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Abstract
Purpose: The 1:1 spin-orbit resonance phenomenon is widely observed in binary asteroid systems. We aim to investigate
the intrinsic dynamic mechanism behind the phenomenon under the coupled influence of the secondary’s rotation and or-
bital motion. Methods: The planar sphere–ellipsoid model is used to approximate the synchronous binary asteroid. The
Lindstedt–Poincaré method is applied on the spin-orbit problem to find its explicit quasi-periodic solution. Results: Numer-
ical simulations demonstrate that analytical solutions truncated at high orders are accurate enough to describe the orbital
and rotational motions of the synchronous binary asteroid. With the help of the solution, we are able to identify in a more
accurate way the stable region for the synchronous state by using the Lyapunov characteristic exponent. Moreover, the reso-
nances that determine the boundary of the stability region are identified. Conclusion: The stable synchronous state requires
a small eccentricity e of the mutual orbit but permits a large libration angle θ of the secondary. The anti-correlation of θ and
e is confirmed. The stable region for a very elongated secondary is small, which helps explain the lack of such secondaries
in observations (see Table 1 in Pravec et al. in Icarus 267:267–295, 2016). Findings of this study provide insights into the
inherent dynamics that determine the rotational states of a synchronous binary asteroid.

Keywords Binary asteroid · Spin-orbit coupling · Resonance · Stability

1 Introduction

Many moons in the solar system have been confirmed to be
trapped in the 1:1 spin-orbit resonance, where moon’s rota-
tional period approximately synchronizes with its orbital pe-
riod (Antognini et al. 2014). The synchronization makes one
side of the moon always point toward the center body. The
1:1 spin-orbit resonance is also called the synchronous state.
The fascinating phenomenon also present for binary asteroid
systems through radar and photometric observations (Ostro

et al. 2006; Pravec et al. 2006, 2016). With an increasing
interest in asteroid explorations (Daly et al. 2023; Li et al.
2023; Chen 2023), studying the intrinsic dynamics of spin-
orbit resonances is important because it helps us better con-
strain properties of the asteroids with limited observations
(Wang and Hou 2020).

Studies till now have found some important dynamic
mechanisms that shape the evolution history of binary
asteroids. For example, the binary Yarkovsky–O’Keefe–
Radzievskii–Paddack (BYORP) effect of a synchronous or
doubly-synchronous binary asteroid system can constantly
modify the mutual orbit (Ćuk and Burns 2005). A satel-
lite orbit drift, presumably caused by the BYORP effect,
has been already observed in two binary near-Earth aster-
oids (Scheirich et al. 2021). Jacobson et al. (2014) propose
the hypothesis that additional energy from the BYORP ef-
fect can cause the loss of synchronicity in binary asteroids.
Another typical mechanism is the tide which produces a
torque that transfers the angular momentum between the ro-
tation and the revolution. The tidal torque may drive the
satellite’s rotation toward the synchronous state even if its
magnitude is smaller than the radiative torque (Goldreich
and Sari 2009). Evidence suggests that the spin-orbit dy-
namics, together with other mechanisms plays an important

� X.-Y. Hou
houxiyun@nju.edu.cn

B.-S. Li
bosheng-li@smail.nju.edu.cn

P. Tan
dg20260008@smail.nju.edu.cn

1 School of Astronomy and Space Science, Nanjing University,
Nanjing, 210023, China

2 Institute of Space Environment and Astrodynamics, Nanjing
University, Nanjing, 210023, China

3 Key Laboratory of Modern Astronomy and Astrophysics,
Ministry of Education, Nanjing, 210023, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-024-04291-w&domain=pdf
mailto:houxiyun@nju.edu.cn
mailto:bosheng-li@smail.nju.edu.cn
mailto:dg20260008@smail.nju.edu.cn


28 Page 2 of 15 B.-S. Li et al.

role in the evolution processes of binary asteroids (Jacobson
and Scheeres 2011a). In the current study, we focus only on
the spin-orbit dynamics, more specifically, the 1:1 spin-orbit
resonance in a synchronous binary asteroid system.

Due to the strong spin-orbit coupling (Compère and
Lemaître 2014; Hou et al. 2017), assuming the mutual orbit
as an invariant ellipse (see examples in Goldreich and Peale
(1966), Murray and Dermott (2000)) is not suitable for a bi-
nary asteroid with a large secondary and a very close mutual
orbit distance. Such a state, i.e., a non-negligible secondary,
irregular shapes of the two asteroids, and a close mutual dis-
tance, is widespread in the population of observed binary
asteroids (Margot et al. 2015). The full two-body problem
(F2BP) is often used to describe the spin-orbit coupling in
binary asteroid systems (Scheeres 2002, 2009; Chappaz and
Howell 2015; Wang and Hou 2021). Considering the im-
portance of the strong coupling between the secondary’s ro-
tation and the mutual orbit, the F2BP is reduced to a two-
degree-of-freedom system, namely planar sphere–ellipsoid
model (Scheeres 2009; McMahon and Scheeres 2013), un-
der the following assumptions: (1) The primary body P is
regarded as a rigid sphere with a radius rP, which is equiv-
alent to the mass point mP. That is to say, the primary’s
spin is ignored. (2) The secondary S with mass mS is re-
garded as a triaxial rigid ellipsoid with three semi-major
axes aS ≥ bS ≥ cS. The main non-spherical gravity, J2 and
J22 terms are considered. (3) The secondary spins along
its shortest axis with its equator coinciding with the orbital
plane. Note that the mutual motion no longer moves on a
given Keplerian orbit but interacts with the secondary’s ro-
tation.

Equations of motion (EOM) of the planar sphere–ellip-
soid model in secondary’s body-fixed frame admit that the
strict 1:1 spin-orbit resonance is the equilibrium point (EP)
and periodic orbits exist in the vicinity of the EP. To study
the stability of librational motion around the EP, McMa-
hon and Scheeres (2013) utilize energy to determine a suf-
ficiency condition of the stability bound by zero-velocity
curves (ZVCs). They find bounded periodic orbits with open
ZVCs and study sufficient conditions for unbounded motion.
Wang and Hou (2020) compute two families of periodic or-
bits for a synchronous secondary by the predict–correct al-
gorithm and use the two families to study the stability of
the 1:1 spin-orbit resonance. The limitation of their study is
that the analytical solution is truncated at the lowest order,
making them improper for large values of orbit eccentricity
or libration amplitude. On the other hand, analytical expres-
sions of invariant tori, i.e., periodic and quasi-periodic mo-
tions, in the spin-orbit problem are already investigated by
Celletti (1994), Celletti and Chierchia (2008), Calleja et al.
(2022), but their model assumes an invariant mutual orbit
which may be invalid for a binary asteroid.

Inspired by these studies, we construct analytical solu-
tions to high orders in the planar sphere–ellipsoid model.
The method used is the well-known Lindstedt–Poincaré
(LP) method (Jorba and Masdemont 1999; Li and Hou
2023), which is seldom applied to the study of the sphere–
ellipsoid model. In contrast to the numerical approach
(Zhang et al. 2023), or the approach of normalizing the
Hamiltonian (Gkolias et al. 2016), the LP method directly
obtains explicit high-order analytic solutions. The high-
order solution allows us to describe the motion of the syn-
chronous binary asteroid in a more accurate way. Based on
the solution, the contour map of Lyapunov characteristic ex-
ponent (LCE) on the ‘momentum’ plane is generated. Spe-
cific structures appear at the boundary of the stability region
in the contour maps, and these structures are found to be
related with resonances. By this way, we are able to identify
the major resonances that determine the stability boundary
of a secondary’s rotational motion in a synchronous binary
asteroid. By changing values of the mass ratio, the mutual
orbit distance, the orbital eccentricity, and the secondary’s
elongation, we are able to describe these parameters’ influ-
ence on the stability of the 1:1 spin-orbit resonance.

The remaining of the paper is as follows: Sect. 2 intro-
duces the planar sphere–ellipsoid model, including the EOM
in the secondary’s body-fixed frame, the EP which corre-
sponds to the exact synchronous state, and the expansion
of the EOM around the EP. Then, an algorithm based on
the LP method is proposed to construct high order analyt-
ical solutions in Sect. 3. Section 4 checks the accuracy of
the analytical solution by comparing it with numerical in-
tegration. Based on the analytical solution, Sect. 5 gener-
ates contour maps of the LCEs on the ‘momentum’ plane
and identifies the resonances that determine the boundary of
the stability region for the secondary’s rotational motion in
the synchronous binary asteroid. By changing values of the
parameters such as the mass ratio and the mutual orbit dis-
tance, we are able to describe their influence on the stability
region. Section 6 concludes the study.

2 Model description

2.1 Planar sphere–ellipsoid model

Our model focuses on the planar motion of a synchronous
secondary. It is convenient to describe the rotation of the
secondary by taking its centroid as the origin of the coordi-
nate system. As shown in Fig. 1, the X-axis is fixed on the
secondary’s longest equatorial axis, and the x-axis points to
the inertial direction. The angle between the two axes, θS

represents the secondary’s rotation. r is the position vector
and θ is the primary’s revolution angle (so-called the sec-
ondary’s libration angle with respect to r in many papers)
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Fig. 1 A perpendicular view of the relative geometry of the sphere–
ellipsoid model. The primary body moves around the secondary.
O − XY is the body-fixed frame of the secondary

in the body-fixed frame. The dashed line indicates that we
approximate the real binary asteroid as a sphere and an el-
lipsoid. In this study, we derive the system’s EOM from its
Hamiltonian. The potential function V and kinetic energy T

of the system are

V = GmPmS

[
1

r
+ 1

2r3 (A1 + A2 cos 2θ)

]
,

T = 0.5μ
[
ṙ2 + r2(θ̇ + θ̇S

)2]+ 0.5ISθ̇2
S ,

(1)

where mP and mS are the masses of the primary and the
secondary, respectively; G is the gravitational constant; A1

and A2 are coefficients related to the J2, J22 terms; μ is
the system’s reduced mass; IS is the secondary’s moment of
inertia; and their expressions are

A1 = 0.1
(
a2

S + b2
S − 2c2

S

)
, A2 = 0.3

(
a2

S − b2
S

)
,

μ = mPmS/ (mP + mS) , IS = 0.2mS

(
a2

S + b2
S

)
,

(2)

Where aS, bS and cS are the secondary’s three semi-major
axes. Immediately we obtain the conservative system’s La-
grangian function,

L = T + V. (3)

Define r , θ , θS as the generalized coordinates, correspond-
ing conjugated variables are

p1 = μṙ, p2 = μr2 (θ̇ + θ̇S
)
,

p3 = μr2 (θ̇ + θ̇S
)+ ISθ̇S.

(4)

Substituting Equation (4) into Equation (1), we obtain the
Hamiltonian,

H = T − V

= 1

2μ

(
p2

1 + p2
2

r2

)
+ (p3 − p2)

2

2IS

− GmPmS

[
1

r
+ 1

2r3 (A1 + A2 cos 2θ)

]
.

(5)

Furthermore, the EOM in the canonical form is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ = ∂H/∂p1 = p1/μ

θ̇ = ∂H/∂p2 = p2/
(
μr2

)
− (p3 − p2) /IS

θ̇S = ∂H/∂p3 = (p3 − p2) /IS

ṗ1 = −∂H/∂r

= p2
2/
(
μr3

)

− GmPmS

[
1/r2 + 1.5 (A1 + A2 cos 2θ) /r4

]

ṗ2 = −∂H/∂θ = −GmPmSA2 sin 2θ/r3

ṗ3 = −∂H/∂θS = 0

. (6)

The system seems to have three degrees of freedom. Since
θS called the cyclic coordinate does not appear in the Hamil-
tonian, p3 is an integral of motion. Obviously, p3 is the
system’s total angular momentum and it is conserved, i.e.
p3 ≡ K . We use the integral of motion to reduce one degree
of freedom, and obtain the EOM in the form of second-order
ordinary differential equations,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r̈ = r

(
ISθ̇ + K

μr2 + IS

)2

− G(mP + mS)

[
1

r2
+ 3

2r4 (A1 + A2 cos 2θ)

]

θ̈ = −2
ṙ
(
ISθ̇ + K

)
r
(
μr2 + IS

)

− G(mP + mS)A2 sin 2θ

r5
− GmPmSA2 sin 2θ

ISr3

. (7)

We have to remark that conservation of the angular mo-
mentum has already been used by many previous studies
(Scheeres 2009; McMahon and Scheeres 2013; Wang and
Hou 2020).

2.2 Expansion of the EOM

If the binary asteroid is trapped in the strict synchronous
state, the primary’s orbital period is equal to the secondary’s
rotation period. As a result, P appears stationary in the
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body-fixed frame. That is to say, the strict 1:1 spin-orbit res-
onance is equivalent to an EP of Equation (7). For the planar
sphere–ellipsoid model, there are two types of EPs. One type
of EP is at the X-axis of the secondary’s body-fixed frame
(θ = 0), i.e., the secondary always has its longest axis point-
ing towards the primary. The other type of EP is at the Y -axis
(θ = π/2), i.e., the secondary always has its short axis point-
ing towards the primary. The EP’s Lyapunov stability is dis-
cussed in Scheeres (2004), Bellerose and Scheeres (2008),
based on the planar sphere-ellipsoid model. Depending on
the mass ratio, the secondary’s elongation, and the mutual
orbit distance, the stability of the two types of EP may be
different. For example, the EP on the X-axis is assumed to
be stable in our work, but it is not always the case. It can
be unstable when the secondary is too elongated or is too
close to the primary, or its mass ratio with respect to the pri-
mary is too large (Scheeres 2009). Even though, most of the
time, the EP on the X-axis is stable, such as the example
binary asteroid systems used in this study. In the following
study, we will focus on this type of EP. In a real synchronous
binary asteroid, the secondary is usually not in an exact res-
onance state. This means the primary P oscillates around
the EP in the secondary’s body-fixed frame. We study the
synchronous state, i.e., the 1:1 spin-orbit resonance by ex-
panding the EOM around the stable EP. To simplify the fol-
lowing derivation, and make the calculation at a reasonable
scale, hereafter we adopt the following dimensionless units
of mass, length, and time:

[M] = mP + mS, [L] = r0, [T ] =
√

[L]3 /G [M], (8)

where r0 is the distance from the origin to the stable EP.
Substituting the above dimensionless units and r = r0 + ρ

into Equation (7), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̈ = (r0 + ρ)
(
ISθ̇ + K

)2
[
μ(r0 + ρ)2 + IS

]2 − 1

(r0 + ρ)2

− 3

2(r0 + ρ)4 (A1 + A2 cos 2θ)

θ̈ = −2
ρ̇
(
ISθ̇ + K

)
(r0 + ρ)

[
μ(r0 + ρ)2 + IS

]

− A2 sin 2θ

[
1

(r0 + ρ)5
− μ

IS(r0 + ρ)3

]

. (9)

For the purpose of using the Lindstedt–Poincaré method (see
Sect. 3) to construct the high-order analytical solution of
Equation (9), we further expand its right function into the
power series of ρ and θ . Neglecting the tedious (but not dif-
ficult) process of Taylor expansion, the final expressions of

EOM are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̈ = c1 + c2ρ + c3θ̇ + c4θ̇
2 +

∞∑
i=1

c5ρ
i θ̇

+
∞∑
i=1

c6ρ
i θ̇2 +

∞∑
i=2

�i/2�∑
j=0

ϕijρ
i−2j θ2j

θ̈ = c7θ + c8ρ̇ + c9ρ̇θ̇ +
∞∑
i=1

c10ρ
iρ̇ +

∞∑
i=1

c11ρ
iρ̇θ̇

+
∞∑
i=2

�(i+1)/2�∑
j=1

ψijρ
i−2j+1θ2j−1

,

(10)

where cn, n = 1,2, . . . ,11, ϕij , ψij are coefficients and their
detailed expressions are given in the Appendix.

3 Quasi-periodic solution

In this section, an algorithm based on the LP method is pro-
posed to solve Equation (10). Generally speaking, the LP
method divides the nonlinear EOM into many linear systems
of equations with orders (to be defined later) from zero to
infinity, and the higher-order equations are obtained by sub-
stituting the low-order solutions into the EOM. As a start-
ing point, the 1st order solution is easily found. Though the
general solution of a complex nonlinear system is unavail-
able, its quasi-periodic solution can be asymptotically ap-
proached. The major benefit of this approach is that the ex-
plicit analytical solution can be computed to very high or-
ders on the computer.

3.1 0th and 1th order equations

Collecting all the constant terms in Equation (10), we have
its 0th order part,

c1 = −1.5 (A1 + A2) r−4
0 − r−2

0 + K2r0

(
IS + μr2

0

)−2 = 0.

(11)

The above equation indicates that the EP’s position is deter-
mined by the total angular momentum for a system of de-
fined shape and mass. We remark that there are usually two
solutions satisfying Eq. (11) for a fixed value of K . One is
stable and further away from the secondary, and the other
is usually unstable and closer to the secondary (Scheeres
2009). Our study focuses on the outer stable equilibrium
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point. The 1st order part, namely the linear part of the EOM
is{

ρ̈ = c2ρ + c3θ̇

θ̈ = c7θ + c8ρ̇
, (12)

and its characteristic equation is

λ4 − (c2 + c7 + c3c8) λ2 + c2c7 = 0. (13)

For motion around the stable EP, there are two pairs of imag-
inary roots of Equation (13), i.e. λ = ±iω0, ±iν0 (ω0 < ν0).
Lyapunov’s center theorem tells us that two families of pe-
riodic orbits emanate from the stable EP if ω0 and ν0 are
incommensurable. Since the two basic frequencies both ex-
ist, we aim to find the quasi-periodic solution of Equation
(10). The free solution of Equation (12) can be written as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ = α cos θ1 + β cos θ2

θ = −
(
ω0

2 + c2

)
(ω0c3)

−1α sin θ1

−
(
ν0

2 + c2

)
(ν0c3)

−1β sin θ2

, (14)

where θ1 = ω0t + θ1i, θ2 = ν0t + θ2i. θ1i and θ2i are ini-
tial phase angles. α and β are the amplitude parameters
of the long and the short period component, respectively.
Wang and Hou (2020) gave the physical interpretation of
the two components. If we approximatively treat the libra-
tion around the EP as a pendulum motion, the long-period
frequency θ̇1 is the free libration frequency, and the short-
period frequency θ̇2 is the forced libration frequency. More-
over, the long-period amplitude α and the short-period am-
plitude β are indicators of the maximal libration angle θmax

and the mutual orbit eccentricity e, respectively. There ex-
ists approximate relations that

(
ω0

2 + c2
)
(ω0c3)

−1α ∼ θmax

and βr−1
0 ∼ e. A particular quasi-periodic orbit is defined by

given values of the four integral constants, α, β , θ1i, θ2i.

3.2 High-order analytical solution

The part of Equation (10) beyond order 2 is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̈ = c4θ̇
2 +

∞∑
i=1

c5ρ
i θ̇ +

∞∑
i=1

c6ρ
i θ̇2

+
∞∑
i=2

�i/2�∑
j=0

ϕijρ
i−2j θ2j

θ̈ = c9ρ̇θ̇ +
∞∑
i=1

c10ρ
iρ̇ +

∞∑
i=1

c11ρ
iρ̇θ̇

+
∞∑
i=2

�(i+1)/2�∑
j=1

ψijρ
i−2j+1θ2j−1

. (15)

Substituting Equation (14) into Equation (15), we can obtain
the 2nd order equations, from which the solution of order 2
is solved. Substituting the solutions of order 1 and order 2
into Equation (15), we can obtain the 3rd-order equations.
The process is repeated to obtain higher-order solutions. The
quasi-periodic solution of arbitrary order can be written in
the general form,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ =
∑

i,j,p,q

ρijpqαiβj cos (pθ1 + qθ2)

θ =
∑

i,j,p,q

θijpqαiβj sin (pθ1 + qθ2)

, (16)

where i, j , p, q are integers. i and j are the exponents of
the small parameters α and β , and they define the order n

(n = i + j ). p and q are the linear coefficients of θ1 and
θ2. Taking the nonlinear effect into account, the LP method
expands the two basic frequencies as the power series of α,
β , in the form of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇1 =
∑
i,j

ωijα
iβj

θ̇2 =
∑
i,j

νij α
iβj

. (17)

We have obtained the lowest-order solution in Sect. 3.1:

ρ1010 = 1, ρ0101 = 1,

θ1010 = −ω2
0 + c2

ω0c3
, θ0101 = −ν2

0 + c2

ν0c3
,

ω00 = ω0, ν00 = ν0.

The lowest-order solution contains only cosine terms or sine
terms in ρ or θ , respectively. Suppose that there are only
cosine terms in ρ and only sine terms in θ for the solution of
order n − 1 (n > 1). Substituting the previous solutions into
Equation (15), its right functions only produce cosine terms
in ρ and only sine terms in θ . As a result, the solution of
order n also satisfies the rule. In a word, the quasi-periodic
solution of arbitrary order satisfying Equation (16) is proved
by Mathematical Induction.

The above recursive process can be carried out to high
orders with the aid of a computer. For symbolic computa-
tions on computers, actually the coefficients in Eq. (16) are
treated. When solving the n-th order solution, extracting all
terms of order n, one can obtain linear equations of the un-
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known and the known in the general form that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−(ω0p + ν0q)2 − c2

]
ρijpq − c3 (ω0p + ν0q) θijpq

= 
ijpq + δp1δq0 (2ω0 + c3θ1010)ωi−1,j

+ δp0δq1 (2ν0 + c3θ0101) νi,j−1[
−(ω0p + ν0q)2 − c7

]
θijpq + c8 (ω0p + ν0q)ρijpq

= φijpq + δp1δq0 (2ω0θ1010 − c8)ωi−1,j

+ δp0δq1 (2ν0θ0101 − c8) νi,j−1

,

(18)

where 
ijpq and φijpq are the coefficients of the known
terms produced by the right functions of Equation (15).
The unknown ρijpq , θijpq , ωi,j−1, νi,j−1 are obtained from
Equation (18) in the following three cases:

(1) If p = 1 and q = 0, Equation (18) can be reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
−ω0

2 − c2

)
ρijpq − c3ω0θijpq

= 
ijpq + (2ω0 + c3θ1010)ωi−1,j

c8ω0ρijpq +
(
−ω0

2 − c7

)
θijpq

= φijpq + (2ω0θ1010 − c8)ωi−1,j

. (19)

Since
(−ω0

2 − c2
) (−ω0

2 − c7
) + c3c8ω

2
0 = 0, for the

above equation to have a solution, one requires that

−ω2
0 − c2

c8ω0
= 
ijpq + (2ω0 + c3θ1010)ωi−1,j

φijpq + (2ω0θ1010 − c8)ωi−1,j

. (20)

ωi−1,j is obtained from the above equation, in the form of

ωi−1,j

= −
(
ω2

0 + c2
)
φijpq + c8ω0
ijpq

[ω0 (2ω0 − 1) − c2] c8 + [2 (ω0 + c2) + c3c8]ω0θ1010
.

(21)

We set θijpq = 0, then

ρijpq = [
ijpq + (2ω0 + c3θ1010)ωi−1,j

](−ω0
2 − c2

)−1
.

(2) If p = 0 and q = 1, Equation (18) can be reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
−ν0

2 − c2

)
ρijpq − c3ν0θijpq

= 
ijpq + (2ν0 + c3θ0101) νi,j−1

c8ν0ρijpq +
(
−ν0

2 − c7

)
θijpq

= φijpq + (2ν0θ0101 − c8) νi,j−1

. (22)

Since
(−ν0

2 − c2
) (−ν0

2 − c7
)+ c3c8ν

2
0 = 0, for the above

equation to have a solution, one requires that

−ν2
0 − c2

c8ν0
= 
ijpq + (2ν0 + c3θ0101) νi,j−1

φijpq + (2ν0θ0101 − c8) νi,j−1
. (23)

νi,j−1 is obtained from the above equation, in the form of

νi,j−1

= −
(
ν2

0 + c2
)
φijpq + c8ν0
ijpq

[ν0 (2ν0 − 1) − c2] c8 + [2 (ν0 + c2) + c3c8]ν0θ0101
.

(24)

We set θijpq = 0, then

ρijpq = [ϕijpq + (2ν0 + c3θ0101) νi,j−1
](−ν0

2 − c2

)−1
.

(3) ρijpq and θijpq can be directly solved from Equation
(18) except the above two cases. There are no corrections to
the basic frequencies in these general cases.

The indexes i, j , p, q are loop variables in the LP algo-
rithm. |p| ≤ i, |q| ≤ j , p ≥ 0, and p, q have the same parity
as i, j , respectively. This is similar to the example in Jorba
and Masdemont (1999). These properties of the loop vari-
ables ensure that all of the coordinates’ coefficients of order
n and the basic frequencies’ coefficients of order n − 1 are
computed from the equations of order n. The solution com-
puted by the algorithm has to be truncated at finite orders
in practice. Nevertheless, our quasi-periodic solution trun-
cated at a high order provides a good approximation of the
original system, and we will show that in the next section.

4 Numerical simulations

4.1 An example based on DPM

On one hand, we construct the high-order analytical so-
lution based on the dynamical and physical properties of
Didymos’s predicted model (DPM) in Michel et al. (2016).
These properties are aS = 103 m, bS = 79 m, cS = 66 m,
[L] = 1180 m, [M] = 5.3 × 1011 kg, mS/[M] = 0.0092.
We note that these values are different from the recent re-
sults obtained by Daly et al. (2023). The predicted model’s
secondary is more elongated. Nevertheless, we still use the
predicted model in accordance with the previous work by
Wang and Hou (2020). Influence of the secondary’s shape on
the stability will be discussed later. Table 1 lists coefficients
of the analytical solution. We set α = 0.0003, β = 0.02,
θ1i = θ2i = 45◦ as an example, whose maximal libration an-
gle is about 2◦. Then the analytical orbit (ρA, θA) is obtained
by Equation (16). On the other hand, we compute the nu-
merical orbit (ρN, θN) by integrating the original EOM (see
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Table 1 Coefficients of the analytical solution

i j p q ρijpq θijpq i j ωij νij

0 1 0 1 1.00000E+00 −7.96166E+00 0 0 8.61863E-01 1.01356E+00

1 0 1 0 1.00000E+00 5.82930E+01 0 2 −2.59572E+01 −3.45582E+00

0 2 0 0 1.64181E+00 0.00000E+00 2 0 −6.61671E+02 −1.90051E+02

0 2 0 2 −4.75835E-01 4.26451E+00 0 4 −1.91659E+02 −1.12551E+02

1 1 1 −1 1.29617E+00 1.02493E+02 2 2 −1.52105E+05 1.36698E+04

1 1 1 1 −1.49831E+00 −1.72203E+01 4 0 −2.24393E+05 1.12750E+06

2 0 0 0 5.98355E+00 0.00000E+00 0 6 −1.93124E+04 −2.06421E+04

2 0 2 0 1.99571E+00 −3.27713E+01 2 4 2.84072E+07 −8.05976E+06

Note: the complete table listing coefficients of the analytical solution up to order 12 in machine-readable format is available online. The coefficients
in the table are dimensionless.

Equation (9)) with the initial values given by the analyti-
cal solution. To check the accuracy of the analytical solu-
tion, we compare it with the numerical results. Obviously,
ρA = ρN , θA = θN at the initial moment. The difference be-
tween (ρA, θA) and (ρN, θN) increases along with the time.
The norm of the deviation D (t) in the phase space is used
as an indicator of measuring the accuracy,

D (t) = ((ρA − ρN)2 + (θA − θN)2

+ (p1A − p1N)2 + (p2A − p2N)2)1/2
,

(25)

where p1 and p2 are the conjugated variables defined
in Equation (4). In addition, it is convenient to define
Dmax (t) = max (D(t)), t ∈ [t0, t] to eliminate the effect of
periodic terms.

Figure 2 shows the accuracy of the analytical solution in
the time interval 0 ≤ t ≤ 103. An obvious phenomenon in
the figure is that the accuracy increases with an increase in
the order of the analytical solution, which verifies the ac-
curacy of the expansion (see Equation (10)) and the LP al-
gorithm (see Sect. 3.2). However, the computational accu-
racy prevents the increase of the analytical solution’s accu-
racy when it is constructed to a high order. Currently, the
double-precision floating point is used to compute the ana-
lytical solution in our FORTRAN program. Under the ex-
ample parameters, the analytical solution of order 11 has the
best performance, so the red line in the figure nearly coin-
cides with the gold one. In our work, the analytical solution
is always constructed to reach the best-performance order.
The analytical solution’s accuracy can be further improved
by using floating point with more bytes, but it is accurate
enough to do further study. As shown in the left panel of
Fig. 2, these lines rapidly oscillate in the short run due to the
effect of periodic terms. Besides, there is a continual growth
of the deviation in long-term evolution due to the truncation
in the analytical frequencies.

4.2 Valid domain in α − β plane

Since the discrepancy in the frequencies dominates the long-
term accuracy of the analytical orbit, we introduce another
accuracy criteria,

�i = lg
(|θ̇i − fi |/θ̇i

)
, i = 1 or 2, (26)

which indicates the relative error between the basic fre-
quency obtained from Equation (17) and its true value fi .
The accuracy criteria of the analytical solution of order 11
in α − β plane are calculated by the following four steps:
(1) We fix the two initial phase angles, θ1i = θ2i = 45◦, and
change the values of α and β . The α−β plane is divided into
a 50 × 50 grid, and every node indicates a particular orbit.
(2) As for a specific node, the analytical solution of order 11
gives the positions and velocities at time t = 0. The discrete
trajectory is computed by numerically integrating Equation
(9). (3) f1 and f2 are then obtained by using the NAFF_UV
code to analyze the two basic frequencies of the discrete tra-
jectory (Skoufaris 2021; Laskar 1990; Laskar et al. 1992;
Papaphilippou 2014). In a trajectory, we sample a value of θ

every time step π/2, and a total of 210 data are input into the
NAFF_UV code for frequency analysis. (4) Substituting fi

and the analytical θ̇i into Equation (26), �i are immediately
obtained.

Figure 3 can be used to estimate the valid domain of the
analytical solution (truncated at order 11) for DPM in the
α − β plane. What can be clearly seen in this figure is that
the analytical solution’s accuracy decreases with an increase
in the amplitude parameters α and β . The deeper the red, the
larger the discrepancy in the frequencies. We believe that the
analytical solution is not valid for those regions with very
dark red color. In addition, some special structures remind
us of the existence of resonance, and we will discuss this
interesting dynamical mechanism in Sect. 5.
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Fig. 2 Time history of D (t) and
Dmax (t). Dimensionless units
are used in the coordinate axes.
The deviations between the
numerical solution and the
analytical one of orders 5, 8, 11,
and 12, are plotted in different
colors

Fig. 3 Contour maps of �1 (left
panel) and �2 (right panel) in
the α − β plane. The bar is
colored according to the values
of �i

4.3 Quasi-periodic orbits

Once the initial conditions are given, the orbit is uniquely
determined by Equation (9). We use the analytical solu-
tion to provide the initial conditions and transform the in-
tegrating results from the polar coordinates (r, θ) to the
Cartesian coordinates (X,Y ) by X = (r0 + ρ) cosθ and Y =
(r0 + ρ) sin θ . Some example orbits are illustrated in Fig. 4.
The blue orbit (α = 0.005) is far more elongated than the
red orbit (β = 0.005), which indicates that α has a main in-
fluence on the orbital amplitude if the two amplitude param-
eters are equal. When both of the long and the short period
components exit, the quasi-periodic orbits never come back
to previous positions in a ‘period’ due to the incommensu-
rability of the two basic frequencies but move within limits
for a long time.

5 Stability, chaos and resonance

The numerical simulation reveals that the analytical solu-
tion is a good approximation of the quasi-periodic motion in
the planar synchronous binary asteroid. In this section, we
investigate the dynamics of the synchronous state with the
help of the high-order solution. DPM is taken as an example
to show the results.

5.1 Stable region for the synchronous state

When the 1:1 spin-orbit resonance occurs, the resonance an-
gle θ librates within (0◦,360◦). If θ > 90◦, the angle would
circulate because of the rotational symmetry in the planar
sphere–ellipsoid model. Thus, the libration threshold is set
at 90◦ to judge whether the synchronous state is broken. As
mentioned above, a combination of α and β represents a par-
ticular orbit after fixing the two initial phases. We still set the
maximal integration time tmax = 103, and θ1i = θ2i = 45◦.
If θN is within the libration threshold of 90◦ for a specific
combination of α and β , it means that the corresponding
synchronous state is stable, at least within the integration
time.

As shown in Figs. 5(a) and 5(b), the synchronous state
is preserved at the blue points, while it is broken at the red
points within the integration time. The abscissa and the ordi-
nate are the indicators of θmax and e, respectively. By using
the linear solution to provide the initial conditions, Wang
and Hou (2020) draw the stable region within a short inte-
gration time, and find the anti-correlation of θ and e. That is
to say, for a synchronous binary asteroid, the larger its orbit
eccentricity, the smaller the secondary’s libration amplitude.
However, the stability contour map based on the linear so-
lution and a short time integration (150 dimensionless time
in Wang and Hou (2020) approximates to 38 dimensionless
time in this paper) is unreliable, due to the accuracy limit of
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Fig. 4 Some example orbits with different amplitude parameters. We set the maximal integration time tmax = 103, and θ1i = θ2i = 45◦ in the
computation of these orbits

Fig. 5 Stable region for the synchronous state and an example of the
resonance orbit. Blue represents stable synchronous state while red
represents broken synchronous state within 103 dimensionless time in
the stability contour maps (left and middle frames). The contour maps
are firstly drawn on the α −β plane. Then we approximately transform

the α − β plane into the θmax − e plane by the relationships shown in
the abscissa and the ordinate. There are many 3:4 resonance orbits with
different amplitudes around the pentagram, but they have similar shape
shown in the right frame

the solution and the inability for the short time integration to
separate the stable orbits from the unstable ones. For exam-
ple, extending the integration time from 38 to 103 and still
use the linear solution, the stability contour map is shown
in Fig. 5(a). It seems that there is no longer an obvious
anti-correlation in Fig. 5(a). However, the anti-correlation is
further confirmed on a longer timescale by using the high-
accuracy solution (truncated at order 11) to provide the ini-
tial conditions in Fig. 5(b). The figure also shows that the
stable synchronous state of the system requires a small orbit
eccentricity. Moreover, some special structures appear. For
example, the red unstable ‘island’ encircled by the blue sta-
ble ‘water’ below the pentagram is related to the resonance
of ω and ν. We compute the discrete trajectory at the pen-
tagram where α = 0.0076, β = 0.048 as an example. The
trajectory is shown in Fig. 5(c). Interestingly, the difference
between the ratio of its two basic frequencies and 0.75 is
less than 10−5, which confirms that the basic frequencies
are trapped in 3:4 resonance. One should notice that the LP

method is actually not feasible to construct the analytical
solution of a resonance orbit due to the well-known small
divisor problem, and the resonance orbit in Fig. 5(c) is com-
puted by numerical integration.

5.2 Chaos in the 1-mLCE maps

The one-dimensional maximal Lyapunov characteristic ex-
ponent (1-mLCE) χ1 is widely used as a criterion to mea-
sure the chaoticity of an orbit (Tan et al. 2022; Dermott
et al. 2021; Suková and Semerák 2013; Breiter et al. 2005).
A very tiny disturbation on a chaotic orbit would cause rapid
divergence. Denote the deviation between the original orbit
and the disturbed one as w (t). The 1-mLCE is defined as
χ1 = lim

t→∞ t−1 ln (‖w (t)‖/‖w (0)‖), and χ1 = 0 for a reg-

ular orbit (Skokos 2010). To compute the 1-mLCEs of the
orbits in our model, we need the Hamilton equations (6) and
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the variational equations,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = w3

μ

ẇ2 = −2p2

μr3 w1 +
(

1

μr2 + 1

IS

)
w4

ẇ3 =
[

2μ

r3 + 6μ(A1 + A2 cos 2θ)

r5 − 3p2
2

μr4

]
w1

+ 3μA2 sin 2θ

r4
w2 + 2p2

μr3
w4

ẇ4 = 3μA2 sin 2θ

r4 w1 − 2μA2 cos 2θ

r3 w2

. (27)

In practice, we cannot integrate the equations to infinity but
compute the finite time 1-mLCE,

χ1(t) = t−1 ln (‖w (t)‖/‖w (0)‖) ,

through the numerical algorithm in Skokos (2010). The Lya-
punov time, tL = 1/χ1(t), is a conventional timescale for an
orbit to become chaotic. Using the LP solution of order 11
(see Table 1) to provide initial orbital conditions, we com-
pute the 1-mLCE maps for the dynamical system described
in Sect. 4.1. The 1-mLCE map in our paper refers to the
contour map of lgχ1(t) in the α − β plane with a fixed inte-
gration time tmax and fixed initial phase angles θ1i, θ2i. A to-
tal of forty-eight 1-mLCE maps in different combinations of
(tmax, θ1i, θ2i) are investigated in our study, and that is

(tmax, θ1i, θ2i) ∈
{

103,104,105
}

×
{

π

4
,

3π

4
,

5π

4
,

7π

4

}

×
{

π

4
,

3π

4
,

5π

4
,

7π

4

}
.

(28)

For simplicity, some of the maps are presented in Fig. 6.
After analyzing all of the maps, three plain facts are ob-
tained: (1) The orbits in deep-red regions encircled by black
lines are chaotic in the sense that tL ≤ tmax. The chaoticity
increases with an increase in α and β . As mentioned above,
if r0 is taken as the dimensionless unit of length, β is an indi-
cator of the orbit eccentricity. The chaoticity of large eccen-
tricity orbits forbid the stable synchronous state. (2) From
the vertical view of Fig. 6, the finite time 1-mLCEs of reg-
ular orbit decrease with an increase in the integration time.
(3) From the horizontal view of Fig. 6, different structures
appear with different values of θ1i and θ2i. These different
structures are produced by periodic terms in the LP solution.
Interestingly, some special structures do not change with dif-
ferent combinations of (tmax, θ1i, θ2i) and appear in all of
the maps. We believe that the unchangeable structures are
related with the resonance of the basic frequencies.

5.3 Resonance of the basic frequencies

The resonance of the basic frequencies means θ̇1 : θ̇2 = q : p
where p and q are integers. We locate the resonances in the
α −β plane in two ways. The first way is to substitute Equa-
tion (17) (truncated at order 10) into pθ̇1 − qθ̇2 = 0, and
then all of its feasible roots (α,β) form the so-called res-
onance curve. Note that the resonance curve is computed
with the help of the truncated analytical frequencies, so it
gives the approximate locations of the q : p resonance cen-
ter. The second way is to utilize the NAFF_UV code to nu-
merically analyze the frequencies of the orbits around the
resonance curves. As shown in Fig. 7(b), there are only two
main frequency peaks f1 and f2 for the regular orbit, but
many haphazard peaks appear for the chaotic orbit. Thus,
the analytical solution for the quasi-periodic motion is in-
valid at the chaotic region, even though α and β are not
large. Here we identify an orbit trapped into the q : p res-
onance if the difference between f1 : f2 and q : p is less
than 0.005. Figure 7(a) shows only the part of the 1-mLCE
map where special structures appear. As can be seen from
the figure, the numerical results of frequency analysis are
in good agreement with the resonance curves. Some special
structures of the map appear in the resonance regions, which
indicates that the resonance is the mechanism to determine
the stability boundary of the synchronous state.

6 Conclusion and discussion

The main goal of the current study was to investigate the
resonances that determine the stability boundary of the 1:1
spin-orbit resonance in a synchronous binary asteroid. The
difference between our study and previous ones is twofold.
First, the explicit high-order analytical solution is con-
structed and the complete spin-orbit coupling model is con-
sidered. We use the two-degree-of-freedom model consist-
ing of a sphere and an ellipsoid to approximate the binary
asteroid. The high-order analytical solution is constructed
by the LP algorithm to describe the quasi-periodic motion
around the EP where the strict 1:1 spin-orbit resonance lo-
cates. Second, stability, chaos, and resonance are studied.
Specific resonances that determine the boundary of the sta-
bility region are identified with the help of the explicit so-
lution. Findings of this study suggest that secondary reso-
nances of basic frequencies play an important role in the
evolution of a binary asteroid. During the evolution of bi-
nary asteroids, the mutual orbit may gradually migrate due
to the tide and the BYORP effect (Jacobson and Scheeres
2011b). During this process, the secondary, being initially
trapped in a synchronous state, may change its synchronous
state during the migration when it crosses the boundary of
the stability region (Jacobson et al. 2014).

Moreover, influence on the stability region from the mass
parameter mS, the angular momentum parameter r0 of the
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Fig. 6 The 1-mLCE maps for the planar sphere–ellipsoid model of the
DPM. In every panel, the corresponding fixed values of (tmax, θ1i, θ2i)
are given in the title and the black line where tL = tmax is regarded as

the boundary of chaotic and regular orbits. The bar is colored according
to the values of lgχ1(t)

system, and the secondary’s shape parameters are inves-
tigated. Figure 8 presents contour maps for these general
cases. The secondary’s mass and the mutual distance have
little influence on the stable region, while the secondary’s
elongation contributes more obviously to the instability. The
upper limit of the libration angle reported in Fig. 8 puts a
theoretical upper boundary on the secondary’s libration am-
plitude beyond which the synchronous state can no longer
hold. The synchronous state can permit a large libration an-
gle of the secondary. However, in the real world, due to
its close distance from the primary, the secondary’s libra-
tion amplitude gradually damps to zero by the tidal dis-
sipation, even if it is already tidally locked (Murray and
Dermott 2000). The time scale of tidal dissipation is much

shorter than the average lifetime of binary asteroids (Gol-
dreich and Sari 2009; Jacobson and Scheeres 2011a), which
means that the secondaries have enough time to damp its
libration amplitude during its lifetime. As a result, most of
the synchronous secondaries have small libration amplitudes
(Pravec et al. 2016). We believe synchronous binaries with
a secondary in libration with an large amplitude exist be-
cause theoretical simulations allow the binaries to do so (see
Sect. 5.3 in Pravec et al. (2016)), and some physical pro-
cesses such as the not-very-close planetary flyby can pro-
vide such a mechanism to excite the libration amplitude of
the synchronous secondary (Meyer and Scheeres 2021). Ac-
cording to Pravec et al. (2016), the 3-σ upper limit on the
eccentricity of synchronous binaries can reach 0.20, which
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Fig. 7 Left panel: resonance in the zoom-in 1-mLCE map. The solid
lines of different colors indicate different types of resonances. Numer-
ical frequency analysis verifies that these orbits in the marked points

around the curves are trapped into corresponding q : p resonance.
Right panel: example amplitude–frequency chart of the regular orbit
and the chaotic one

agrees with the result in Fig. 8. We agree that the reported
orbit eccentricities of synchronous binaries are generally
small. This phenomenon again can be explained by the tidal
dissipation. The tide can continue to damp the orbit eccen-
tricity even when the secondary is tidally locked. So syn-
chronous binaries tend to have an orbit eccentricity smaller
than the upper limit. Results in the current study put an up-
per limit on the orbit eccentricity once the mass ratio and
distance w.r.t. the primary, and the elongation of the sec-
ondary are available. The general conclusion is that the max-
imum eccentricity is smaller when the secondary is more
elongated. As a result, the general small orbit eccentricity
may also be related to the generally large elongations of the
secondary.

The current study focuses on the planar configuration,
with the purpose of finding the planar secondary resonances
that limit the free libration amplitude and the mutual or-
bit eccentricity of synchronous binary asteroids. One possi-
ble extension is to construct non-planar analytical solutions
around the exact synchronous state. In such a case, even us-
ing the constraint from the conservation of total angular mo-
mentum, the reduced dynamical system is much more com-
plicated (Tan et al. 2023), but the construction of an analyt-
ical solution to high order is possible. By investigating the
relationship between the fundamental frequencies and the

out-of-plane amplitude, we are able to find the secondary
resonances influencing the secondary’s obliquity.

Appendix: The coefficients in Equation (10)

c1 = −3 (A1 + A2)

2r4
0

− 1

r2
0

+ K2r0

ϒ2 ,

c2 = 6 (A1 + A2)

r5
0

+ 2

r3
0

+ K2
(
IS − 3μr2

0

)
ϒ3 ,

c3 = 2r0ISK

ϒ2
, c4 = r0I

2
S

ϒ2
, c7 = −2A2ϒ

ISr5
0

,

c8 = − 2K

r0ϒ
, c9 = − 2IS

r0ϒ
, (A.1)

c5 = 2
ISK

μ2 [r0F (i) + F (i − 1)] ,

c10 = 2K

IS

[
(−r0)

−i−1 + r0f (i) + f (i − 1)
]
,

c6 = I 2
S

μ2 [r0F (i) + F (i − 1)] ,

c11 = 2
[
(−r0)

−i−1 + r0f (i) + f (i − 1)
]
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Fig. 8 Stable regions for the synchronous state and resonance curves

in the test systems. To compute these figures, we set tmax = 103,

θ1i = θ2i = 45◦. In the figures per column, we change a parameter
among r0, mS/[M], and aS/bS, and fix other parameters described in
Sect. 4.1
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ϕij = δj,0

{
K2

μ2 [r0F (i) + F (i − 1)]

+ (−1)i+1 (i + 1)

ri+2
0

[
1 + (i + 2) (i + 3) (A1 + A2)

4r2
0

]}

+ �i,1�i,2�j,0�j,�(i+1)/2�(−1)i−j+1

× 22j−2 (i − 2j + 1) (i − 2j + 2) (i − 2j + 3)A2

(2j)!ri−2j+4
0

+ δi mod 2,0δj,�(i+1)/2�(−1)j+1 3A2

2r4
0

22j

(2j)!
(A.2)

ψij = (−1)i−j+1 22j−2 (i − 2j + 2) (i − 2j + 3)

(2j − 1)!ri−2j+4
0

×
[

(i − 2j + 4) (i − 2j + 5)

12r2
0

+ μ

IS

]
A2

(A.3)

Note that we introduce the following functions in the above
expressions,

f (i) = 1

2
√−IS/μ

⎡
⎣
(√−IS/μ − r0

IS/μ + r2
0

)i+1

+(−1)i

(√−IS/μ + r0

IS/μ + r2
0

)i+1
⎤
⎦ ,

F (i) =

⎧⎪⎨
⎪⎩

[
r0

√−IS/μ − IS/μ(2 + i)
] (√−IS/μ − r0

)i+2

−(−1)i
[
r
√−IS/μ0 + IS/μ(2 + i)

]
× (√−IS/μ + r0

)i+2

⎫⎪⎬
⎪⎭

[
4(IS/μ)2

(
IS/μ + r2

0

)i+2
]−1

,

δi,j =
{

1, i = j

0, i �= j
, �i,j =

{
0, i = j

1, i �= j
, ϒ = μr2

0 + IS.

(A.4)
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