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THE EFFECT OF NEUTRINO MASS IN COSMOLOGY

D. I. Nagirner and D. G. Turichina

The influence of the small neutrino mass on the properties of the cosmological neutrino gas and on the

evolution of the universe is estimated.  The characteristics of the equilibrium neutrino gas are first

calculated and the temperatures up to which to which they can be regarded as ultrarelativistic for

different neutrino masses are found.  The evolution of cosmological neutrinos of any type are traced for

different neutrino masses.  The red shifts neutrinos remain ultrarelativistic are determined.  The effective

temperature of the neutrino gas and the effect of neutrino mass on the rate of expansion of the universe

are determined.
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1. Introduction

The existence of the particles subsequently referred as neutrinos by Enrico Fermi was proposed by Wolfgang

Pauli in 1930 (he refered to them as neutrons).  This was done in a personal letter to participants at a conference

in Tuebingen [1] and in 1931 in a talk at a session of the American Physical Society in Pasadena.  The purpose of

this proposal was to ensure the conservation of energy in beta decay of various nuclei.  An analogous problem arises

during decay of a neutron into a proton and an electron. The mean lifetime of a free, motionless neutron is
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714.tN  min (the half decay time is 2102ln21 .tt N  min).  The electron emerging in this process carries energy,

but it turned out to be smaller than the difference between the rest energy of the neutron and proton, and the

distribution of the energies was random. The introduction of the neutrino solved yet another inconsistency in that

the nonconservation of momentum, specifically spin, was eliminated.  It was difficult to observe this kind of particle

because of its very weak interactions with other particles and nuclei (the reaction cross sections were too low), so

its existence followed from the conservation of energy, momentum, and angular momentum in experiments with decay

reactions. Pauli’s hypothesis was later fully verified and neutrinos were detected on an accelerator in 1953 in a

neutrino capture reaction, as opposed to its emission [2].  A final conclusion about the existence of the neutrino and

antineutrino was reached by the same authors later [3] and they received the Nobel Prize in physics for the

experimental discovery of the neutrino.  The history of this prediction and the confirmation of its validity are

described in an article by Pauli, himself [4].  The subsequent work of Pauli in the theory of -decay and the general

problem of neutrinos is given in a review [5].

At present, solar neutrinos and neutrinos in cosmic rays are observed in several neutrino observatories, in

particular the Ice Cube, with a side of 1 km, in Antarctica [6].

The properties of neutrinos have been studied in some detail. Three types (flavors) of neutrinos and the

corresponding antineutrinos exist: electronic, muon, and tau neutrinos.  For a long time it was assumed that the mass

of the neutrino is exactly zero, like that of the photon.  Experiments with so-called neutrino oscillations, when they

change from one type to another, show, however, that neutrinos have finite masses [7-9] (T. Kajita and A. B. McDonald,

Nobel prize in physics, 2015).  Compared to the masses of other particles, they are very small and it is very difficult

to determine them.  The possible consequences for astronomy of the nonzero mass of neutrinos are discussed in [10].

The masses of neutrinos, however, are substantially lower than assumed previously.  Based on observations of the

oscillations the differences of the squares of the masses has been determined and other methods have been used to

determine the sum of the masses of all the types.  These later estimates give 70602222 ..mmmm e (eV)2

[11],  while the sum of the neutrino masses does not exceed 1 eV [12] (all in energy units).

The existence of cosmological neutrinos follows from the theory of the hot universe, according to which its

early evolution was at a high temperature in a material in a state of thermodynamic equilibrium where balancing weak

interaction reactions should take place with the emission and absorption of neutrinos (so their chemical potential is

zero).  As the temperature falls owing the cosmological expansion, neutrinos separate from the rest of the matter and

propagate freely.  It may apparently possible to detect these neutrinos at some time, but apparently not soon.  Perhaps

it will be possible to observe indirect manifestations of the presence of neutrinos.

There is another difficulty with the theory of neutrinos: if the mass of a neutrino is detected, then its flavor

will be undetermined and vice versa. It can be said that neutrinos are not isolated particles  but a superposition of

particles with a state specified by a 3×3 matrix.

There is some evidence that neutrinos of another, fourth type exist, known as sterile since they do not

participate in any interactions, including weak interactions, except gravitational.  These neutrinos have a greater mass

than the three types mentioned above and may form at least part of dark matter in the universe, so they are assumed
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to be such a component [13].

Calculations have recently been published on the evolution of neutrinos during cosmological expansion if

their initial composition is specified [14].  The effect of neutrinos on leptogenesis [15], on the formation of the large-

scale structure of the universe [16,17], on the L  forest [18], on the anisotropy and polarization of the relict radiation

[19], on the time variation of red shifts [20], etc. [11] (this last article is in an archive that also contains reviews of

previous work), have been discussed.

The purpose of this paper is simpler.  It seems that there is interest in evaluating the influence of neutrinos

on the course of the evolution of the universe and also in finding more exact solutions for the temperature of the

neutrino gas than under the assumption of zero neutrino mass.  Here it is sufficient to assume that agreement between

mass and flavor is attained under thermodynamic equilibrium, i.e., all the neutrinos and antineutrinos can be treated

independently.

We begin by discussing the theory of equilibrium neutrinos in the assumed approximation.

2.  Equilibrium neutrino gas

2.1.  Equilibrium distribution of neutrinos.  The concentration n , mass density , and pressure P  of

fermions with spin 1/2, mass m , and zero chemical potential, as all types of neutrinos have, are given in a state

of thermodynamic equilibrium by the Fermi-Dirac formulas [21],
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Here we use the standard notation, recalling only that 222 pcmcp  is the total energy (including the rest

energy) of a particle with momentum p, and ppc2
�

 is its velocity.  For zero chemical potential the entropy

density, i.e., the entropy per unit volume, is given in terms of these two quantities:
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Substituting the variable of integration Tkpcz B , we rewrite the distributions as
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Fig. 1. The functions logG
n
(y),

logG (y), and logG
P
(y).  2 is added to

the last of them to separate it from the
others.
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Here and in the following x  is the Riemann zeta function and Tkcmy B
2  is the dimensionless inverse

temperature of the neutrino gas.  The coefficients in the formulas for  and P  are expressed in terms of the Stefan

constant 153345 1056577158 .chkà BSB g/(cms2K4).

Plots of the functions yGn , yG , and yGP  are shown in Fig. 1.

2.2.  Limiting cases. Let us examine the extreme cases of the distributions.

2.2.1.  Ultrarelativistic case.  When y  = 0 the three factors in Eqs. (5)-(7) go to unity, i.e.,

1000 Pn GGG , so that for y << 1 the limits are found simply after replacing these factors in this way.

The distribution includes 2y , but only first order terms can be obtained in an expansion with respect to 2y ,

since the second derivatives with respect to 2y  diverge logarithmically at y = 0.  The expansions have the simple

form
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The value of 6202056903113 .  in the first equation.  The coefficients of y and 3y  in the last two functions equal

zero, but in the first one term 3y  is retained.  We also give the formula for the entropy density,
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2.2.2.  Nonrelativistic limit.  In the opposite case of y >> 1, Expansions on MacDonald functions can be used:
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These yield the asymptotic behavior
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2.3.  Average particle energy and the degree of “relativity.”  Finding the average energy of a neutrino is

of some interest, i.e.,
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For small y the average energy is much greater than the rest energy ycmaTka~y nBn
2 .   Otherwise,

if y , the energy approaches the neutrino rest energy 2cm .

In view of the above estimates, it is natural to introduce a dimensionless quantity characterizing the closeness

of the state of the neutrino gas to the limits:
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Figure 2 shows the variation in r with dimensionless temperature y and for three values of the neutrino mass

as a function of temperature.

On specifying the limiting deviation of the parameter from the asymptotic value ra n , we obtain the

following simple estimates: y  and BkcmT 2 .

We now turn to cosmological models that include the neutrino.

3.  Cosmological model with massless neutrinos

3.1.  Parameters of the model.  According to the cosmological model currently taken to be the most adequate

real universe and referred to as the Standard or CDM model, space is flat.  The main components of this model are

dusty matter, including visible (baryon) and dark matter, and so-called dark energy, which corresponds to the

cosmological term of Einstein.

Another two components can be included in this model, specifically radiation and ultrarelativistic neutrinos.

The radiation is referred to a relict, since it remains from epochs of the evolution of the universe when it was hotter.

After the recombination epoch, radiation separated from the other matter and as it propagates freely and remains
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thermal (black body), it cools.  The modern value of the temperature of the relict radiation, T
0

 = 2.726, is the most

accurate value known in cosmology.  This temperature corresponds to the energy density given by the Stefan-

Boltzmann formula, 134
0 10174.TàSB erg/cm3, and the corresponding mass density is 3424

0
0 10654.cTàSBr g/cm3.

The Hubble constant is known with less accuracy (a few percent); we assume that

18
0 10272sMpck70 .H m s-1.  Then the modern critical density is 302

0
0 1021983 .GHc g/cm3, so the

fraction of radiation in it is 5000 10065.crr .

The fraction of dark energy [22] is 0.721±0.035.  Here we assume that 7200 . , so 300 10636. g/cm3.

The density of dusty matter is defined as the addition up to the total density to the sum of the densities of

dark energy, radiation, and neutrinos.  The latter has to be found.

The relationship between the neutrino temperature and radiation was obtained [23] when the neutrino mass

was assumed to be zero, so they must be ultrarelativistic, like photons.  We reproduce the discussion of these authors.

3.2.  Temperature and density of massless neutrinos.  According to the theory of the hot universe, in the

initial stages of its evolution all matter was in a state of thermodynamic equilibrium with a large set of variegated

particles contained in it (in the broad sense).  During cosmological expansion, when all the linear scales of the

universe (distances) increase in proportion to a scale factor a and matter cools, some of its components vanished, were

annihilated (e.g., antiprotons and protons, mesons of opposite signs, positrons with electrons) or combined with others

to form new components (e.g., nucleons and pi-mesons formed from quarks, neutrons with protons during primary
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Fig. 2.  The degree of relativity as a function of logy and logT  (for three
values of the particle mass in eV).
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nucleosynthesis to form the nuclei of the simplest elements).  Other components ceased to interact among themselves

or with the others, became separated, and began free expansion.  The first to separate were gravitons, i.e., gravitational

field quanta. Next, as the temperature fell to on the order of 1010
 K, the neutrinos separated.

Although the process of their separation takes some amount of time, we assume that this took place instan-

taneously at a temperature T  and a value of the scale factor of a .  We denote the dimensionless reciprocal

temperature at the time of separation by Tkcmy B
2 .  The different types of neutrinos generally separate at

different times, but each can be traced separately from the others, so that we examine a single type of neutrino or

antineutrino.

The temperature T  as a neutrino separated was rather high, so that all the component of the matter were

ultrarelativistic and their entropy was proportional to the third power of the temperature.  We are interested in

electrons, positrons, neutrinos, and photons.  The entropy of the three Fermion gases at the time of separation were

the same (9) and the entropy of the photon gas differed by a factor.  These entropies in volume V  were then
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Cosmological expansion proceeds as an adiabatic process, in which the entropy of a given volume does not change.

Thus, the temperature of all the ultrarelativistic gases varies in inverse proportion to the scale factor.

After separation, the neutrinos escaped freely, while the electrons and positrons continued to interact.  When

the temperature fell significantly below 9106 K, all the positrons were annihilated with electrons, and the annihilated

pairs transferred their energy, including the rest energy, to the photon gas.  As a result of this, the entropy of the

electron-positron pairs also was transferred to the photons.  The photons continued to interact with the remaining

electrons and the photon gas reached an equilibrium state at a higher temperature which subsequently decreased in

accordance with the overall expansion of space.  After this, the entropy of the radiation was conserved:
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The entropy of the neutrino gas did not change, i.e., was given by Eq. .(9):
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Because of the cosmological expansion, the volume at times corresponding to a value of the scale factor of a  and

a are related by 33
VaaV .  For temperature T  we define the dimensionless reciprocal temperature

Tkcmy B
2 .
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Substituting the product 
3

TV  from Eq. (18) in Eq. (17), we obtain a relationship between the temperatures

of the photon and neutrino gases after annihilation of the electron-positron pairs:
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In particular, the current temperature of massless neutrinos is 951114 0
30 .TT K so that their mass density (all

types together) and the fraction in the critical density are
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Because the densities of radiation and massless neutrinos have the same temperature dependence, they can

be combined and the joint contribution of radiation and these kinds of neutrinos to the critical density can be

determined:

. 101961, cg101016 4000333000 .. rrrr m (21)

The density and fraction of dusty matter under the same conditions are given by the differences

. 2802798801, cg10582 0003300000 ... rdrcd m (22)

3.3.  Basic equations of the model.  The two Friedman equations for the scale factor in a flat space and

massless neutrinos are
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The dependence of the densities on a is understood.

These equations include the total and gravitating densities of the masses of the components:
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where P
t
  is the total pressure of all components (including the six types of neutrinos).  Given the fulfillment of the

equations of state of the components,
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the gravitating density is rewritten in terms of the densities of the components as
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which reflects the adiabaticity of the cosmological expansion and is satisfied for each component separately.

Integrating these equations, we obtain relations describing the evolution of the densities of the components:
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The dependences on a for the mass density and pressure for each type of massless neutrino can be rewritten in the

form
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3.4.  Solution of the equations.  Equations (28) can be used to rewrite the second of Eqs. (23) in the form
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Separating the variables and integrating give a relationship of the scale factor to time:
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For a = 1 an age of the universe of 9
0 10713.t  years is obtained.  As a , the age of the universe Ha~t~ ln

where 18
0

0 1092491Mpcskm39759 ..HH s-1, which reflects the exponential increase in the scale
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factor at times Ht 1 , i.e., a secondary inflation.

Now we drop the idea of a massless neutrino and see what consequences this leads to.  For simplicity we

assume that all neutrinos are the same, i.e., they have equal masses and separated from the other matter at the same

time.

4.  Distributions of cosmological neutrinos with nonzero mass

4.1.  The concentration of cosmological neutrinos.  The mass density of cosmological neutrinos with mass

(often called massives) depends on the scale factor a in a more complicated way than the density of massless neutrinos.

To obtain this dependence we examine the distributions of three quantities, as for thermodynamic equilibrium.  To

distinguish them we mark these quantities with a tilde.  We begin with the concentration.

As mentioned above, at some time t  during the expansion of the universe, neutrinos cease to interact with

other particles and among themselves, separate from the remaining material, and propagate freely.  At separation all

types of neutrinos were in equilibrium, after which the equilibrium is destroyed.

Since the neutrinos propagate freely after separation, their concentration falls off only because of the increas-

ing volume during the cosmological expansion:
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The preceding formulas imply that the mean occupation numbers for the neutrino states, expressed as a fraction

]1/[1 Tkaap Be  remain unchanged and only the momenta of the neutrinos vary by the same law as photons:

p
a

a
p  .  This fact is derived in [24] by calculating the variation in the momentum with a local transformation

from the system of reference comoving the particle to one infinitely close along the expansion.  The product Van~

also does not vary during the cosmological expansion.

4.2.  Mass density and pressure.  As in Eq. (1) for the concentration, when transforming to the distributions

of the cosmological neutrinos in the equations for the mass density and pressure (2)-(3), in the denominators in the

exponent (and only there) the energy p  must be replaced by aap .  After this substitution we replace the

variable of integration a
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Here functions analogous to those introduced before are introduced, but they depend on two arguments:
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The neutrino mass appears in these functions only through the argument y and when y = 0 they go to unity, so that

the distributions return to those valid for massless particles.  The functions in Eqs. (6)-(7) are special cases of Eq.

(36): 1 ,yGyG , 1 ,yGyG PP .

It is possible to introduce a dimensionless neutrino distribution function
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that is normalized with respect to z by the number of particles Van~  in the volume V.  This function also does

not vary during the expansion, like the Boltzmann H-function determined by it,

, dln
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in accord with the adiabaticity of the cosmological expansion.

4.3.  Properties of the distribution.  The functions G  and PG  obey the directly verifiable equation
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which can be used to monitor calculations of these functions.  With its help it is easy to verify that the adiabaticity

condition for the expansion (27) is met with respect to the neutrino gas, i.e., that
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Given that aa~aa~ dd�� , while aaH � , the derivative a�  can be eliminated in this equation and it can be

rewritten as
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which also easily verified.

In the sense of a definition, the parameter 1aaA . The integral AyG  ,  increases with increasing A

but AyGP  ,  decreases.  The values of y  are very small, since the neutrino mass is small, while their temperature

as they separate is very high.  On the other hand, the parameter A can be very large, since the scale factor is very

small during the separation period, while aa  varies to 1 within the current epoch and to infinity in the future.

The product aayAy  can be arbitrary.

For small y and large yA, the following expansions hold:
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The first formula ensures accuracy better than 10-4 for Ay > 15, 10-5 for Ay > 23, 10-6 for Ay > 34, 10-7 for Ay > 49

and 10-8 for Ay > 72.  The accuracy of the second formula is lower: its error is less than 10-2, 10-3, 10-4, 10-5, 10-6,

and 10-7, respectively, for Ay > 13, 19, 29, 42, 61, and 90.

Graphs of the functions aayG  ,  and aayGP  ,  are shown in Fig. 3.

If the neutrino mass were zero, then they would be ultrarelativistic throughout the evolution of the universe.

For a transition to this case, it is sufficient to set 0y .  Then the integrals in the correction functions become
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constants, while the functions, themselves, go to unity, so we return to the formulas of the preceding section.

A quantity analogous to Eq. (15) that also characterizes the degree of relativity of the distribution can be

introduced, but now as a function of the scale factor a:
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For aa  this difference is very close to na  and for 1a  it has the asymptote
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Figure 4 shows plots of r(a) for four values of the neutrino mass in eV.

The difference between the distributions of the neutrinos and the distributions of the radiation is explained

Fig. 2.  The degree of relativity as a

function of )/ ,(log aayG  and

)/ ,(Plog aayG  (for three values of the

particle mass in eV).
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formally by the fact that, because of their nonzero mass the energy of the neutrinos is not proportional to their

momentum, as in the case of photons, which are described by the Planck law throughout the evolution of the universe,

where frequency and temperature change in the same way with a.

4.4.  Temperature of neutrinos with finite mass.  Having specified the neutrino mass m , a temperature value

T , and scale factor a  at the time they separate, we find the parameter y  for the distributions (33)-(35) and the

integral yGn , and then the dependences of the functions aayG  ,  and aayGP  ,  on a.  For quantitative

estimates we assume that 66 1060221e10 .TkB V erg, so that 101016051.T K and 610my , where the

mass is also in eV.  Equations (18)-(19) yield 10
0

3 1067771114 .TTa .

Since the neutrino distributions cease to be in equilibrium, the concept of temperature no longer applies to

them.  Various auxiliary temperatures can be introduced, as is done in astrophysics as applied to the radiation from

stars.  We use the concept of an “effective” temperature.

We define the effective temperature T
eff

 of the cosmological neutrino gas by equating the cosmological mass

density (34) to its equilibrium value at that temperature:

. , , 1 , ,
2

44

effB
effeffeff Tk

cm
yT

a

a
TyGT

a

a
yGT (46)

If the neutrino mass is zero, i.e., 0m , then 0effyy  and TTTaaTeff
3 114 .

Fig. 4.  The degree of relativity of cosmological neutrinos for four values of
their masses.
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When 0m  Eq. (46) can be written in terms of the dimensionless reciprocal temperatures:

. 

 , 44
eff

eff

yG

y

aayG

y

(47)

For small values of the ratio aa , the functions G  are close to unity so that y
eff

  and y  coincide, which

Fig. 5.   The ratio of the temperatures T
eff

 and T  as a function of a for four values

of the mass.
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Teff

    m       0.001         0.01          0.1          1.0

loga a T T
eff

TTeff / T
eff

TTeff / T
eff

TTeff / T
eff

TTeff /

-4.0 0.0001 19469 19469 1.0 19469 1.0 19472 1.0001 19717 1.0127

-3.0 0.001 1946.9 1946.9 1.0 194.72 1.0001 1971.7 1.0127 3117.3 1.6011

-2.0 0.01 194.69 194.72 1.0001 197.17 1.0127 311.73 1.6011 1292.9 6.6405

-1.0 0.1 19.469 19.717 1.0127 31.173 1.6011 129.29 6.6405 775.10 39.811

0.0 1.0 1.9469 3.1173 1.6011 12.929 6.6405 77.510 39.811 545.18 280.02

1.0 10 0.19469 1.2929 6.6405 7.7510 39.811 54.518 280.02 418.05 2147.2

TABLE 1.  Temperature of Massless Neutrinos and Effective Temperature for Some Values
of a
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also means that the temperatures T
eff 

and T  are the same.  If, on the other hand, the ratio aa  is large, the asymptotic

of the function G  (42) can be used.  Substituting it in Eq. (47), we arrive at an asymptotic relationship between

y
eff

 and a:

. 
4

4341

eff

eff
n

yG

y
ya

(48)

Thus, for large ratios aa  the effective temperature T
eff 

 does not depend separately on T  and the scale factor a,

but only on their combination, specifically, the temperature of the massless neutrinos T  (and y
eff

, correspondingly,

on yaay ).  Including the later terms in the expansion (2) does not change this conclusion.

This statement is illustrated in Fig. 5, where it can be seen that the curves proceed exactly the same way and

can be replaced by parallel displacement. This is also indicated by the data of Table 1 where the effective temperatures

for equal products am  are the same to five significant figures.

Naturally, for larger neutrino masses the difference between T
eff

 and T  is greater.

5.  Effect of the neutrino mass on the evolution of the universe

5.1.  Cosmological equation for a finite neutrino mass.  The two basic equations of cosmology retain the

form of Eq. (23) when the neutrino mass is taken into account (we do not change the notation for the scale factor;

at this point we omit the dependences of the densities on it):

,
3

8
, 

3

4 22 a~G
aa~G

a tg ��� (49)

where now the total and gravitational mass densities of the components are

. 6, 3, 6
2

P
~

PPP
~

c

P
~

~~~~~
rt

t
tgrdt (50)

The compatibility condition for Eqs. (27) is also retained:

. 3
2

H
c

P
~

~~ t
tt

�
(51)

As before, it can be applied to each component separately.  It is also satisfied for neutrinos, as shown in Eq. (40).
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The equations of state of dusty matter, radiation, and dark energy are the same, as in Eq. (25), but now the

neutrinos cannot be combined with the radiation.  The condition (51) shows that the second and fourth formulas in

Eq. (28), which describe the evolution of radiation and dark energy, are retained.  Equation (34) must be taken as

the neutrino mass density, thereby correcting the density of dusty matter.

The determination of the evolution of the densities of the components means that the first of Eqs. (49) has

already been used and it remains to solve the second.

5.2.  Solution of the equations.  We express the fraction of the neutrino mass density in the critical density

in terms of the fraction of massless neutrinos according to the representation of the density itself in Eq. (34):

.  , ,
1

66 0
0

0

00

0
0 aayGaayG

~~~

ccc
(52)

The fraction of dusty matter also has to be changed:

. 11 ,

1 ,11

00

00000000

ayG

aayG
~~

d

rrd

(53)

Here the law for the change in the density of this component does not depend on the value of the neutrino mass;

it falls off as 31 a :

. 
3

0
0

a

~
a~ d

cd (54)

On substituting the laws of evolution for the components, the second of Eqs. (49) becomes

. 11 ,1 ,, 0
2
0 aayGaayGaaa

a

H

a

a�
(55)

The function a  is a correction because of the finiteness of the neutrino mass. It is clear that 01  and the

expression under the root sign goes to unity, because it is attached to the contemporary epoch.

After separation of variables and integration, we obtain a refined relationship between a and t:

. 
d

0
0

tH
aa

aaa

(56)
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We now estimate the relative contribution of the terms under the root that depend and do not depend on the

neutrino mass.  Figure 6 shows the logarithms of the moduli of the ratio aa  as a function of loga for four

values of the mass m  indicated in eV near the curves. For a < 1 the ratios are negative and take minima, while for

a > 1 they are positive, merge for 0010.m  and have maxima which are smaller than the moduli of the negative

minima.  When a = 1, the function a  and, with it, the ratio, go to zero (the logarithm to - ).  As a  the

ratio approaches zero.  It can be seen from the figure that even for 1m eV this minimum of the corresponding ratio

does not exceed –0.14; it is reached for a small value of a = 0.00048, i.e., for a red shift greater than 2000.  Thus,

if they are not greater than 1 eV, nonzero neutrino masses have no effect on the expansion of the universe.

6.  Conclusion

With the simplest assumptions about the existence of three types of neutrinos and antineutrinos as separate

particles and equality of the chemical potential to zero, formulas for their distributions have been introduced to

describe the state of the neutrino gases under thermodynamic equilibrium conditions.  A parameter, referred to as the

degree of relativity, has been introduced which can be used to evaluate the closeness of the distributions to

ultrarelativistic and nonrelativistic.

The equations and formulas for the expansion of the universe in terms of the Standard CDM  model are

reproduced here with radiation and massless neutrinos taken into account.  Then it is shown how the cosmological

Fig. 6.  The relative contribution of the
correction for finite mass of the neutrino
as a function of the scale factor.
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model is generalized to include neutrinos with finite mass.  The degree of relativity is generalized for cosmological

neutrinos.  It has been shown that the existence of neutrino mass leads to significant differences in the (effective)

temperature of the cosmological neutrino gas from its value if they are assumed massless.  At the same time, the effect

of neutrino mass on the course of cosmological expansion is insignificant.

Indirect effects of neutrinos and their mass will presumably show up in other cosmological processes.

Theoretical estimates of these kinds of effects have already been made in some of the papers cited in the Introduction.
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