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TIME DEPENDENT RADIATIVE TRANSFER PROBLEMS
IN A ONE-DIMENSIONAL MEDIUM

A. G. Nikoghossian

The solution of several one-dimensional problems in nonstationary radiative transfer at frequencies in

a spectral line is given. An approach based on searching for the unknowns in the form of Neumann series

expansions is applied. The evolution of the line profile formed during reflection from a semi-infinite

atmosphere is studied both with coherent and with fully incoherent scattering in the medium. The time

dependence of the profiles formed at the boundaries of a finite atmosphere is also examined. In the two

problems it is assumed that the atmosphere is illuminated by radiation either in the form of a )(t -pulse

or by radiation with a unit intensity pulse. The solution takes into account both possible causes of time

loss by photons during diffusion in the medium: the time spent by an atom in an excited state and the time

lost by photons in passing between two successive scattering events. It is shown that with this general

statement of the problem, the resultant probability density distribution function of the emerging radia-

tion is given by a convolution of the distributions corresponding to the two components of the photon

time expenditure.
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1. Introduction

Different phenomena studied in astrophysics have time variations, which are an additional and extremely

important basis for interpreting observational data. The nature of these variations differs in a great diversity from the

standpoint of the physics of a phenomenon, as well as the rate at which it takes place. Vivid examples may include

flare effects in stars on different scales from small bursts of stellar matter to immense phenomena associated with the

loss of upper layers of stars accompanied by the release of immense energy (Novae, Supernovae). We may also point

out relaxation phenomena, when the equilibrium state in a radiating medium is established over a more or less

prolonged time. Strictly speaking, all observed phenomena are to a greater or lesser extent subject to time variation,

so it becomes necessary to develop a theory of time dependent radiative transfer theory.

This theory is used to examine problems taking the nonstationarity of different characteristics such as radiation

falling on a medium and the possible changes of these or other parameters of a radiating medium such as its optical

thickness and ability of absorb and scatter radiant energy incident on it. Here we are interested in a class of problems

where the intensity of radiation incident on a medium depends on time and the time spent by an atom in an excited

state and the time spent by photons during multiple scattering processes in it is taken into account in the calculations.

The latter customarily consists of two components: the time an atom is in an excited state and the time spent by

photons in flight between two successive scattering events. Both are random quantities distributed exponentially with

average values denoted by t
1
 and t

2
, respectively. t

2
 is determined by the density of absorbing atoms and ions n and

by the atomic absorption coefficient coefficient k, with k
2 

= 1/nkc, where c is the speed of light. We note that this

quantity depends significantly on physical conditions in the medium. For example, in a highly ionized medium,

where it is necessary to deal with scattering processes on free electrons, in a two-electron approximation we will have

, where n  is the number of ionized atoms and  n
1
 is the number of atoms in the ground state

per unit volume [1]. As for the intensity of radiation incident on a medium, the cases of greatest interest are t ,

the image (shape) pulse, and the shape intensity specified by the unit step H(t), known as the Heaviside function.

The work of developing the theory in this direction was begun in the papers of Milne [1] and Chandrasekhar

[2,3], where only the time spent by an atom in an excited state was taken into account. While the first of these papers

took the characteristic time in a given state as the average lifetime of an atom in a given energy level, a more precise

formulation was given in the second. A major contribution to the development of developing the theory of nonstationary

radiative transfer theory was by the Leningrad school of astrophysicists. Sobolev [4,5] examined the problem of

nonstationary irradiation of a medium both on the basis of the equations of radiative transfer and applying the

probabilistic approach which he developed. Minin [6,7] developed a method which made it possible to use the

Laplace transform to reduce these problems to solving their stationary analogs. The numerical solution to the

nonstationary problem by a Laplace transform was given in Ref. 8. The Ambartsumyan invariance principle was first

used in Refs. 9 and 10 to solve the problem of diffuse reflection and transmission of a medium with finite optical

thickness. A similar problem for a nonuniform medium and isotropic scattering is dealt with in a series of papers by

Matsumoto (e.g., Refs. 11 and 12) in which both of the above mentioned cases of illuminating a medium were

kcnnnt 112 11



492

examined.

The methods based on the Laplace transform come into great difficulty when dealing with these results. Thus,

an alternative approach [13,14] has been proposed for solving time dependent radiative transfer problems. The idea

developed by these authors was based on constructing a Neumann series in the nonstationary problem and the

standard problems corresponding to it. This method was used in our previous paper [15] for a one-dimensional

medium employing a recurrence relation obtained by us in Ref. 16. Given the mathematical complexity of nonstationary

radiative transfer problems, one-dimensional models have been most often considered or solutions to solving prob-

lems with one of two mutual contradictory  assumptions, 21 tt  or 21 tt .

Three problems with arbitrary values of the parameters t
1
 and t

2
 are examined in this paper in a one-

dimensional approximation for the two above-mentioned cases of illumination of a medium. Its purpose is to show

that for a correct statement of the solution of this common problem no fundamental difficulties appear compared to

the often encountered particular models.

2. Evolution of spectrum line profiles formed by diffuse reflection from a semi-infinite atmosphere

For intuitiveness in the one-dimensional approximation we examine the simplest problem of diffuse reflection

of light from a semi-infinite absorbing and coherently scattering uniform atmosphere illuminated at time t = 0 by

continuum light of unit intensity either in the form of a pulse t , or in the form of a step H(t). The profile of the

absorption coefficient in the spectrum line is assumed Dopplerian 2exp1 xx , where x is the dimension-

less frequency measured by the shift from the line center in Doppler widths. The effect of absorption in the continuum

spectrum is specified by the quantity , which represents the ratio of the absorption coefficients in the continuum

and and the line center. For the probability of reradiation of a photon in an elementary scattering event, we shall

use the generally accepted notation . In the stationary problem, applying the Ambartsumyan invariance principle

for determining the reflection coefficient x  (with a probabilistic sense) yields [17]

. 122
1

x (1)

If the role of scattering in the continuum is taken into account, then in accordance with Refs. 15 and 17, it is sufficient

in place of Eq. (1) to substitute

, 
x

x
x

~
(2)

for , where  is the ratio of the continuum scattering component to the absorption coefficient at the center of the

spectral line. The expansion of the function x  in a Neumann series is written in the form
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. 
1n

n
n x
~

x (3)

The coefficients 
1
 and 

2
 in the expansion (3) are easily found by adding an infinitely thin layer to the medium

with a subsequent limiting transition and equal, respectively, to 0.25 and 0.125. In these two cases, a photon is

reflected once from the medium itself. The other coefficients associated with two-photon reflection from the medium

are determined recurrently using a formula obtained in Ref. 15 by applying the invariance principle,

. 
2

1

2

1
1

1

11

n

k

knknn (4)

This formula allows a simple interpretation: the first term in parentheses describes processes associated with

single reflection of light from a medium, and the second term, double reflection. Double-scattering events are

statistically independent and, therefore, given by a sum that is a discrete analog of the convolution. In Ref. 18 the

author gives the values of the first 40 coefficients in the expansion (4). We note that for n > 4, the values of n  are

asymptotically sufficiently well described by the three-parameter exponential 2exp cnbna~n , where

a = –1.90267, b = –0.25674, and c = 0.0036.

We examined the temporal picture of diffuse reflection of light from a semi-infinite coherent scattering

atmosphere in the above-mentioned Ref. 18 in connection with a study of the role of scattering in the continuum.

A method for determining the total time spent by photons during diffusion in a medium was described there for the

first time. Since this method will also be used to solve other problems, we dwell briefly on it here.

Thus, let a scattering and absorbing semi-infinite atmosphere be illuminated from outside with time-varying

radiation. Instead of time t we introduce two dimensionless quantities 1ttu  and 2tt  into the discussion. The

time spent by photons during diffusion in the medium, as noted above, is made up of the time spent in an absorbing

state and the time of flight between two successive scattering events. Each of these two components, in turn, is the

sum of a number of independent exponential distributions of random quantities  realized during multiple scattering

events in the medium. The distribution function of sum of a number n of such quantities is specified by the Erlang-

n distribution (a special case of the gamma distribution)

, 
!1

 , ,Er
1

k
ek

nk

(5)

which depends on two parameters: the shape k and rate  [19]. The distribution is stable, so that the sum and product

of these distributions is again a distribution of this type with corresponding values of the parameters. In our problem

the parameter  takes on the significance of a quantity reciprocal to the average time of one or another of these
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elementary processes. Given this, the probability distribution function (PDD) of the time lost by a photon in an

absorbing state for n-fold scattering will have the form

. 
!1

 ,
1

1
u

n

e
n

u
nuf (6)

An analogous function for the time spent by a photon in free flight between scattering events is given by

, 
!

1 ,2 e
n

nf
n

(7)

where it is noted that the number of such flights exceeds the number of scattering events per unit since the calculation

also takes the path covered by a photon when it falls into the medium into account. The two functions given

separately with Eqs. (3) and (4) make it possible to determine the evolution of the intensity reflected from the medium

for each of two cases of time loss. However, here we are interested in the general case, where both reasons for the

loss of time are taken into account. Random quantities corresponding to the two time loss processes examined here

are evidently statistically independent, so that the PDD for the total amount of time lost by a photon while it is in

the medium will be determined by the convolution of the above two distributions, i.e.,

.  ,1 , 1

0

2 dnzfnfzF

z

n (8)

This integral is calculated explicitly and has the form

. 
!12!1!

12

0

1 z
n

z

nn
z

n e
n

z
dz

nn

e
zF (9)

We now introduce into consideration the function zx  , , so that dzzx  ,  represents the probability of reflection

from a semi-infinite medium of a photon of frequency x in the time interval ( dzzz  , ). By analogy with Eq. (3), the

Neumann series for the reflection function is written in the form

(10)

This result describes the evolution of the line profile formed by reflection from an atmosphere illuminated by radiation

. 
!12

 ,
1

n

z
x

~
ezx

n

n

n
n

z
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of form d(t), an image pulse. Based on Eq. (8) it is easy to determine the so-called cumulative distribution function

(CDF) describing the process of establishing a stationary regime in a medium up to a time z
0
 when it is illuminated

by radiation in the form of a unit step H(t),

. 
!2

 ,
0

2

1

0
0

k

kn

n

n
n

z

kn

z~
ezxP (11)

The physical significance of the time variables ttz  and ttz 00  yields the relationship of t  to t
1
 and t

2
:

2121 ttttt . We made numerical calculations based on Eqs. (10) and (11) in Ref. 18 in connection with a study

of the influence of scattering in the continuum on the evolution of the profile of a line profile formed by reflection

from a semi-infinite atmosphere. Thus, as an illustration and further discussion we limit ourselves just to one typical

case related to a comparatively strong line.

The distributions shown in Fig. 1 describe the process of the evolution of a line profile formed by reflection

from a radiative medium of unit intensity in the continuum spectrum which varies with time as t  (left) and H(t)

(right). The curves in the figures make it possible to conclude that the probability density distribution (PDD)

constructed with simultaneous accounting for the two types of losses of time in scattering events expressed by the

product of the corresponding distributions yield the correct conclusions which differ qualitatively from those where

the dimensionless time of the form 21 ttt  is used [6,7,16]. It is clear from the figure that for these values of the

scattering parameters an emission line is formed where the wings of the spectrum line are established much earlier

than its core.

Fig. 1. Probability density distribution and cumulative distribution function for different
frequencies within a line, noted above the curves, for the indicated values of the
parameters describing the diffusion of the radiation in a semi-infinite atmosphere.

P
D

D

Z

0
0.00

C
D

F

0.0

0.02

0.04

0.06

0.08

0.10
.

0.1

0.2

0.3

0.4

0.5

5 10 15 20

Z
0

0 5 10 15 20



496

3. Finite medium

The above discussions can easily be generalized to the case of a medium with a finite optical thickness 0 .

The radiant intensities of interest to us that emerge from the medium are expressed in terms of the reflection

coefficients 0 ,x  and 0 ,xq , which have a probabilistic significance. Under the assumption that for physical

properties like those in the preceding example, using the invariance principle in the stationary problem leads to the

following system of differential equations:

,  ,1
4

 ,
2

1 2
00

0

x
x

~
x

d

d

x (12)

.  , ,1
2

1
1

00
0

xqx
x

~

d

dq

x (13)

Equations (12) and (13) are written under the condition that only the boundary  = 0 of the medium is irradiated.

Neumann series of the unknown quantities can be written in the form

.  , ,,  , ,
0

00

1

00

n

n
n

n

n
n x

~
xqxqx

~
xx (14)

The relative complexity of this problem lies in the fact that determining both of the pairs of coefficients 0 ,xn

and 0 ,xqn  reduces to calculating integrals which, although they are calculated analytically in explicit form, still

make the problem time consuming. As in the previous example, the first two terms in the expansions (14) are not

associated with multiple scattering and are found more simply as

, 211
8

1
 ,, 1

4

1
 , 00 2

002
2

01
xx exxex (15)

, 
2

 , , 00
00100

xx e
x

~
xqexq (16)

The remaining coefficients are found by successive calculation of the integrals

,  , ,,  ,2 ,

00

0

2
0

0

2
0 dtetxxxqdtetxxx tx

nn
tx

nn (17)
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where

,  , ,
2

1
 ,

2

1
 ,

2

1

010010

n

k

knknn xxxx (18)

.  , ,
2

1
 ,

2

1
 ,

1

1

010010

n

k

knknn xqxqxqx (19)

Figure 2 illustrates the behavior of the coefficients 0 ,xn  and 0 ,xqn  in a Neumann series as a function

of optical thickness and frequency in a spectral line. The relatively sharper drop in the coefficients 0 ,xn  with

increasing n than in the case of a semi-infinite atmosphere discussed above is noteworthy. As 0 , evidently,

we have xx 0 , .

The convergence of the coefficients also speeds up on going from the center of the line to its wings. Thus,

Fig. 2. The coefficients ) ,( 0xn  and ) ,( 0xqn  as functions of the optical thickness

of the medium at the line center (top panels) and at an intermediate frequency x=2
(bottom panels).
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we conclude that, despite the comparative complexity of determining these coefficients, in practice to ensure

satisfactory accuracy of these results it turns out to be  sufficient to limit oneself to finding a small number of them,

especially when speaking of relatively optically thinner lines, as well as of the wings of the lines.

Proceeding to the temporal description of radiative transfer in a medium of finite optical thickness, we

introduce consideration of the functions zx  , , 0  and zxq  , , 0 , which determine the intensities of the radiation

reflected and transmitted by the medium as functions of the time z. Arguments analogous to those in the previous

paragraph allow us to write

1

00 , 
!12

, ,,
n

n
n

n
z

n

z
x

~
xezx (20)

, 
!12

,, ,,
1

0000

n

n
n

n
z

n

z
x

~
xezxqzzzxq (21)

where 2012200 1limlim
11

tttttz
tt

 is the dimensionless time for passage of the radiation through a

finite medium without scattering.

Figures 3 and 4 show the functions PDD and CDF for reflection and transmission by a medium with finite

optical thickness and allow us to follow the evolution of the profiles of spectrum lines formed during reflection and

transmission by a medium. Based on the particular example shown here, one may conclude that in this particular case

the absorption line formed by transmission is established overall more rapidly than the emission line formed by

reflection from the medium. The wings of either line are formed on the average more rapidly than their cores. It is

Fig. 3. The PDD for reflection from a medium of optical thickness 30  (left) and the

CDF (right) for these values of the multiple scattering parameters at different frequencies
(indicated above the curves) within a spectral line.
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clear from Figs. 2 and 3 that in a semi-infinite medium, as might be expected, the reflection line evolves longer than

in the case of a finite medium.

The solution technique described here in two paragraphs makes it possible to study the effect of one or another

local optical property on the process of forming a spectral line, which is extremely important for the study of different

kinds of nonstationary phenomena in astrophysics.

We now consider the preceding one-dimensional problem taking the frequency redistribution of radiation into

account, beginning, as above, with the stationary problem.

The functional equation for the reflection function xx  , , which now depends both on the frequency of a

photon incident on the medium and on the frequency of a photon reflected from it, is easily found by applying the

invariance principle (see, for example, Ref. 20):

,  , , , , ,

 , , , ,
2

xdxxxxrxdxxxdxxrxx

xdxxxxrxxrxxxx

(22)

Fig. 4. The PDD for transmission of radiation by a medium of optical thickness 30

(left) and the CDF (right) for the same parameters and frequencies. It is assumed that the
time readout is taken immediately after the emergence of photons from the medium.
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where xxr  ,  is the directionally averaged redistribution function in frequencies and . In this case,

the Neumann series is written in the form

.  , ,
1n

n
n xxxx (23)

In this paragraph, for simplicity, the role of scattering in the continuum is neglected, so that the dependence of 

on frequency vanishes.

Arguments analogous to those in the previous paragraph make it possible to construct the coefficients

xxn  ,  that we need. In particular, the coefficients 1  and 2  associated with reflection from the medium itself

are more simply constructed and have the form

, 
 ,

2

1
 ,1 xx

xxr
xx (24)

.  , , , ,
2

1
 , 112 xdxxrxxxdxxxxr

xx
xx (25)

The remaining coefficients are found recurrently using

2

1

1

11

.  , , ,

 , , , , ,2

n

k

knk

nnn

xdxxxxrxdxx

xdxxrxxxdxxxxrxxxx

(26)

The way described here is suitable for incoherent scattering with an arbitrary redistribution function with respect to

frequency. The calculations in this paper are done for the approximation of fully incoherent scattering which is often

used in applications. In this case xxxx 00 , , where . Then, instead of Eqs. (24)-(26) we

shall have

,  ,, 
2

1
 , 1010

1
00

1 xx

xxxx
xx

xx

xx
xx (27)

xx

xx 41
0
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, 
2

1
 ,

2

1

11010

n

k

knknnn xxxxxx
xx

xx (28)

where

.  , 0 xdxxxx nn (29)

and the symmetry of the reflection function with respect to its arguments has been taken into account.

The transition to the time dependent problem we have discussed is made, as above, by introducing a time

dependent reflection function zxx  , , , for which Eq. (10) is written in the form

1

. 
!12

 , , ,
n

n
n

n
z

n

z
xxezxx (30)

Figure 5 illustrates the evolution of the values of the line profile at different distances x from its center for

the case where scattering in the medium is fully incoherent. The far wings of the line, roughly at 52.x , vary

insignificantly with time, so the corresponding curves are absent in the figures. In comparing the process of formation

of a spectral line owing to reflection for the two types of scattering in the medium that we have examined, attention

should be paid to the different behavior of its core and wings over time. The core of the line ( 51.x ), formed during

coherent scattering, is almost flat and its different parts evolve essentially the same way. At the same time, the line

formed with complete frequency redistribution is stronger and broader compared to the preceding example. As for

the wings of the line, they change negligibly with time.

In this paper we have limited ourselves to examining three simple one-dimensional problems in order to

demonstrate the advantages of the method based on expanding the unknowns in a Neumann series, when easily

executable recurrence relations derived by us in Ref. 16 can be used. Here both possibilities for the loss of time by

a photon as it migrates in the medium were assumed in the calculation:  the time spent by an atom in an excited

state and the time spent by a photon on the path between scattering events. It seems that a correct accounting for

both types of losses can be made with a convolution of the corresponding two Erlang distributions. The PDD and

CDF obtained with a correct statement of the problem ensure a physically easily tractable description of the evolution

5.  Conclusion
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of the profiles of the lines that are formed. It is also important to note that the approach taken in this paper is easily

realized for solving the problems in their more general statement.
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