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TORUS DYNAMO MODEL FOR STUDY OF MAGNETIC FIELDS IN THE OUTER
RINGS OF GALAXIES

E. A. Mikhailov

At present, there is essentially no doubt that magnetic fields of a few μG exist in some spiral galaxies.  The

fields are produced by a dynamo mechanism.  Because the equations of the dynamo theory are quite

complicated, a two-dimensional approximation is often used since the galactic disk is sufficiently thin,

so it is possible to replace some partial derivatives with algebraic expressions.  Some galaxies have outer

rings in which magnetic fields may also exist.  The generation of these fields can also be studied using a

two-dimensional approximation, but because that approximation was not developed for rings, but for

thin disks, in this case it only yields qualitative results.  Therefore, a torus dynamo model is used to study

this process.  This model is used to analyze possible scenarios for the evolution of magnetic fields in outer

rings. It is found that for motions that are not too intense, a field with a quadrupole symmetry is gener-

ated.  For faster motions a dipole component of the field may develop, which is fundamentally impossible

in the two-dimensional approximation.

Keywords: outer rings of galaxies: dynamo theory

Physics Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia; e-mail: ea.mikhajlov@physics.msu.ru

DOI 10.1007/s10511-018-9524-y



148

1. Introduction

It has been reliably established that a number of spiral galaxies have magnetic fields with strengths of a few

μG.  Observational evidence of these fields is provided by the Faraday rotation of the plane of polarization of the

electromagnetic emission measured by modern radio telescopes [1].  Significant results obtained over recent decades

with instruments such as LOFAR [2], VLA [3], and others [4] should be noted.  In the future there are plans to study

galactic magnetism with the SKA radio telescope which is under construction [5,6]. The formation of these fields is

described by a dynamo mechanism.  It is based on a combination of differential rotation and the alpha-effect, which

is associated with twisting of turbulent motions of the ionized component of the interstellar gas. As the same time,

the magnetic field is dissipated by turbulent diffusion. Because of this, the generation of the magnetic field is a

threshold effect.  For certain values of the corresponding controlling parameters of the dynamo, the magnetic field

increases, while in the opposite case, it can only be damped [6].

The evolution of large-scale galactic fields is described by the so-called Steenbeck-Krause-Rädler equation,

which is a consequence of averaging the equations of magnetohydrodynamics over characteristic scales of 50-100

pc [7,8]. This equation is complicated, so field generation is usually described with so-called two-dimensional

approximation which uses the fact that the magnetic field lies in the equatorial plane and the components of the field

perpendicular to it can be neglected.  In addition, the partial derivatives of the magnetic field along the vertical

direction can be replaced by algebraic expressions [9,13].  In this case the equation for field generation becomes much

simpler and does not contain dependences on the distance to the equatorial plane. The results of the two-dimensional

approximation are in good agreement with astronomical observations. The possibility of generating a magnetic field

is characterized by the so-called dynamo number, which has a certain critical value, above which the damping of

the field is replaced by its growth [11,12].

A number of galaxies have so-called outer rings [14]. They lie at some distance from the main part of the

galaxy and have relatively narrow widths.  They also contain ionized gas which is characterized by turbulent motion.

In addition, differential rotation can also be observed in outer rings. All of these things suggest the existence of

magnetic fields in these objects and these fields should also grow as a result of a dynamo mechanism [15].

At present there is shortage of observational data on magnetic fields in outer galactic rings.  Thus, it is

important to examine possible scenarios for the evolution of these fields and identify the parameters of the objects

such that the field should grow and the parameters for which the dynamo mechanism is improbable.

The feasibility of using the two-dimensional approximation in the case of outer rings is  extremely contro-

versial. The radial dimensions of the main part of a galaxy greatly exceed its half thickness, while the width of an

external ring is fully comparable to the former. Thus, other representations of the magnetic field which account for

its dependence on the distance to the equatorial plane must be used.

Since the shape of an external ring is fairly close to toroidal, it is convenient to use a model of a magnetic

field in a torus.  In this case the magnetic field can be treated as a combination of a toroidal component and a part

of the vector potential characterizing the poloidal component of the magnetic field.  With axial symmetry, the model

reduces to a system of two equations which can be solved numerically [16-19].



149

This paper examines the possibility of generating a magnetic field using two different approaches. The first

is based on a two-dimensional approximation and the second, on a torus dynamo model.  In order to compare the

results of the two models, the equations of the two-dimensional model are rewritten in the same dimensionless

variables as the torus dynamo model. Threshold values of the controlling parameters are found for which a magnetic

field can grow in the two cases. Although they differ for fully understandable reasons, the results of the two cases

are qualitatively similar.  The influence of nonlinear effects (associated with saturation of the growing magnetic field

as it approaches the value corresponding to energy equipartition) on the evolution of the magnetic field is examined.

It can be concluded that a magnetic field can be generated in an entire series of outer rings.  Of course, this

requires rather strict conditions that are not satisfied in all objects.  In particular, the outer rings must be sufficiently

wide; otherwise damping of the field will predominate over its generation owing to the magnetic dynamo.  Typical

time dependences of the magnetic field are shown for the various cases.

We note that magnetic field growth by these phenomena is not the only possible way that magnetic fields

can develop in outer galactic rings.  In particular, a field can be transferred from inner parts of a galaxy owing to

propagation of nonlinear waves from the main part of the galaxy; this is known in mathematical physics as the

Kolmogorov-Petrovskii-Piskunov effect [15,20-22].  This mechanism should play an especially important role in the

case of so-called polar rings, which lie in a plane that is not coincident with the equatorial plane of the galaxy.

2.  Model for magnetic fields in galaxies

The magnetic field  of the galaxy, as well as of the outer rings, consists of two main components, large-

scale B and small-scale b [6,13], with

.bBH

The evolution of the small-scale component is described by the Steenbeck-Krause-Rädler equation, which is

obtained by averaging the basic equations of magnetohydrodynamics [8]:

, rotrot BBBV
B

,
t

(1)

where eV r  is the velocity of the large-scale motions (r is the distance to the galactic center and is its rotation

rate), α is a coefficient characterizing the alpha-effect (associated with twisting of the turbulent motions), and 3lv

is the characteristic turbulent diffusion coefficient (l is the characteristic turbulence scale length, on the order of 50-

100 pc and equal to the typical sizes of the region in which the small-scale component of the galactic magnetic field

is concentrated and  is the turbulence velocity).

Equation (1) is usually not solved explicitly (because it is quite complicated and requires substantial computer

resources) but by using an approximation that reduces the dimensions of the problem.  In the case of outer rings,

H
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axial symmetry can be assumed and this makes the problem easier to solve.  In the case of the main part of the galaxy,

the two-dimensional approximation is well recommended [10].

2.1.  The two-dimensional approximation.  Let us assume that the magnetic field lies in the plane of the

disk, so in the cylindrical coordinate system zr  only the components rB  and B  will be important.  In addition,

we assume that the alpha-effect is an odd function of distance to the equatorial plane [9,23], i.e.,

, 0 h

z

where h is the half-thickness of the ring.  The characteristic magnitude of the alpha-effect is related to the operation

of the Coriolis force and can be described by

. 
2

0 h

l

The magnetic field can be taken to depend on the distance to the equatorial plane as follows [11]:
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so that the derivatives of the magnetic field along the vertical direction can be replaced by the fairly simple

expressions [13]
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Then the vector equation (1) reduces to a system of two scalar equations (it is assumed that a rotation curve

for which rdrd  is present):
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where r  is the part of the Laplacian associated with derivatives with respect to the distance to the galactic center.
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It is convenient to use dimensionless variables. Time can be measured in units of 2a , where a is the half-

width of the outer ring (see Fig. 1).  Distances are measured in terms of the distance R to the galactic center.  Thus,

the variables Rrr~ , Rzz~ , and 2att~  are used.  For brevity we omit the “tildes” in the following.  Then

the system of Eqs. (2)-(3) for the magnetic field will have the following form:
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where k = a/h is the ratio of the half-width and the half-thickness of the outer ring and Ra  is the ratio of the

half width to the distance from the center.  In these variables, the distance to the galactic center will be unity and

the half width of the ring will equal λ.  The coefficient 223 vhlaS  characterizes the alpha-effect and

lvaS 23 , the differential rotation.

We now examine the possibility of magnetic field generation.  The radial part of the Laplacian can be replaced

by the expression

. 
4 2
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r

Then the system of Eqs. (4)-(5) (here the partial derivatives can be replaced by total derivatives) reduces to
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Fig. 1.  A sketch of an outer galactic ring.
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Assuming that the magnetic field increases exponentially, i.e.,

, exp, exp tBtBr

yields the following growth rates:
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We introduce a number characterizing the combined action of the alpha-effect and differential rotation:

. 
9

22

42

hv

a
SSQ

One of the growth rates for the magnetic field will always be negative and the sign of the second depends on the

dimensionless parameter Q characterizing the relationship between differential rotation, the alpha-effect, and dissi-

pation associated with turbulence. When the intensities of the first two mechanisms are high compared to the

dissipation, Q is larger.  Magnetic field growth is possible if even one of the growth rates is positive.  This occurs

when Q > Q
cr
, where

. 1
16

22
4
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The significance of Q is roughly the same as that of the dynamo number D in the galactic dynamo theory

[11].  The possible growth of a magnetic field in the outer ring is associated with the relationship between its radial

and vertical dimensions, which is characterized by k. In particular, if the half-width is equal to the half-thickness,

k = 1. Then,

. 424.Qcr

This estimate was obtained using fairly crude arguments.  Thus, it makes sense to verify it numerically.  The problems

was solved with the boundary conditions

. 0
1111 rrrrrr BBBB

The toroidal component of the magnetic field in the case where the field generation threshold is exceeded is shown
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in Fig. 2.  Note that in this case only a quadrupole magnetic field can develop: this is a fundamental limit that follows

from the construction of the two-dimensional approximation.  In addition, the two-dimensional approximation arises

from the fact that the size of the object in the vertical direction is considerably smaller than in the equatorial plane.

Thus, our case of k = 1 (where they are equal) is not entirely correct.  Because of this, it makes sense to examine

another model that accounts for the dependence on distance from the equatorial plane.

2.2.  Dynamo in a torus.  The shape of an external ring is rather close to a torus.  Thus, the torus dynamo

model [16-19] is of great relevance for studying magnetic fields in external rings.  The large-scale component of the

magnetic field can be divided into two parts:

, rot eeB AB (8)

where B is the toroidal component and A is the part of the vector potential characterizing the poloidal component.

Then, assuming that the toroidal component is considerably greater than the poloidal component and that the

field configuration is symmetric, we obtain the following equations for the evolution of the field [19]:
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Fig. 2.  A toroidal magnetic field obtained using the two-

dimensional model for  t = 3, 4S , 15S .
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Note that the Laplacian indicates differentiation with respect to the variables r and z. The system of Eqs. (9)-(10) is

conveniently rewritten using the same dimensionless variables as in the two-dimensional approximation (see above):
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It is logical to assume the possibility of magnetic field generation will also be determined by the number Q.

This model is more complicated for making estimates than the two-dimensional approximation. Thus, we make

qualitative estimates that yield only an approximate result.

The product of the toroidal magnetic field and the distance to the equatorial plane can be estimated roughly

as

. 
2

B
~zB

We estimate the derivative of the component of the vector potential corresponding to the poloidal field as

follows (assuming that the characteristic spatial scale for variation of the vector potential is equal to λ):

. 
A

~
z

A

We note that in this case all the linear dimensions are measured in dimensionless variables (the unit of

measurement corresponds to the radius of the outer ring).  In terms of these units the variables range over z

and 11 r .

In a way similar to that used for the two-dimensional approximation, the Laplacians can be replaced as follows:
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Then the system of Eqs. (11)-(12) for the evolution of the magnetic field can be replaced by the qualitative

analog
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22
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dt
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Exactly as in the previous case, it can be assumed that the field will increase exponentially, i.e.,

. exp, exp tBtA

For the growth rate we obtain

. 
22
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It can be positive when the threshold for generation of a field is exceeded, i.e.,

.crQSSQ

For the critical value we obtain

. 49crQ

We verify this result numerically. We solve the problem in the region

. 1 22 zr

For the boundary conditions we choose [18]

.
A

B 0

The numerical result, as opposed to the two-dimensional approximation, substantially corrects the qualitative esti-

mates.  Growth with positive values is found if Q > 42 [19].  For these values, differential rotation and the alpha-

effect are strong enough to overcome dissipation.
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One characteristic of the results of the toroidal component of the magnetic field when the generation threshold

is reached can be seen in Fig. 3. The results in this case are similar, on the whole, to the more two-dimensional

approximation based on simpler arguments.  The resulting magnetic field also has a quadrupole symmetry; that is,

it is an even function of the distance to the equatorial plane, i.e.,

. zBzB

The torus dynamo model also implies a possibility of generating structures with a dipole symmetry, where

the field is an odd function of z, i.e.,

. zBzB

In this case, B = 0 in the equatorial plane (z = 0).  Since the processes aiding the generation of a magnetic

field are most intense right in the equatorial plane and fall off rapidly with increasing z, much more rigid conditions

must be imposed on the velocities of the motions in the galaxy.  Calculations show that dipole magnetic fields can

be generated for Q > 1190 [19].  This can occur in situations where the angular rotation velocity of the outer ring

is roughly an order of magnitude greater than the typical values for the central portion.  In addition, generation of

magnetic fields of this type requires initial conditions which are antisymmetric with respect to the equatorial plane.

Fig. 3.  A toroidal magnetic field obtained using the
torus dynamo model in a torus with t = 3, Sα 

= 4, and
Sω 

= 15.
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When even a small symmetric component is present in the initial conditions, the symmetry of the magnetic field may

switch from dipole to quadrupole over time.

An example of the generation of a dipole magnetic field is shown in Fig. 4.  We note that this result cannot,

in principle, be obtained using the two-dimensional approximation.

A magnetic field can also be generated when Q is negative.  As for positive values, with negative values a

quadrupole or a dipole magnetic field can develop.  Here the absolute value of this number must be higher than for

positive values [19].

3.  Conclusions

The generation of magnetic fields in outer rings of galaxies has been studied.  Two different models have been

used for this:  a two-dimensional approximation developed for thin galactic disks and the torus dynamo model which

is more realistic for outer rings.  It has been shown that the magnetic field generation process is a threshold process

and the critical values of the controlling parameters corresponding to increasing solutions have been determined.  The

magnetic fields for different magnetic field configurations have been plotted.  It is demonstrated that, as opposed to

the two-dimensional approximation, in the torus dynamo model quadrupole as well as dipole structures can be

Fig. 4.  A toroidal magnetic field obtained with the
torus dynamo model in a torus with t = 3, Sα = 4, and
Sω 

= 300.
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generated.  Although a magnetic field with dipole symmetry can be generated subject to highly specific conditions

on the kinematics of the motions in an outer ring, this result may be useful in the future for studies of magnetic fields

in other toroidal objects, such as accretion tori.

We note that the operation of an in situ dynamo mechanism is not the only way of producing and maintaining

magnetic fields in outer galactic rings.  Thus, in a number of papers it has been shown that in peripheral regions,

as well as outer rings of galaxies, one of the mechanisms for transport of field structures is the so-called Kolmogorov-

Petrovskii-Piskunov effect.  It is well known in mathematical physics and is related to the propagation of nonlinear

waves.  A magnetic field initial rises to a saturation level in the main part of a galaxy and then propagates with the

aid of a wave to the outer regions [15,20-22].  The propagation velocity can be estimated using the asymptotic theory

of contrasting structures.  In addition, in the case of polar rings, which intersect the main part of a galaxy, “pumping”

a magnetic field out of the main part of the galaxy into the ring is possible.  This can be driven by linear transport

phenomena.
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