear Power Plants with RBMK *Reactor*, Preprint TsNIIatominform-OH-4 (1986).
- 7. V. P. Rublevskii, V. N. Yatsenko, and E. G. Chanyshev, *The Carbon-14 Role in Technogenic Human Exposure*, IzdAT, Moscow (2004).
- 8. P. Povinec, M. Chudy, A. Šivo, et al., "Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia," *J. Environ. Radioact.*, **100**, 125–130 (2009).
- 9. A. Magnusson, K. Stenström, D. Adliene, et al., "Carbon-14 levels in the vicinity of the Lithuanian nuclear power plant Ignalina," *Nucl. Instrum. Meth. Phys. Res. B*, **259**, 530–535 (2007).
- 10. *Methodology for the Development and Establishment of Standards for Maximum Permissible Emissions of Radioactive Substances into the Atmosphere*, Rostekhnadzor, Moscow (2012).
- Methodological Recommendations for Calculating the Standards for Maximum Permissible Emissions of Radioactive Substances from Organized Sources into the Air for Organizations of the State Atomic Energy Corporation Rosatom, No. 1-1/310-R, Rosatom, Moscow (2014).

- 12. RB-106-15, Safety Guidelines for the Use of Atomic Energy. Recommended Methods for Calculating the Parameters Necessary for the Development and Establishment of Standards for Maximum Permissible Emissions of Radioactive Substances into the Atmosphere, Rostekhnadzor, Moscow (2015).
- 13. MT 1.2.1.15.1176–2016, Development and Establishment of Standards for Maximum Permissible Emissions of Radioactive Substances from Nuclear Plants into the Atmosphere. Methodology, Concern Rosenergoatom, Moscow (2016).
- 14. *Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment*, IAEA Saf. Rep. Ser. No. 19, IAEA, Vienna (2001).
- 15. "Compendium of Dose Coefficients Based on ICRP Publication 60. ICRP Publication 119," *Ann. ICRP*, **41**, No. 1, 1–130 (2012).
- 16. MU 2.6.5.010–2016, Substantiation of Boundaries and Operating Conditions of Sanitary Protection Zones and Observation Zones of Radiation Facilities: Methodical Instructions, FMBA Russia, Moscow (2016).
- 17. *Carbon-14 and the Environment. IRSN Radionuclide Fact Sheet*, Institut de Radioprotection et de Surete Nucleaire, France (2010).
- 18. M. E. Vasyanovich, A. A. Ekidin, A. V. Vasilyev, et al., "Determination of radionuclide composition of the Russian NPPs atmospheric releases and dose assessment to population," *J. Environ. Radioact.*, **208–209**, No. 106006 (2019).
- 19. SanPiN 2.6.1.24-03, Sanitary Rules for the Design and Operation of Nuclear Plants, Moscow (2003).