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MEAN-FIELD THEORY WITH A SCALAR-ISOVECTOR
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The properties of isospin-asymmetric cold nuclear matter are studied in terms of the relativistic mean-

field theory in which, besides the fields of , and  mesons, and the isovector, Lorentz-scalar field of

the -meson is also taken into account.  The properties of purely nucleonic np matter are studied as a

function of the baryon density n
B
 and the asymmetry parameter , as well as the properties of electrically

neutral -equilibrium npe  matter as a function of the baryon density n
B
.  For different values of  n

B
 and

a, such characteristics of np matter as the energy per baryon, the specific energy owing to isospin

asymmetry, the effective proton and neutron masses, and the specific binding energy, are determined.  It

is shown that the energy owing to the asymmetry for a fixed value of  is a monotonically increasing

function of the baryon density n
B
.  For npem matter, the effective proton and neutron masses ( )ef f

pM ,
( )eff
nM , the specific binding energy  E

bind
, the symmetry energy  E

sym
, the quantitative fraction of protons

Y
p

 = n
p

 /n
B
 are studied, as well as the average meson fields ,   ,   , and  as functions of the baryon

density  n
B
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1. Introduction

The thermodynamic description of nuclear matter is an important problem on the way to understanding the

properties and structure of nuclei, the dynamics of heavy ion collisions, the structure of compact stars, the dynamics

of supernova explosions, and the process of merging of neutron stars.  For densities higher than the density of nuclear

saturation n
0
, -equilibrium nucleon matter is isospin-asymmetric.  This circumstance explains precisely the great

interest devoted to the study of the properties of isospin-asymmetric nucleon matter [1-5].  The isospin dependence

of the equation of state of nuclear matter for a specified value of  the baryon density n
B
 is determined by the energy

of nuclear symmetry E
sym

(n
B
).

The modern feasibility of earthbound nuclear experiments and astrophysical observations have ensured

substantial progress in the study of the dependence of the symmetry energy on density [6-8].  In recent years new

possibilities have arisen for obtaining limits on the physical characteristics of asymmetric nuclear matter using data

from the NICER and XMM-Newton scientific programs for simultaneous determination of the mass and radius of a

neutron star (NS) [9], along with data on tidal deformation obtained from an analysis of gravitational radiation during

merger of the binary neutron star GW170817 [10,11].

Theoretical studies of the properties of nuclear matter and finite nuclei as systems of strongly-interacting

relativistic baryons and mesons are based on a quantum-field approach in the framework of quantum hadrodynamics

(QHD).  One of the successfully applied models of this kind is the relativistic mean-field theory (RMF).  In the original

model, the interaction between nucleons took place through exchange of an isoscalar, Lorentz-scalar -meson  and

an isoscalar, Lorentz-vector  -meson [12-14].  For satisfactory reproduction of nuclear incompressibility and the

properties of the unstable nuclei, self-interaction terms for the - and -mesons were included in the model leading

to the appearance of nonlinear terms in the equations for the meson fields [15-17].   To describe the thickness of the

neutron shell of  the heavy nuclei and the characteristics of isospin-asymmetric nuclei, the composition of the

exchange mesons was expanded, and the isovector,  Lorentz-vector -meson was also added to the scheme [18].

For completeness of the transformation properties of the meson fields it was also necessary to have an

isovector, Lorentz-scalar -meson in the composition of the exchange mesons.  This was done in Refs. 19-21.  This

sort of expansion of the model was used to study scattering processes in excess-neutron heavy ions at medium energies

and to clarify the prospects for formation  of a mixed hadron-quark phase during a collision event [22,23].  Studies

of the influence of a -meson field on the characteristics of a hadron-quark phase transition and on the observed

parameters of hybrid stars were made in Refs. 24 and 25.

The purpose of this paper is to study single-particle properties of isospin-asymmetric nuclear matter in terms

of the relativistic mean-field theory, in which the isovector, Lorentz-scalar field of the -meson is also taken into

account.  The article is organized as follows. A brief description of the model in which a system of equations is

introduced for the average meson fields and formulas for such single-particle  characteristics of nuclear matter as the

energy of symmetry, the energy per baryon, the specific binding energy, the effective masses of the proton and neutron,

and the chemical potentials of the baryons. Both purely nucleonic np matter and electrically neutral with
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-equilibrium nuclear matter consisting of nucleons and charged e  and  leptons (npe  matter) are examined.

In the last section the main results of this paper are summarized.

2.  Description of the model

This section gives a brief discussion of the model that we used for a thermodynamic description of dense

nucleonic matter.  In terms of the relativistic mean-field model [12-14] based on quantum hadron dynamics, we

examine a system of  particles consisting of nucleons (n, p), with the strong interaction between them realized by

exchange of , and  mesons.

The Lagrangian density for this sort of system has the form

, 

3 4 2 2 2
3 4

2 2 2

1

2

1 1 1 1

3 4 2 2

1 1 1 1
 ,

4 2 2 4

RMF i i N i i
i p n

i g g m g g

g g g g m m

m m

L

R R

(1)

where i  is the spin field of the nucleon, i  are the isospin Pauli matrices, , , , and  are the fields of

the exchange mesons, which depend on the space-time coordinates ,  ,  ,  x t x y z ,  m
N
 is the mass of a bare

nucleon, m , m , m , and m  are the masses of the exchange mesons,  and

R  are the antisymmetric tensors of the vector fields  and .  The terms 
3

3 3g g  and

4
4 4g g  in Eq. (1) leading in the equations of motion to a nonlinear dependence on the isoscalar Lorentz-

scalar field  were introduced in Ref. 15 to reach an acceptable quantitaative reprodcction of the properties of the

ground state of symmetric nuclear matter.  The coupling constants of a nucleon with the corresponding meson are

denoted by g , g , g , and g .

In the mean-field approximation the meson fields, which in general depend on the space-time coordinates,

are replaced by the nonuniform time-invariant mean fields , , , and .  The Euler-Lagrange equations for

the nucleon and meson fields lead to a closed system of equations for a specified value of the density of the baryon

number n
B

 = n
n

 + n
p 

 and the asymmetry parameter n p Bn n n .  Of course, these equations will also include

the masses of the mesons, but with a convenient  change of the notation for the binding constant and average meson

fields it is possible to avoid these parameters (see, e g., Refs. 20 and 24):
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22 2 2

 ,  ,  ,  
gg g g

.
m m m m

(2)

The equations for the redesignated average meson fields ~ , ~ , 
~

, and ~  have the form

(3)

Here ,  
s

p Bn n  and ,  
s

n Bn n  are the scalar densities of the protons and neutrons, which are given by [24,25]

(4)

where 
1 3

23 2F B Bk n n , while  and  are the effective masses of the nucleons,

which are given by formulas of the form

(5)

In terms of the relativistic mean-field theory the energy density ,  NM Bn  of nucleon (neutron-proton)

matter as a function of the baryon density n
B
 and asymmetry parameter  is given by
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(6)

In the case of an electrically neutral and -equilibrium cold hadron material, consisting of neutrons and

protons, as well as charged leptons — electrons e and muons , the energy density HM Bn  is given by the

expression

2 2

2 2 2
2

,  0

1
,   ,

l lm

HM B NM B l
l e

n n k m k dk (7)

where m
l
  are the masses, while l  are the  chemical potentials of the corresponding charged leptons (  ,el ).  For

matter of this type, the conditions of -equilibrium and electrical neutrality must hold:

a) for a baryon density below the threshold for creation of muons:

,  ,   ,  .n B p B e e p en n n n n (8)

b) for a baryon density greater than the threshold for creation of muons:

,  ,   ,  .n B p B e e p en n n n n n n (9)

Here ,  p Bn  and ,  n Bn  are the chemical potentials, respectively, of protons and neutrons, which are

defined by the formulas

2

2

2 2 3

2 2 3

1
,  1  ,

2

1
,  1  .

2

ef f
p B F B p

ef f
n B F B n

n k n M

n k n M
(10)
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Equations (8) and (9) make it possible to express the asymmetry parameter of an electrically neutral and -equilibrium

material in terms of the baryon density.  In this case, the energy density depends only on the baryon density n
B
.

The energy per baryon E
B
 and the specific binding energy E

bind
, as functions of the baryon density n

B
 and

the asymmetry parameter  are given by the formulas

,  
,   ; ,  ,   .

NM B
B B bind B B B N

B

n
E n E n E n m

n
(11)

We denote the energy per baryon owing to the isospin asymmetry of the system by

,  ,  ,  0B B B B B BE n E n E n .

The symmetry energy sym BE n  is determined from an expansion of the function ,  B BE n  in a series

with respect to the asymmetry parameter: 
2 4,  ,  0B B B B sym BE n E n E n � , so that

2

2

0

,  1
 .

2

B B
sym B

E n
E n (12)

Using Eq. (6) for the energy density ,  NM Bn  and Eqs. (3) for the meson fields, it is possible to obtain

an expression for the symmetry energy sym BE n .  The terms that do not contain coupling constants for nucleon-

meson interactions will represent the kinetic part of the symmetry energy 
kin

symE , and the terms that contain the

coupling constants, the potential part of the symmetry energy 
pot

symE :

2

2

2

 ,

6

kin F
sym B

eff
F N

k
E n

k M
(13)

2

2
2

 .
2 4

ef f
pot NB

sym B sym
eff

F N

Mn
E n J

k M
(14)

Here J
sym

 denotes the expression



221

2

1

2

1 3  ,

s
B B

sym eff
ef f

N
F N

n n
J

M k M

The scalar baryon density 
s

Bn  in Eq. (14) is the sum of the scalar densities of the proton and neutron in

symmetric nuclear matter, ,  0 ,  0
s s s

p B n BBn n n n n :

2

2
2

20

2
 .

F Bk n eff
s N

B
eff

N

M
n k dk

k M
(15)

A similar expression for the symmetry energy of nucleonic matter can be obtained [26,27], based on the

statement of the Huyghenholts-van Hove theorem [28,29] that the chemical potential of a nucleon in asymmetric

nuclear matter should equal its Fermi energy.

A determination of the phenomenological constants of the theory also requires knowledge of the compres-

sibility modulus of nuclear matter at the saturation density n
0
:

0

2
2

0 0 2

0

,  
9  .

B

B B

B n n

d E n
K n

dn

The compressibility modulus also consists of kinetic and potential parts:

2

2

2

3
 ,

kin F
B

eff
F N

k
K n

k M
(16)

2

2
2

9  .

ef f
pot N

B B K
eff

F N

M
K n n J

k M
(17)
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J
K
 denotes the expression

3.  Numerical results

Making numerical calculations of the thermodynamic quantities requires a determination of the coupling

constants characterizing the interaction of nucleons with the meson fields.  The constants , , 3g , and 4g

corresponding to the isoscalar  and - mesons can be determined using the values of the known parameters of

symmetric nuclear matter at saturation.  We used the following values: bare nucleon mass m
N

 = 939.9 MeV, nuclear

saturation density n
0

 = 0.16 fm-3, effective mass of a nucleon at saturation 
0 0 78
ef f

NM . m , specific binding energy

f
0

 = –16.3 MeV, and compressibility modulus at saturation K
0

 = 300  MeV.  For determining the constants corresponding

to the isovector  and -mesons, it is necessary to use the values for the characteristics of asymmetric nuclear matter.

For the constant  [20], a value of 2 5.  fm-3 was used.  The constant  was determined using the value

of the symmetry energy at saturation, 
0

32 5symE .  MeV.

The above characteristics of nuclear matter are reproduced with the following values of the parameters of the

model of Ref. 30:  159.  fm2, 834.  fm2, 52.  fm2, 6213.  fm2, 016503 .g fm-1, and 013204 .g .

Once the nucleon-meson coupling constants were known, along with the self-interaction constants of the

-field, 3g  and 4g , for different values of the baryon density n
B
 and the asymmetry parameter , the physical

characteristics of the isotopically-asymmetric nuclear matter consisting of protons and neutrons were calculated.

Figure 1a shows the energies ,  B BE n  and ,  0B BE n , respectively, per baryon for isospin-asymmetric

and symmetric nucleon matter as functions of the baryon density  n
B
  and the asymmetry parameter .  Figure 1b

shows the energy ,  ,  ,  0B B B B B BE n E n E n per baryon owing to the isospin asymmetry of nucleonic

matter as a function of n
B
 and .  This figure shows that the energy ,  B BE n  owing to the asymmetry for a

fixed value of the asymmetry parameter  is a monotonically increasing function of the baryon density n
B
.

Figure 2 shows the effective masses of the proton and neutron for values of the asymmetry parameter

0;  0 .5 ;  1  as functions of the baryon number density n
B
.  The effective masses of the proton and neutron, as

is to be expected, are the same for symmetric nucleonic matter.  A separation in the effective masses of the nucleons

is caused by the presence of the field of the isovector Lorentz scalar -meson.  In the model we are examining, the
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Fig. 1.  a.  The energy per baryon ( ,  )B BE n  as a function of the baryon number

density n
B
 and the asymmetry parameter .  The lower surface corresponds to the

function ( ,  0)B BE n .  b. The energy per baryon owing to the isospin asymmetry of

nucleonic matter ( ,  ) ( ,  ) ( ,  0)B B B B B BE n E n E n  as a function of the

baryon number density n
B
 and the asymmetry parameter .

Fig. 2.  The effective masses of a proton and a neutron
as functions of the baryon number density n

B
  for

different values of the asymmetry parameter .
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effective mass of the proton is greater than the effective mass of the neutron.  For a specified value of the baryon

density n
B
 the effective mass of the neutron decreases as the asymmetry parameter increases, while the effective mass

of the proton increases.  The difference in the effective masses of the proton and neutron for a given value of the

baryon density n
B
 increases as the asymmetry parameter increases, reaching its maximum value in the case of pure

neutronic matter ( 1 ).

The dependence of the specific binding energy ,  bind BE n  of nucleonic matter on the baryon density n
B

for asymmetry parameters equal to 0;  0 .25;  0 .5 ;  0 .75;  1  is shown in Fig. 3.  For comparison, this figure

shows the analogous dependence in the case of electrically neutral and -equilibrium npe  (N3 matter) in the form

of a thick continuous curve.  It is clear that in the range of values of the baryonic density 0;  0.8Bn , typical

of the matter with a hadronic structure in neutron stars, the asymmetry parameter a ranges from values 1  (for

0Bn ) to 0 7.  (for 0 8Bn .  fm-3).

Figure 4 shows the effective masses of the proton and neutron as functions of the baryon number density n
B

for electrical neutrality and -equilibrium of npe  matter.  Like the increase in the baryon density, the asymmetry

parameter in N3 matter decreases (cf. Fig. 3), and for a given value of the baryon density n
B
 the difference in the

effective masses of the proton and neutron is smaller in the case of electrical neutrality  for -equilibrium of npe

matter than in the case of purely neutronic matter.

Fig. 3.  The binding energy per unit baryon as a function
of the baryon number density n

B
 for different values of

the asymmetry parameter .  The thick smooth curve
corresponds to electrically neutral -equilibrium npe
matter (N3 matter).
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Fig. 4.  Effective masses of a proton and
neutron as functions of the baryon number
density n

B
 for electrically neutral and

-equilibrium npe  matter (N3 matter).
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B
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and -equilibrium npe  matter.  b.  The fraction of the
number of protons Y
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p
 /n

B 
 as a function of the baryon

number density n
B
 for electrically neutral and

-equilibrium npe  matter.
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Figure 5a shows the dependence of the specific binding energy E
bind

  on the baryon density n
B
 for neutral and

-equilibrium npe  matter (N3 matter).  The fraction of the number of protons 1 2p p BY n n  as a function

of the baryon density n
B
 for N3 matter is shown in Fig. 5b.  Given that for high densities the conditions are created

for quark deconfinement and, because of a phase transition, quark matter will be formed, we conclude  that in the

hadron component of a neutron star the maximum value of the specific energy will be on the order of 250-300 MeV.

The number of protons in the hadron component of a neutron star will not exceed ~30% of the number of nucleons.

Figure 6a shows the dependences of the symmetry energy E
sym

 and its components kin
symE  and pot

symE  on the

baryon density n
B
 for electrically neutral and -equilibrium npe  matter.  Figure 6b illustrates the contributions of

the isovector  and -mesons, symE  and symE , to the potential part 
pot

symE  of the symmetry energy.  It is clear that

in the region of densities below the nuclear saturation density n
0
, the kinetic energy of symmetry kin

symE  and the

potential energy of symmetry pot
symE  are of the same order of magnitude.  For high densities the potential part pot

symE

of the energy of symmetry makes a dominant contribution to the energy of symmetry E
sym

.

It is clear from Fig. 6b that the isovector, Lorentz-vector r-meson makes a positive contribution to symE  in

the potential part of the symmetry energy 
pot

symE , while the analogous contribution from the isovector Lorentz-scalar

-meson, symE , is negative.  For higher densities the contribution of the -meson to the potential energy of symmetry

symE  becomes far greater than the absolute value of the contribution of the -meson, symE .

As the equations for the average fields (3) imply, the average field  for a specified value of the baryon

density n
B
 does not depend on the asymmetry parameter .  This means that the average field of the isoscalar Lorentz-

Fig. 6.  a.  The symmetry energy E
sym

 and its components ( )kin
symE  and  ( )pot

symE  as

functions of the baryon number density n
B
 for electrically neutral and -equilibrium

npe  matter.  b.  The potential part ( )pot
symE  of the symmetry energy and its components

( )
symE  and ( )

symE  as functions of the baryon number density n
B
 for electrically neutral

and -equilibrium npe  matter.
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vector -meson for a specified value of n
B
 has the same value for an arbitrary ratio of the amounts of neutrons and

protons, n
n
/n

p
.  The average field  for np matter and electrically neutral and -equilibrium npe  matter has the same

value for a specified value of n
B
.  Because of the dependence on the asymmetry parameter , for a given value of

n
B
, the average fields ~ , 

~
, and ~  will not be the same for np matter and for electrically neutral and -equilibrium

npe  matter (N3 matter).

Figure 7 shows the average fields g~ , g~ , 3g
~

, and 3g~  of the exchange mesons

as functions of the baryon number density n
B
 for electrically neutral and -equilibrium npe  matter.  The average

fields of the isoscalar  and -mesons have positive values and are monotonically increasing functions of the baryon

density n
B
.  The average fields of the isovector  and -mesons have negative values.  Here the average field of an

isovector Lorentz-scalar -meson is a decreasing function of n
B
 for  n

B 
< 0.44 fm-3 and a slowly increasing function

of n
B
 for  n

B 
> 0.44 fm-3 .  The average field of the isovector Lorentz-vector -meson is a monontonically decreasing

function of n
B
.

Fig. 7.  The average fields of the exchange mesons as functions of the
baryon number density n

B
 for electrically neutral and -equilibrium npe

matter.
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4.  Conclusion

This paper is a study of the properties of isospin-asymmetric cold nucleon matter.  The relativistic mean-field

theory has been used; besides the fields , , and  of the exchange mesons, the isovector, Lorentz-scalar field of

the -meson has also been taken into account.  The interaction constants of a nucleon with the mesons and the

coupling constants 3g  and 4g  characterizing the self-interaction of the -meson and leading in the equations of

motion to nonlinearities of second and third order, respectively, are chosen so as to reproduce the known values of

the characteristics of symmetric nucleonic matter at the nuclear saturation density n
0
.  The model was used to study

the properties of purely nucleonic np matter, as well as electrically neutral and -equilibrium nuclear matter, consisting

of nucleons and charged e  and  leptons (npe  matter).  The dependences on the baryon density n
B
 and the

asymmetry parameter  of these sorts of np matter such as the energy ,  B BE n  ascribed to a single baryon, the

specific energy owing to the isospin asymmetry ,  B BE n , the effective masses of  the proton and neutron

,  
ef f

p BM n  and ,  
ef f

n BM n , and the specific binding energy ,  bind BE n  have been analyzed numeri-

cally.  It has been shown that the resulting energy asymmetry ,  B BE n  for a fixed value of a is a monotonically

increasing function of the baryon density n
B
.

The splitting of the effective masses of the proton and neutron 
ef f ef f e f f

p nM M M  in terms of our

model is positive and for a given value of the baryon density n
B
 rises with increases in the asymmetry parameter.

For a given value of n
B
 the splitting in the effective masses is maximal for purely neutronic matter.  We note that

at present, there is no single opinion regarding whether 
ef f

M  is negative, zero, or positive [31].

The effective masses of the proton and neutron ef f
pM  and eff

nM , the specific binding energy E
bind

, the

symmetry energy E
sym

, the quantitative fraction of protons p p BY n n , and the average meson fields ~~~~   ,  ,  ,

have been studied as functions of the baryon density n
B
 for electrically neutral and -equilibrium npe  matter.  It

has been shown that for a specific value of n
B
 the splitting 

ef f
M  in the effective masses of the proton and neutron

in electrically neutral and -equilibrium npe  matter is smaller than in pure neutronic matter.  Given that if at high

densities a phase transition will take place from hadronic matter to quark matter, the maximum value of the specific

binding energy for the hadronic component of a neutron star will be of order 250-300 MeV, and the resulting number

of protons will not exceed ~30% of the number of nucleons.

Our results for the symmetry energy E
sym

 show that below the nuclear saturation density the kinetic and

potential parts of the symmetry energy are quantities of the same order of magnitude.  At high densities the

contribution of the potential energy of symmetry pot
symE  is considerably greater than the contribution of the kinetic

component 
kin

symE .  The potential part of the energy of symmetry arises from exchange of  isovector - and -mesons.

The contribution of the -mesons to the potential energy of symmetry symE  is negative, while the contribution of
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the -mesons to symE  is positive.  For high densities, the inequality sym symE E  holds.

This work was done in the scientific-research laboratory for the physics of superdense stars in the Department

of Applied Electrodynamics and Modeling at Erevan State University, financed by the Committee on Science of the

Ministry of Education, Science, Culture, and Sport of the Republic of Armenia.
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