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MODIFIED TSALLIS HOLOGRAPHIC DARK ENERGY

J. Bharali1, K. Das2

In this work we propose Modified Tsallis Holographic Dark Energy (MTHDE) in General Relativity (GR)

in the framework of Bianchi type III space-time. Einstein's field equations are solved by using a special

law of variation of Hubble parameter H proposed by Berman which yields constant deceleration param-

eter (DP). Interestingly, for the two different constant values of deceleration parameter, we have ob-

tained two different cosmological models. The model 1 behaves like a quintessence dark energy model

whereas model 2 behaves like a cosmological constant model. A correspondence between model 1 and

quintessence scalar field is established. The quintessence dynamics of the potential and scalar field are

reconstructed which illustrates the accelerating phase of the Universe. Various parameters like decel-

eration parameter, Hubble parameter, anisotropy parameter, equation of state (EOS) parameter, etc. for

both the cosmological models are thoroughly discussed. The results obtained are found to be consistent

with the recent observations on the present-day Universe.

Keywords: MTHDE: GR: Hubble parameter: deceleration parameter DP

1. Introduction

Recent astrophysical observational data [1-6] show that our Universe is going through a phase of accelerated

expansion which put new avenues in modern cosmology. A class of people are making attempts to accomodate this
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observational fact by choosing some exotic matter (known as dark energy) in the framework of general relativity. Dark

energy (DE) is believed to dominate over the matter content of the Universe by 70%. In all theories and models, the

cosmological constant model is the most natural and simplest candidate of DE with the equation of state (EOS)

parameter 1 but it suffers from cosmic coincidence and fine-tuning problem [7,8]. To relieve such problems,

various dark energy models have been suggested in literature such as quintessence [9], phantom [10], k-essence [11],

tachyon [12], HDE [13], etc.

Despite of many efforts from different observational and theoretical ways, the problem of DE is still not well

settled due to its unknown nature. In order to justify the source of accelerating expansion (i.e. the nature of DE) of

the Universe, two different approaches have been adopted. One way is to modify the geometric part of Einstein-Hilbert

action (termed as modified theories of gravity) for the discussion of expansion phenomenon [14-18]. The second

approach is to propose the different forms of DE called dynamical DE models. Up to now, different dynamical DE

models have been proposed in two different contexts such as quantum gravity and GR. Holographic dark energy have

been proposed in the framework of quantum gravity on the basis of holographic principle [19]. The density of HDE

model has the following form 2223 LMc pDE  where c is a specific constant, 
218 GM p  termed as reduced

Planck mass and L represent the infrared (IR) cutoff described the size of the Universe. By considering horizon entropy

of a black hole, Tsallis and Cirto assumed some quantum modification for HDE given by (Tsallis and Cirto [20])

AS  with  being an unknown constant and  represents the non-additivity parameter chosen to have a

positive value. The Bekenstein entropy is a particular case when 1  and G41  [21]. Considering the holo-

graphic hypothesis, Cohen et al. [22] proposed the relation among the system entropy S, the IR (L) and UV ( ) cutoffs

as 4333 SL  which after combining with AS  gives 424 4 L . Using this inequality, the THDE

density is obtained as 42DLT  where D is an unknown parameter [23-25]. It is worthy to mention that for 1 ,

the standard HDE is recovered. Furthermore, for 2 , the cosmological constant model is retrieved. Using the Hubble

horizon 1H  as the IR cutoff L, 42DHT  is obtained.

Since DE occupies almost 70% of the content of the Universe today, it is rational to assume that the density

of DE is a function of the Hubble parameter H and its derivative w.r.t. cosmic time [26]. In this paper, we have modified

the THDE by assuming HEDHMT
�42 . In the above expression dot (.) denotes differentiation w.r.t. cosmic

time t and E is the arbitrary dimensionless parameter. The early Universe inflation can be considered as the primordial

DE because DE is merely the substitute for the accelerating expansion of the Universe [27]. So, our constructed model

is a good candidate to describe the inflationary stage.

Bianchi type spaces play an important role in constructing spatially homogeneous and anisotropic cosmo-

logical models to describe the behaviour of the Universe at its early stages of its evolution. The anomalies found

in the cosmic microwave background (CMB) and large-scale structure (LSS) observations stimulated a growing

interest in anisotropic cosmological model of the Universe. Here we confine ourselves to Bianchi type III models.

Several researchers have investigated various cosmological models in the framework of THDE. Two Tsallis

Agegraphic DE (TADE) models have been proposed by using the age of the Universe and the conformal time as the

IR cut-offs and study their effects on the evolution of the Universe [28]. THDE in FRW Universe with time varying
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deceleration parameter (DP) in the framework of FRW Universe have been investigated by [29]. Mamon [30] has

studied the evolution of a fractal Universe with THDE in presence of an interacting scenario. Sadeghi et al. [31] have

explored THDE by considering the complex form of the quintessence model in the framework of Brans-Dicke

cosmology. Pradhan et al. [32] have discussed THDE in the modified TRf  ,  gravity framework with Granda-

Oliveros (GO) cutoff. Mamon et al. [33] have studied THDE in presence of interacting scenario. Dubey et al. [34]

have discussed the axially symmetric space-time in THDE. Korunur [35] have explored THDE in Bianchi type III

space-time. Yadav [36] has worked out THDE in Brans-Dicke cosmology. Santhi and Sobhanbabu [37] have explained

THDE in Saez-Ballester theory of gravitation. Dubey et al. [38] have investigated THDE using hybrid expansion law

(HEL) with k-essence. Dubey et al. [39] have examined THDE in the non-flat Universe. Motivated by the above

aforesaid works, we have modified THDE in GR in the framework of Bianchi type III space-time.

The organisation of the paper is as follows: In Section 2, we formulate the metric and field equations for

MTHDE model. In Section 3, we have obtained the solutions of field equations of Bianchi type III space-time. In

Section 4, we have studied the cosmological model 1 and the correspondence between model 1 and quintessence

scalar field. In Section 5 we have studied the cosmological model 2. The model 1 behaves like a quintessence dark

energy model whereas the model 2 behaves like a cosmological constant model. Various parameters for both the

models are discussed graphically in Sections 6 and 7 respectively. The paper ends with concluding remarks in

Section 8.

2. Metric and field equations

We consider the anisotropic Bianchi type III space-time

222222222 dzKdyeJdxIdtds x (1)

where the scale factors I, J and K are functions of cosmic time t only.

The Einstein's field equations are given by

, ijijijij TTRgR
2
1

(2)

where R
ij
 is the Ricci tensor and R is the Ricci scalar.

The energy momentum tensor i
jT  for dark matter (DM) is

, 0 0, 0, ,diag m
i

jT (3)

where m  is the energy density of DM.

The energy momentum tensor i
jT  for MTHDE is
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,  , , ,diag

 , , ,diag , , ,diag ][

MTMTMTMT

MTzyxMTMTMTMT
i
j zyx

pppT

1

1
(4)

where MT  is the energy density of MTHDE, p
MT

 is the pressure of MTHDE and MTx , MTy  and

MTz  are the directional equation of state (EOS) parameters on x, y and z  axes respectively and MTMTMT p .

The Einstein's field equations (2) for the metric (1) using Eqs. (3) and (4) takes the form

MTMTJK
KJ

K
K

J
J ������

(5)

MTMTIK
KI

K
K

I
I ������

(6)

MTMT
IIJ

JI
J
J

I
I

2
1������

(7)

MTm
IKI

IK
JK
KJ

IJ
JI

2
1������

(8)

. 0
I
I

J
J ��

(9)

Eq. (9) on integration and taking integrating constant to be unity, we obtain

. IJ (10)

Using Eq. (10) in Eqs. (5)-(8), we get

MTMTIK
KI

K
K

I
I ������

(11)

MTMT
II

I
I
I

22

2 1���

2 (12)
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. MTm
IIK

KI

I

I
22

2 12
���

(13)

The energy conservation equation is

, 02 MTMTmMTm p
K
K

I
I ��

�� (14)

where overhead dot (.) denotes differentiation w.r.t. cosmic time t.

We assume that there is no interaction between DM and MTHDE throughout the study.

3.  Solutions of field equations

The average scale factor a(t) and the spatial volume V are defined as

. KIaV 23 (15)

The directional Hubble's parameters H
x
, H

y
 and zH  in the direction of x, y and z  axes respectively are given

by

. , 
K
KH

I
IHH zyx

��

(16)

The mean Hubble's parameter H is

. 
K
K

I
IHHH

V
V

a
aH zyx ����

2
3
1

33 (17)

The deceleration parameter q is defined as

. 
2a

aaq
�

��

(18)

The anisotropy parameter A
p
 is defined as

3

1

2

3
1

i

i
p H

HH
A . (19)
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Field equations (11)-(13) forms a system of three independent equations with five unknowns I, K, MT , MT

and m . So, we use two extra relations to solve the system of field equations completely. These are as follows:

(i) Following Chen and Jing [26] and Bharali and Das [40], we define MTHDE density MT  as a function

of Hubble parameter H and its derivative w.r.t. cosmic time t as follows

,HEDHMT
�42 (20)

where E is the arbitrary dimensionless parameter and the other symbols have their usual meanings.

(ii) A special law of variation for Hubble's parameter H proposed by Berman [41] is defined as

, mkaH (21)

where k > 0 and 0m  are constants.

Using Eqs. (17) and (21), we have obtained two models

, , , 111
1 mmqkmkta m (22)

where k
1
 is a constant of integration.

, , , exp 012 mqktka (23)

where k
2
 is a constant of integration.

From Eqs. (11) and (12), we get

, exp dt
I
I

K
K

IV
u

I
I

K
K

1

2
0 1 ����

(24)

where u
0
 is a constant of integration.

Following Adhav [42], we assume

. 
2

1

II
I

K
K ��

(25)

Using Eq. (25) in Eq. (24), we get

. te
V
u

I
I

K
K 0

��

(26)
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Integrating Eq. (26), we obtain

, exp dt
V

euIuK
t

01 (27)

where u
1
 is a constant of integration.

4. Model 1

When mkmkta 1
1 , m < 1. Eq. (27) with mkmkta 1

1  implies

dt
kmkt

euIuK
m

t

3
1

01 exp (28)

. mkmktaKIV 3
1

32 (29)

Eqs. (28) and (29) together implies

dt
kmkt

eu
ukmktI

m

t
m

3
1

031
1

1
1 3

exp (30)

. exp dt
kmkt

eu
ukmktK

m

t
m

3
1

032
1

1
1 3

2
(31)

Both the cosmic scale factors I and K increases as the age of the Universe increases (Fig.1, 2). The Hubble

parameter H and the MTHDE density MT  are calculated as

. 
1kmkt

kH (32)

The Hubble parameter H is a decreasing function of t and tends to a small value with the passage of cosmic

time.
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. 
2

1

242

1 kmkt

mkE
kmkt

kDMT (33)

Fig.3 shows that MT  decreases and tends to a constant value as cosmic time evolves. The anisotropy

parameter A
p
 is calculated as

. 
m

t

p
kmkt

eu
k

kmkt
A

6
1

22
0

2
1

9
2

(34)

Fig.1. The plot of I versus cosmic time t for m = 0.5,
k = 0.3, k

1
 = 0.5, u

0
 = 0.03 and u

1
 = 0.15.

t

�

I
�

�� 	� �� �� ��

��

��

�	�

Fig.2. The variation of K against cosmic time t for
m = 0.5, k = 0.3, k

1
 = 0.5, u

0
 = 0.03 and u

1
 = 0.15.

t

K

�

� �� 	� �� �� ��

�

��
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0pA  as observed from Fig.4. Thus, our Universe approaches isotropy at late times. The energy conser-

vation equation for dark matter is

. 03 mm H� (35)

Using Eq. (32) in Eq. (35), the energy density of dark matter m  is found as

mm
kmkt 3

1

0
(36)

0  is a constant of integration.

From Fig.3, we see that m  diminishes as cosmic time evolves and ultimately approaches to zero.

The energy conservation equation for MTHDE is

. 03 MTMTMT pH� (37)

The EOS parameter of MTHDE MT  is obtained by the use of Eqs. (32), (33) and (37) as

. 

2
1

242

1

3
1

32

2
1

232

11

2
22

3
1

kmkt

mk
E

kmkt

k
D

kmkt

Ekm

kmkt

mk

kmkt

k
D

k

kmkt
MT

(38)

Fig.3. The variation of m  and MT  versus cosmic
time t for m = 0.5, k = 0.3, k

1
 = 0.5, 800 . , D = 0.5, 51.

and E = 0.2.

t

����

� �� 	� �� �� ��

����

����

����

�

�
�

�
�

�
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From Fig.5, it is observed that 1MT . Thus, our model 1 behaves like a quintessence dark energy model.

The present value of the EOS is calculated as 83400 .  [43-45] and this concludes that the model 1 is a

quintessence dark energy model.

Correspondence between model 1 and quintessence scalar field.

The pressure and energy density for quintessence scalar field [46] are given by

Vp
2

2�

(39)

Fig.4. The evolution of H and A
p
 against cosmic time t

for m = 0.5, k = 0.3, k
1
 = 0.5 and u

0
 = 0.03.

H
, 

A
p

t

����

� �� 	� �� �� ��

����

����

����

�
 

!

��	�

Fig.5. The plot of MT  versus t for m = 0.5, k = 0.3,

k
1
 = 0.5, 51. , D = 0.5, 800 .  and E = 0.2.

�

�����
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, V
2

2�

(40)

where  denotes the scalar field and V  is the scalar field potential.

The EOS parameter  is defined as

. 
V

Vp

2

2
2

2

�

�

(41)

Eqs. (33) and (40) together implies

. V
kmkt

mk
E

kmkt

k
D

2

2

2
1

242

1

�

(42)

Eqs. (38) and (41) together implies

. V
MT

MT

1

1

2

2�

(43)

Using Eq. (43) in Eq. (42), we obtain the scalar field potential V  as

. 
2

1

242

12

1

kmkt

Emk

kmkt

k
DV MT

(44)

The scalar field  is calculated by using Eqs. (43) and (44) and then integrating, we get

, dt
kmkt

Emk

kmkt

k
DMT

21

2
1

242

1
0 1 (45)

where 0  is the constant of integration.

Both the scalar field potential V  and the scalar field  diminishes and ultimately tends to a small value

during the evolution of the Universe as seen from Fig.6 and 7.
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5. Model 2

When 2exp ktka , m = 0. Eq. (27) with 2exp ktka  implies

dt
ktk

e
uIuK

t

2
01 3exp

exp (46)

. exp 2
32 3 ktkaKIV (47)

Fig.6. The plot of )(V  versus t for m = 0.5, k = 0.3,

k
1
 = 0.5, 51. , 800 . , D = 0.5 and E = 0.2.

Fig.7. The evolution of  against cosmic time t  for

m = 0.5, k = 0.3, k
1
 = 0.5, 51. , 800 . , D = 0.5,

E = 0.2 and 0500 . .

"
#
$
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Eqs. (46) and (47) together implies

2
2

031
1 33

ktkdt
ktk

eu
uI

t

exp
exp

exp (48)

. exp
exp

exp 2
2

032
1 33

2
ktkdt

ktk

eu
uK

t

(49)

Fig.8 demonstrates that the cosmic scale factors I and K increases as cosmic time evolves. The Hubble

parameter H and the MTHDE density MT  are calculated as

kH (50)

. 42DkMT (51)

From Eqs. (50) and (51), we can conclude that both Hubble parameter H and MTHDE density MT  are

constant.

The energy conservation equation for dark matter is

. 03 mm H� (52)

Fig.8. The plot of I and K versus cosmic time t for
k = 0.3, k

2
 = 0.6, u

0
 = 0.03 and u

1
 = 0.15.

I,
 K

t

� �� 	� �� �� ��

������
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	�����
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Using Eq. (50) in Eq. (52), m  is found as

, kt
m e 3

0 (53)

where 0  is a constant of integration.

From Fig.9, we can conclude that 0m  as cosmic time evolves.

The energy conservation equation for MTHDE is

. 03 MTMTMT pH� (54)

Using Eqs. (50) and (51) in Eq. (54), we have obtained MT  as

. 1MT (55)

Thus, our Model 2 behaves like a cosmological constant model. Recent studies [5,47-50] indicate that our

model 2 approaches to CDM  ( 1MT ) served as an excellent model to describe the cosmological evolution.

Hence our model 2 is in good agreement with these observations.

The anisotropy parameter A
p
 is obtained as

. 262
29

2 ktkt
p e

k
A (56)

Fig.9. The graph of m  and A
p
 versus cosmic time t  for

800 . , k = 0.3 and k
2
 = 0.6.
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Fig.9 indicates that as 0t , pA  and as t , 0pA . Hence, the anisotropy of our Universe dies

out with the passage of cosmic time.

In all the graphs, t denotes cosmic evolution time, generally measured in giga years (1 Gyr = 109 y) along

x axis. Along y axis, all physical quantities like the matter energy density m , MTHDE density MT , EOS parameter

MT , etc. are measured in geometrized units, where the speed of light c = 1 and the gravitational constant G = 1.

6. Graphical discussions of model 1

I and K are increasing functions of t as observed from Fig.1 and 2.

Both H and A
p
 are decreasing functions of t as observed from the above figure. H tends to a small value whereas

0pA  at the later age of the Universe.

Both m  and MT  decreases with the passage of t. m  approaches to zero whereas MT  approaches to small

value at the later epoch.

From the above figure, we can conclude that 1MT  at the late times. This indicates that our model 1

behaves like a quintessence dark energy model.

The scalar field potential V  decreases and ultimately approaches to a small value as cosmic time evolves.

 tends to a small value at the later age of the Universe as observed from the above figure.

7. Graphical discussions of model 2

I and K increases with the passage of cosmic time as observed from Fig.8.

Both m  and A
p
 are decreasing functions of t and tends to zero at the later age of the Universe.

8. Conclusions

In this paper we have studied a Bianchi type III Universe filled with dark matter and MTHDE in General

Relativity. To determine the solutions of the field equations completely, we make use of a special law of variation

of Hubble parameter H proposed by Berman that yields constant DP. Interestingly, we have obtained two different

cosmological models for two different constant values of DP. The EOS parameter of MTHDE also behaves like

quintessence DE for model 1. Using these results, we have established a correspondence between MTHDE model with

the quintessence scalar field. Quintessence potential and the dynamics of the quintessence scalar field are recon-

structed for this anisotropic accelerating model of the Universe. Furthermore, it is observed from Eq. (55) that for large

cosmic time the EOS parameter of the MTHDE for model 2 becomes -1. Therefore, in the late time evolution of the

Universe, our model 2 behaves like a cosmological constant model. Also, the deceleration parameter appears with
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negative sign which implies accelerating expansion of the Universe. Perlmutter et al. [3] and Riess et al. [1,51,52]

proved that the deceleration parameter of the Universe is in the range 01 q , and the present-day Universe is

undergoing an accelerated expansion. From Fig.4 and 9, we see that the anisotropy parameter 0pA  as t .

Hence, for sufficiently large time, our MTHDE models predict that the anisotropic nature vanishes and it will become

isotropic at late times. This implies that our MTHDE models become isotropic at late times even though the space-

time is anisotropic. Our results show that the Universe is anisotropic in the early stage and at the late time dynamics

anisotropy of the Universe damps out and the present day Universe becomes isotropic as suggested by different

observational data. We have found that the results are consisent with current cosmological observational data. The

models presented in this paper could give an appropriate description of the evolution of the Universe.

REFERENCES

1. A. G. Riess et al., Astron. J., 116, 1009, 1998.

2. S. Perlmutter et al., Nature, 391, 51, 1998.

3. S. Perlmutter et al., Astrophys. J., 517, 565, 1999.

4. C. L. Bennett et al., Astrophys. J. Suppl. Ser., 148, 1, 2003.

5. D. N. Spergel et al., Astrophys. J. Suppl. Ser., 148, 175, 2003.

6. M. Tegmark et al., Phys. Rev. D, 69, 103501, 2004.

7. S. Weinberg, Rev. Mod. Phys., 61, 1, 1989.

8. J. M. Overduin, F. I. Cooperstock, Phys. Rev. D, 58, 043506, 1998.

9. T. Barreiro, E. J. Copeland, N. J. Nunes, Phys. Rev. D, 61, 127301, 2000.

10. R. R. Caldwell, M. Kamionkowski, N. N. Weinberg, Phys. Rev. Lett., 91, 071301, 2003, arXiv: astro-ph /

0302506v1.

11. C. Armendariz-Picon, V. Mukhanov, P. J. Steinhardt, Phys. Rev. D, 63, 103510, 2001.

12. J. S. Bagla, H. K. Jassal, T. Padmanabhan, Phys. Rev. D, 67, 063504, 2003.

13. M. Li, Phys. Lett. B, 603, 1, 2004.

14. M. Sharif, S. Rani, Astrophys. Space Sci., 345, 217, 2013.

15. M. Sharif, S. Rani, Astrophys. Space Sci., 346, 573, 2013.

16. E. V. Linder, Phys. Rev. D, 81, 127301, 2010.

17. C. Brans, R. H. Dicke, Phys. Rev., 124, 925, 1961.

18. S. Dutta, E. N. Saridakis, JCAP, 1005, 013, 2010.

19. L. Susskind, J. Math. Phys., 36, 6377, 1995.

20. C. Tsallis, L. J. L. Cirto, Eur. Phys. J. C, 73, 2487, 2013.

21. M. Tavayef et al., Phys. Lett. B, 781, 195, 2018.

22. A. G. Cohen, D. B. Kaplan, A. E. Nelson, Phys. Rev. Lett., 82(25), 4971, 1999.



382

23. B. Guberina, R. Horvat, H. Nikoliæ, JCAP, 01, 012, 2007.

24. S. Ghaffari, M. H. Dehghani, A. Sheykhi, Phys. Rev. D, 89, 123009, 2014.

25. A. S. Jahromi et al., Phys. Lett. B, 780, 21, 2018.

26. S. Chen, J. Jing, Phys. Lett. B, 679, 144, 2009.

27. S. V. Ketov, arXiv: 1909. 05599v1 [hep-th], 2019.

28. M. A. Zadeh, A. Sheykhi, H. Moradpour, Mod. Phys. Lett. A, 34, 1950086, 2019.

29. A. Dixit, U. K. Sharma, A. Pradhan, New Astron., 73, 101281, 2019.

30. A. A. Mamon, arXiv: 2007. 01591 [gr-qc], 2020.

31. J. Sadeghi, S. N. Gashti, T. Azizi, arXiv: 2203. 04375v1 [gr-qc], 2022.

32. A. Pradhan, G. Varshney, U. K. Sharma, Can. J. Phys., 99, 866, 2021.

33. A. A. Mamon, A. H. Ziaie, K. A. Bamba, Eur. Phys. J. C, 80, 974, 2020.

34. V. C. Dubey et al., Int. J. Geom. Methods Mod. Phys., 17(1), 2050011, 2020.

35. M. Korunur, Mod. Phys. Lett. A, 34(37), 1950310, 2019.

36. A. K. Yadav, Eur. Phys. J. C, 81, 8, 2021.

37. M. V. Santhi, Y. Sobhanbabu, Eur. Phys. J. C, 80, 1198, 2020.

38. V. C. Dubey et al., Pramana, 93(5), 1-10, 2019.

39. V. C. Dubey, U. K. Sharma, A. Beesham, Int. J. Mod. Phys. D, 28(15), 1950164, 2019.

40. J. Bharali, K. Das, Astrophysics, 64, 512, 2021.

41. M. S. Berman, Nuovo Cimento B, 74, 182, 1983.

42. K. S. Adhav, Int. J. Astron. Astrophys., 1, 204, 2011.

43. A. A. Mamon, K. Bamba, S. Das, Eur. Phys. J. C, 77, 29, 2017.

44. Ö. Akarsu et al., JCAP, 01, 022, 2014.

45. G. Hinshaw et al., ApJS, 208, 19, 2013.

46. A. Sangwan, A. Mukherjee, H. K. Jassal, JCAP, 01, 018, 2018.

47. A. G. Riess et al., Astrophys. J., 659, 98, 2007.

48. D. J. Eisenstein et al., Astrophys. J., 633, 560, 2005.

49. P. Astier et al., Astron. Astrophys., 447, 31, 2006.

50. K. Bamba et al., Astrophys. Space Sci., 342, 155, 2012.

51. A. G. Riess et al., Astron. J., 117, 707, 1999.

52. A. G. Riess et al., Astrophys. J., 607, 665, 2004.


	MODIFIED TSALLIS HOLOGRAPHIC DARK ENERGY
	1. Introduction
	2. Metric and field equations
	3. Solutions of field equations
	4. Model 1
	5. Model 2
	6. Graphical discussions of model 1
	7. Graphical discussions of model 2
	8. Conclusions
	REFERENCES

