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DETERMINATION OF THE SUPERFLARE FREQUENCY DISTRIBUTION FUNC-
TION OF SOLAR-TYPE STARS

A. A. Akopian

This is a statistical study of a sample of 1547 superflares in 270 stars found during an analysis of data on

more than 80000 stars of the sun’s type (obtained by the Kepler orbital observatory during the first 500

days of observations).  Estimates are given of the total number of stars capable of superflares and the

superflare distribution frequency function is determined.
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1. Introduction

A superflare in a star of the sun’s type is a sudden, sharp rise in brightness followed by a relatively slow decay,

with an overall duration ranging from a few minutes to tens of hours.  The energy release during superflares is 10

to 106 times the energy of the most powerful solar flares ever recorded [1] and is comparable to the energy of powerful

flares in flaring stars.  This naturally raises questions about the mechanisms for formation of superflares and about

the possible relationships between superflares, solar flares, and flares in flaring stars.  Interest in superflares is also

related to the rapid development of astrobiology and research on exoplanets [1].
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Data on superflares published up to 2012 were obtained in unconnected, inspecific studies and were substan-

tially random in character.  Systematic discovery and studies of solar-type superflare stars became possible only after

the launching of the Kepler orbital observatory, which was intended for discovering extrasolar planets and planetary

systems by means of high precision, continuous photometric measurements of an enormous number of stars.  At the

same time,  the Kepler observations provide valuable and uniform data on variable stars and variable phenomena of

almost all types, including superflares.  With regard to superflares, the Kepler data are of double value, since they

can both record these stars and, to a certain extent, establish whether massive planets of stars are in the vicinity of

flaring stars.  They can also track the behavior of starspots which are invoked in different models (of a planet/star,

spot) to explain the mechanism of superflares.

Systematic studies of superflares in solar-type stars began with the work of Maehara, et al. [2], who presented

data on 365 superflares detected in 148 solar-type stars.  A total of more than 83000 stars of this type were examined.

Light curves obtained by the Kepler observatory during the period from April to December 2009 were studied.

These data were used in a statistical study [3] of these stars drawing on methods used to solve similar problems

for flare stars.  The total number of stars capable of superflares was estimated and the flare frequency distribution was

determined for the complete set of stars and for separate subsamples constructed by breaking the complete sample

into two parts in terms of the rotation periods and variability amplitudes of the stars.

Later, studies of superflares over an observation period (about 500 days) that was roughly four times longer

were published [4,5].  A total of 1547 flares were detected in 279 stars.  This paper is a statistical study of that sample

for the purpose of refining and correcting the results of Ref. 3 on the superflare frequency distribution function for

the entire sample of stars, as well as on the estimate of the total number of stars capable of superflares.  As opposed

to the earlier work [3], here the distribution function is found using Ambartsumyan’s method, which became possible

because of the large amount of data.

2.  New estimates of the number of stars capable of superflares

The total number of stars capable of superflares can be estimated using Ambartsumyan’s estimate [6] for

ordinary flare stars:
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where n
0
 is the number of flare stars for which flares have not yet been detected, while n

1
 and n

2
 are the number of

known flare stars for which one and two flares, respectively, have been observed.  This estimate only gives a lower

bound for n
0
 [7].

Therefore, the total number of flare stars in the system is determined by the sum of the already known and

still unknown flare stars:
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The dispersion and confidence intervals for the estimate of n
0
 have been obtained in Ref. 8, where the

dispersion is given by
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The available data can be used to determine the temporal distribution of the flares (Fig .1) which, in turn,

can be used to determine the distribution of the number of flares at an arbitrary time (the final distribution of the

number of flares for stars in the complete sample is given in Table 1).

This, in turn, makes it possible to track the time behavior of the estimate (2) of the number of stars capable

of superflares (Fig. 2).  It can be seen that, beginning at the time BJD-55240, when about 800 superflares had been

detected in 220 stars, the estimate “stabilizes” at a level of about 380-400 stars (at the latest time n
0 
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Fig. 1.  The distribution of the flares over time (daily).
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1 102 6 10 11 5 16 4

2 42 7 9 12 6 17 1

3 28 8 6 13 1 18 2

4 19 9 6 14 3 19 2

5 11 10 2 15 6 20 14

TABLE 1.  Final Distribution of the Number of Flares for the Stars in the
Complete Sample
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N = 403, with a mean square deviation of 33
0n ), which represents about 0.5% of the total number of stars.

3.  Determination of the superflare frequency distribution function

3.1.  Ambartsumyan’s method.  It is essentially impossible to determine the frequency distribution of

superflares, , by direct counting because of the comparatively small number of detected flares for individual stars.

In 1978 Ambartsumyan [9] proposed a statistical method for determining  that avoided this difficulty.  The

solution used the inverse Laplace transform (L-1) of the observed function 011 mtm :

, 
01

11

m

tm
Lm

(4)

where

deNtm t
1

is the number of new flare stars per unit time at time t.  In particular, for the initial time t = 0,
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Fig. 2.  The estimated number of stars capable of
superflares.  The X axis is the barycentric Julian date.
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where m  is the average frequency of stellar flares and n(t) is the number of detected flares up to time t.

The observed function 011 mtm  is subject to strong fluctuations, so it is best to smooth the function at

the start.  Ambartsumyan proposed smoothing with the aid of the statistics of second flare stars.  Here, smoothing

is carried out using the formula
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where n
1
(t) is the number of stars with one flare up to time t.

Figure 3 shows the function 011 mtm  calculated by direct counting (squares) and by smoothing (circles)

using Eq. (6), as well as an approximation of these data by an analytic function
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where a = 0.03 and b = 1.

It follows from Eq. (4) that
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Fig. 3.  The function 011 mtm  calculated by direct counting

(squares) and by smoothing (circles), along with an
approximation of these by an analytic function (curve).
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The expression (7) is not a probability density since it is nor normalized because of the singularity of the

integrant at the point 0 .  A similar situation occurred in Ambartsumyan’s paper [9] which proposed and justified

the idea that the actual density function can have the form g , where g  within some neighborhood of the

point 0  takes values equal or close to zero, but is equal to unity outside this neighborhood.  Here it becomes

possible only to determine the number of stars with a flare frequency equal to or greater than a specified flare

frequency.  This approach is used in this paper.  The number of stars corresponding to this approach with a flare

frequency 0  is equal to
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Outside some neighborhood of zero, where it can be assumed that 1g ,
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In this method, the number of nonflaring stars n
0
 is assumed unknown, so that N and m  cannot be determined

separately, but their product mN  is easily estimated with the aid of Eq. (5) using observational data:

. ayd13 -1.N m

0 )0(N 0 )0(N 0 )0(N 0 )0(N 0 )0(N

0.002 227 0.022 36 0.042 12 0.062 5 0.082 2

0.004 162 0.024 32 0.044 11 0.064 4 0.084 2

0.006 126 0.026 28 0.046 10 0.066 4 0.086 2

0.008 103 0.028 25 0.048 9 0.068 4 0.088 1

0.01 86 0.03 23 0.05 8 0.07 3 0.09 1

0.012 73 0.032 20 0.052 7 0.072 3 0.092 1

0.014 62 0.034 18 0.054 7 0.074 3 0.094 1

0.016 54 0.036 16 0.056 6 0.076 2 0.096 1

0.018 47 0.038 15 0.058 6 0.078 2 0.098 1

0.02 41 0.04 13 0.06 5 0.08 2 0.1 1
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Calculated values of 0N , beginning with 00200 .  which corresponds to one flare over the entire

observation period T, are listed in Table 2.

Figure 4 shows a comparison of the calculated values with analogous measurements calculated using the

formula

, 0

k

inN

where k successively takes values k = 1, 2, 3, ..., and Tk0 .  Good agreement with the observed data can be seen

beginning with a frequency of 00200 . .

3.2.  The method of moments.  Another method for determining the flare frequency distribution function has

been proposed [10].  This method essentially involves determining the desired function in terms of the characteristic

moments of the distribution. The initial data are the observed numbers of flares, which can be used to calculate the

moments of the distribution of the number of flares.  Using the equations
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Fig. 4.  A comparison of calculated values of )( 0N

with analogous observations.
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where, in particular, ik  are the statistical moments of the distribution of the number of flares and i  are  the

statistical moments of the frequency distribution of the flares, it is possible to express the moments of the flare

frequency distribution function in terms of the corresponding moments of the number of flares:
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Substituting the empirical moments of the distribution of the number of flares in Eq. (8), we obtain the

corresponding empirical moments of the flare frequency distribution function.  Thus, the problem reduces to deter-

mining the distribution function using the known moments of the distribution.  This was done [10] using a method

for fitting curves from a family of Pearson distributions by the method of moments [11].  The type of distribution

is determined by the quantities β
1
, β

2
, and k, where

Fig. 5.  A comparison of the observed distribution of the
number of flares with the theoretically calculated
distribution.
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By using the estimate of the overall number of stars found in the previous section and varying it within the

limits of error, it is possible to calculate β
1
, β

2
, and k and to determine the type of distribution for which the agreement

between the observed distribution of the number of flares and the theoretically calculated distribution (Fig. 5) will

be best.

It turned out that the distribution function can be represented in a Pearson type I distribution (  distribution),
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where ˆ  is the average distribution and ( aˆ ) is the lower limit of the distribution.  The corresponding upper limit

will be ( bˆ ).

The parameters of the distribution are: 0080.ˆ , a = 0.006 b = 0.140, C = 16.368, m
1

 = -0.861, and m
2

 = 2.176.

Figure 6 shows a comparison of the density functions for the distribution obtained by Ambartsumyan’s method and

by the method of moments.  These functions essentially coincide after a superflare frequency of 0040. d-1.

A comparison of the distribution functions obtained in this paper and in Ref. 3 by the method of moments

is shown in Fig. 7, where the points correspond to the distribution from Ref. 3.

Fig. 6.  A comparison of the density functions of the
distribution obtained by Ambartsumyan’s method and
by the method of moments.
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4.  Conclusion

This paper discusses a statistical study of a sample of 1547 superflares in 279 stars discovered during an

analysis of data on more than 80000 solar-type stars (obtained with the Kepler orbital observatory over its first 500

days of observations).

An estimate has been obtained for the total number of stars capable of superflares.  The temporal behavior

of this estimate indicates, as opposed to the previous estimate [3], that it is very close to the true value.  We may

conclude that the number of stars capable of superflares is roughly 0.5% of the total number of all the solar-type stars

that were studied.  This most likely indicates that “superflaring” stars of the solar-type either have some rarely

encountered feature(s) or are in a short-duration phase of their evolution.  Unavoidable observational errors, incorrect

classification of the stars, etc., can hardly affect the main conclusion that the overwhelming majority of solar-type

stars cannot produce superflares over a time comparable to the lifetime of these stars.

The superflare frequency distribution function for the complete sample of stars has been determined by two

independent methods.  The resulting functions are in good agreement with one another and with an analogous

function obtained previously, as well as with the available observational data.  A slight discrepancy can be seen

within a narrow range of low superflare frequencies; this is not surprising, since observations with a duration of

T = 500 days contain little information on frequencies on the order of 1/T or below.  Applications of these functions

will be discussed in subsequent papers.

This study was supported by the State Committee on Science of the Ministry of Education and Science of

the Republic of Armenia as part of scientific project No. SCS 15T-1C081.

Fig. 7.  A comparison of the distribution functions
obtained in this paper and in Ref. 3 by the method of
moments.
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