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HYPERSURFACE HOMOGENEOUS COSMOLOGICAL MODEL
IN MODIFIED THEORY OF GRAVITATION

S. D. Katore1, S. P. Hatkar2, and R. J. Baxi1

We study a hypersurface homogeneous space-time in the framework of the ) ,( TRf  theory of gravitation

in the presence of a perfect fluid. Exact solutions of field equations are obtained for exponential and

power law volumetric expansions. We also solve the field equations by assuming the proportionality

relation between the shear scalar ( ) and the expansion scalar ( ). It is observed that in the exponential

model, the universe approaches isotropy at large time (late universe). The investigated model is notably

accelerating and expanding. The physical and geometrical properties of the investigated model are also

discussed.
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1. Introduction

Recent observational data regarding high red shift from the Type Ia supernova and cosmic microwave

background anisotropy indicate that the universe is accelerating [1-4]. The explanation of the late time accelerated

expansion of the universe as well as the existence of dark energy (DE) and dark matter (DM) have received
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considerable attention. In the past few decades, the general theory of relativity has been modified in several ways

to consider natural gravitation as a viable alternative to DE [5]. These modified theories are obtained by modifying

the Einstein-Hilbert action in the general theory of relativity because it provides a means for understanding the

problem of DE as well as the possibility for reconstructing the gravitational field theory potentially reproducing late-

time acceleration. Among the various modifications the Rf  theory of gravity is most suitable to explain the exact

nature of accelerated expansion of the universe. The Rf  theory provides a natural unification of early-time inflation

and late -time acceleration [6]. Modified gravity can be categorized into several classes, including Gf  gravity,

GRf  ,  gravity, Tf  gravity and TRf  ,  gravity.

Bertolami et al. [7] proposed a new class of modified theories of gravity by explicitly coupling the arbitrary

function of the Ricci scalar (R) with matter Lagrangian density L
m
. Herko et al. [8] extended this model by coupling

geometry and matter. The TRf  ,  gravity is a modification of the Rf  theory, where T dependence is induced by

quantum effects or exotic nonideal matter configurations [9]. The TRf  ,  action [8] is given as follows:

,  ,
16

1 4 xdLTRf
G

gS m (1)

where TRf  ,  is an arbitrary function of the R and T the energy tensor of the matter is T
ij
, and L

m
 represents matter

Lagrangian density. Harko et al. [8] derived the field equations of TRf  ,  gravity by varying the action S of the

gravitational field with respect to the metric tensor components g
ij
.

In the TRf  ,  theory of gravity, the variation of the matter-energy tensor can be considered with respect to

the metric. Therefore, reconstructing the Friedman-Robertson-Walker (FRW) cosmologies as an appropriate choice of

the function Tf  is possible. Moreover, Azizi [10] studied the wormhole solutions in the framework of TRf  ,

gravity. Naidu et al.[11] explored the FRW space time in relation to the TRf  , . Reddy, Kumar [12] considered the

LRS Bianchi type II space-time with the perfect fluid in the framework of the TRf  ,  gravity. A spherically symmetric

fluid cosmological model with an anisotropic stress tensor in general relativity was studied by Pawar et al. [13]. Sharif

et al. [14] investigated the energy condition in the TRf  ,  gravity for the FRW universe with the perfect fluid. Jamil

et al. [15] reconstructed cosmological models in the context of TRf  ,  gravity and demonstrated that the dust fluid

reproduces the CDM , nonphantom era and phantom cosmology. Houndjo [16] investigated the cosmological

models by using the function TfRfTRf 21 ,  in TRf  ,  gravity. Myrzakulov [17] studied metric-dependent

torsion with the TRf  ,  theory of gravity and derived a model from the geometrical viewpoint. Motivated by the

aforementioned studies, we studied the hypersurface homogeneous space-time in the TRf  ,  theory of gravity.

2. The TRf  ,  theory of gravity and field equations

The stress energy tensor of the matter is as follows:
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. 
2

mijij L
g

g

g
T (2)

Hence, we obtain the field equations of the TRf  ,  gravity model as follows:

,  , ,8

 , ,
2

1
 ,

ijTijTij

Rjij
i

ijijijR

TRfTTRfT

TRfggTRfRTRf
(3)

where ,
 ,

,
 ,

,2
T

TRf
f

R

TRf
fpgT TRijijij  and  is the covariant derivative.

We assume that the function TRf  ,  is given by

, 2 , 1 TfRTRf (4)

where the Tf1  is an arbitrary function of the trace T. Recently, Chaubey and Shukla [18] discussed the Bianchi

type I space time in the context of the TRf  ,  theory of gravitation using the special form of the average scale factor

and obtained a new class of cosmological models. Ram et al. [19] obtained a new class of exact solutions of the

Bianchi type cosmological models in the presence of a perfect fluid for a particular choice of the function

TRTRf 2 , , where  is a constant.

We consider the hypersurface homogeneous space-time as follows

,  , 22222222 dzkySdytBdxtAdtds (5)

where yyykyS sinh , ,sin ,  for k = 1, 0, –1 respectively. tA  and tB  are the cosmic scale functions. The

hypersurface homogeneous space-time is cosmologically crucial. Ram and Verma [20] studied the hypersurface

homogeneous space-time with a bulk viscous term and found some exact solutions. Reddy et al. [21] studied the

Kantowski-Sachs space-time in the presence of a massless scalar field with a flat potential. Katore [22] investigated

the magnetized Kantowski-Sachs inflationary cosmological model in the presence of a mass less scalar field with a

flat potential.

The energy momentum tensor for a perfect fluid is given as follows:

, ijjiij pguupT (6)

where  is the energy density of the fluid, P is the pressure, and iu  represents the four velocity vector of the fluid,

with components (0, 0, 0.1) satisfying  1i
iuu . The equation of state of a perfect fluid is p  with 1 ,0 .

The condition 10   is necessary for the existence of local mechanical stability. Here, the matter Lagrangian can
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be taken as pLm . Further, we choose

. 1 TTf (7)

The corresponding field equations for the metric (7) can be written as follows:

, 528
2

22

2
444 pp

B

k

B

B

B

B
(8)

, 528444444 pp
AB

BA

B

B

A

A
(9)

, 528
2

22

2
444 p

B

k

B

B

AB

BA
(10)

where the subscript 4 is used to denote differentiation with respect to time t.

The volume of the universe is given as follows:

. 2ABV (11)

From Eqs, (8), (9), and (10), we obtain

, 
1

2
44 Vdt

B

k

VVB

B

A

A
(12)

where  represents the constant of integration.

The directional Hubble parameter in the direction of the x, y, and z axes are xH , and yH , zH  respectively,

defined as follows:

. , 44

B

B
HH

A

A
H zyx (13)

The mean Hubble parameter is given by the following:

. 
2

3

1

3

1 444

B

B

A

A

V

V
H (14)

The anisotropy parameter is defined as follows:
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, 
3

1 3

1

2

i

i

H

HH
(15)

where H
i
 (i = 1, 2, 3) are the directional Hubble parameters in the direction of the x, y and z axes respectively. The

expansion scalar ( ) and shear scalar ( ) are defined as follows:

, 
2

3 44

B

B

A

A
H (16)

. 
3

1

2

3
2

4422

B

B

A

A
H (17)

Taking k = 0, we see that Eq. (12) leads to

. 44

VB

B

A

A
(18)

Further, integration of Eq. (18) gives

. exp
1

3 dt
Vc

V
B (19)

Now, we have three independent equations (8)-(10) in four unknowns P, , A, and B. For complete determinacy

of the system, we consider two volumetric expansions namely, exponential and power [25], Because the law of

variation for the Hubble parameter proposed by Berman yields a constant value of the deceleration parameter. This

law is not consistent with our observations. Thus, a new variation of the Hubble parameter is proposed, which led

to two volumetric expansions [25]. The volumetric expansions are as follows [23,24]:

, 3
2

ltecV (20)

, 3
3

mtcV (21)

where c
2
, c

3
, l  and m  are arbitrary positive constants. When 0 < m  < 1, the power law model yields the constant

deceleration parameter q, whereas when m > 1 it yields accelerated expansion. Notably we get an inflationary universe

for q = 0 and m = 1. The exponential expansion model reveals accelerating volumetric expansion.



530

3. Exponential expansion model

Considering Eq. (19) for the volumetric exponential expansion in Eq. (20), we obtain

, 
9

2
exp 3

2

312
12

lte
mc

ltccA (22)

. 
9

exp 3

2

31

1

2 lte
mc

lt
c

c
B (23)

Clearly, from Eqs. (22) and (23), in the early stage of the universe, the values of scale factors of the universe

are approximately constant and increase very slowly for l > 0. At a specific time, the universe suddenly exploded

and expanded to a large extent, which is consistent with the Big Bang scenario. A similar result was obtained by

Singh and Beesham [24] as well as by Katore and Hatkar [26].

Using Eq. (8) and with the help of Eqs. (22) and (23), we write the energy density and pressure as follows:

, 
48

5

16

15 6
2
2

22
lte

c

l
(24)

. 
4816

3 6
2
2

22
lte

c

l
p (25)

Fig.1. Plot of energy density for 12cl .
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From Eqs. (24) and (25), we observe that 0p  and 0  for a specific constant. Notably, the energy density

is a decreasing function of time (see Fig.1). The model behaves like a steady-state model of the universe at large time.

This is analogous to the findings of Das and Sarma [27].  In the literature, the stability of the model was investigated

using the sign of the ratio ddP . Stability occurs when the ratio ddP is positive. Here, the ratio is 051ddP ;

therefore, the model is stable.

The expansion scalar , shear scalar , and deceleration parameter q are obtained as follows:

, 3l (26)

, 
3

3

2

2 lte
c

(27)

. 1q (28)

The deceleration parameter from Eq. (28) indicates that the universe is accelerating. The value of the

expansion scalar is constant; that is, the rate of expansion of the universe is constant. At the early stages of the

evolution of the universe the ratio of the shear scalar to the expansion scalar was nonzero, and as the time increases,

it tended to be zero, which means that the universe was initially anisotropic and at a late time it approached isotropy.

The condition of homogeneity and isotropy, that is, 0lim
t

, formulated by Collins and Hawkins [28], is satisfied

by the present model. The results are similar to those of Singh and Beesham [24], Katore and Hatkar [26], and Adhav

[29].

4. Power Law model

Considering Eq. (19) for the power law volumetric expansion in Eq. (21), we obtain the following:

, 
31

3313

2
312

13

mt
cmmetccA (29)

. 
31

3313
31

1

3
mt

cmmet
c

c
B (30)

The expressions (29) and (30) show that A and B vanish at t = 0. Hence, the model has  initial singularity.

Afterwards, A and B increase indefinitely with the passage of time, which is in complete agreement with the Big-Bang
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model of the universe. The model is similar to those of Akarsu and Kilinc [23] and Adhav [19]. Moreover, the solution

of the field equations is obtained for 20. . Depending on its numerical values,  describes the dust universe

( 0 ), radiation universe ( 31 ), hard universe ( 1 ,31 ), and Zeldovich universe or stiff fluid ( 1) [30].

Therefore, in this model, 20.  represents the inflationary universe.

The energy density and pressure are obtained as follows:

, 
283

15
2

2

t
(31)

. 
283

1
2

2

t
p (32)

Clearly, from Eqs. (31) and (32), 0p , 0 , the energy density is a decreasing function of time. The energy

density was very large at the early stages of evolution of the universe, and as the time increases, it tends to zero.

Thus, the universe may be empty in the far future.  A similar result was obtained by Singh [25]. In the present model,

the ratio is 051ddP ; therefore the model is stable. The behavior of energy density is depicted for the

appropriate choice of physical parameters and integration constants in Fig.2.

The expansion scalar , shear scalar , and deceleration parameter q are expressed as follows:

, 
3

t

m
(33)

Fig.2. Plot of energy density for 2 , 1 .
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, 
3 3tc (34)

. 2q (35)

The ratio of the shear scalar to the expansion scalar indicates that at the early epoch, the universe was

anisotropic and, as time passes, it approaches isotropy. The universe has singularity at t = 0. It starts with an infinite

rate of expansion and an infinite measure of anisotropy. For large time, that is, as t , the shear becomes

insignificant. The condition of homogeneity and isotropy, that is, 0lim
t

, formulated by Collins and Hawkins,

[28] is satisfied in the present model.  The observations by the differential radiometers on the NASA's Cosmic

Background Explorer registered anisotropy in various angle scales. These anisotropies are believed to contain the

entire history of cosmic evolution, including the recombination, and are considered indicative of the geometry and

the material composing the universe. The theoretical arguments [31] and modern experimental data support the

existence of an anisotropic phase, which is transformed into an isotropic one [32]. Our investigations indicate that

the deceleration parameter is positive; that is, the universe was decelerating at the time of inflation; this is in

accordance with modern cosmological observations [1-2].

5. Model III

In this model, we have assumed the proportionality relation of the shear scalar and the expansion scalar for

solving the field equations. The work of Thorne [33] explains the reasons for the assumption. The observations of

the velocity redshift relation for extragalactic sources suggest that the Hubble expansion of the universe is isotropic

today within approximately 30%. More precisely, the redshift studies limit the ratio of the shear scalar to the Hubble

constant to 30.H  in the neighborhood of our galaxy [34-36]. In this connection, Bali etal. [37] pointed out that

for LRS type spatially homogeneous space-time, the normal congruence to the homogeneous hypersurface satisfies

the condition  as constant. Many authors have used this relation to obtain solutions of the field equations [27,38].

This leads to

. nBA (36)

Using Eqs. (8),(9) and (36), we get

. 
1

2
122

2
4

44 Bn

k

B

B
nB (37)
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Equation (37) further reduces to

, 
1

22
2

2
4

nCB
n

k
B (38)

where C is the constant of integration.

Subcase I. C = 0.

From Eq. (38) for C = 0, we have

, 
1

2

2
n

n

t
n

k
A (39)

. 
1

21

2
t

n

k
B (40)

From equations (39) and (40), for 1n , A and B vanish at t = 0; thereafter, they start evolving as time

increases, and, finally, they diverge at large time. The results are similar to those of Akarsu and Kilinc [23] and Adhav

[29]. Moreover, the values of the scalar factors also vanish for k = 0. Thus, this model does not admit a solution for

k = 0.

The energy density of the model is calculated as follows:

, 
1

78 2

2

t

n
(41)

where 
42

78
n .

The expression of energy density obtained in Eq. (41) shows that it is a decreasing function of time. The

energy condition, that is, 0 , is satisfied. In the case of dust fluid 0 , the value of density is positive infinite

for 0 . Furthermore, it is large at t = 0 and tends to zero at large time. Therefore, the universe may be empty in

the far future [25]. The behavior for a suitable physical parameter and other constant is depicted in Fig.3.

The volume V, expansion scalar , shear scalar , and deceleration parameter q become

, 
1

2
22

2
n

n

t
n

k
V (42)
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, 
23

t

n
(43)

, 
3

1

t

n
(44)

. 1
2

1

n
q (45)

The volume of the universe is clearly an increasing function of time t. The universe evolves with an infinite

rate of expansion and anisotropy. Thus, the model represents the early era of the evolution of the universe. This is

consistent with the Big Bang model of the universe. The shear scalar becomes insignificant as t . Furthermore,

the anisotropy is maintained throughout evolution of the universe. From Fig.4, the sign of the deceleration parameter

is negative and positive for n < –2, –1 < n and –2 < n < –1 respectively.

Subcase II. 0C .

From Eq. (38) for 0C , we obtain

, 2 22 nnnn tCnA (46)

. 2 2121 nn tCnB (47)
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Fig.3. Plot of energy density for 1 , 1/3, 1 .
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The values of A and B vanish at t = 0; they start evolving with the passage of time, and as t , they diverge,

which is consistent with the Big Bang model. This solution of the field equations is subjected to the condition

k = 0, 20. . Thus, the model represents the inflationary universe.

The energy density and pressure are obtained as follows:

, 
1

2

1

850

510
22 tn

n
(48)

. 
1

2

1

850

12
22 tn

n
p (49)

For an appropriate choice of physical parameters and other integration constant, the energy density should

be a decreasing function of time (see Fig.5). The energy conditions 0p , 0  are satisfied. The energy density

at the early epoch was large, and as time increases, it gradually decreases, approaching a constant value. Thus, the

universe may be in a steady state in the far future. In that case, we obtain the same result as that obtained in the

study by Das and Sarma [27]. In this model, the ratio is 051ddP ; that is, the model is stable.

The volume V, expansion scalar , shear scalar , and deceleration parameter q for this model are obtained

as follows;

, 2 CtnV (50)
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, 
1

t
(51)

, 
23

2

tn

n
(52)

. 2q (53)

From Eq. (50), the volume of the universe is clearly an increasing function of time. The expansion scalar in

Eq. (51) shows that the rate of expansion is a decreasing function of time. The ratio of the shear scalar to the expansion

scalar is nonzero; therefore, the universe is anisotropic. The value of the deceleration parameter is positive; that is,

the universe is decelerating.  The present model is consistent with recent observational data [1,33,39].

6. Conclusion

In the present paper, we investigated the perfect fluid cosmological model in the TRf  ,  theory of gravitation

framework for the hypersurface homogeneous space-time. Under some specific choices of the parameters, in the

exponential expansion model, the rate of expansion of the universe is constant. The universe is accelerating. The

universe approaches isotropy at large time. In the power law model, we obtained an inflationary decelerating universe.

The present models are consistent with the Big Bang model. The condition of homogeneity and isotropization

formulated by Collins and Hawkins [28] is satisfied by the aforementioned models. The models are valid only for

Fig.5. Plot of energy density.
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k = 0. Both models are stable.

In subcase I of the model III, the anisotropy of the universe is maintained throughout the evolution. The

universe is accelerating for n < –2, –1 < n and decelerating for –2 < n < –1.The model is not valid for k = 0, while

in the subcase II of model III the universe is inflationary. The model has initial singularity at t = 0, and the universe

evolves with an infinite rate of expansion and anisotropy. The physical parameters such as energy density, pressure,

and shear scalar become insignificant at large time. The model is stable.
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