
Astrophysics and Space Science (2023) 368:98
https://doi.org/10.1007/s10509-023-04255-6

R E S E A R C H

Models of compact objects with charge in generalized
Tolman-Kuchowicz metric

Bibhash Das1 · Shyam Das2 · Bikash Chandra Paul1

Received: 18 July 2023 / Accepted: 10 November 2023 / Published online: 17 November 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
We construct relativistic models of charged anisotropic compact objects in hydrostatic equilibrium in the framework of the
General Theory of Relativity. The spacetime metric interior of the star is described by a generalized form of the Tolman-
Kuchowicz metric (GTK). The MIT Bag model equation of state (EoS) is considered for the charged star to study the
physical features of the star, namely, energy-density (ρ), radial pressure (pr ), transverse pressure (p⊥), etc. numerically. The
behaviour of anisotropy is also studied for different forms of the GTK metric, using the Delgaty and Lake prescriptions. We
determined the maximum mass of a star for a given set of model parameters.

Keywords Compact objects · Relativistic models of star · Generalized Tolman-Kuchowicz metric

1 Introduction

Einstein’s theory of General Relativity (GR) (1915a, 1915b,
1915c) is the most promising theory to study the universe
and astrophysical objects. GR plays a vital role in compre-
hending many astrophysical objects, namely, black holes,
compact stars, supernovae and the formation of the struc-
ture of the universe. Compact stars are objects with high
density and compactness factor M

R
≤ 0.5 in GR. Study-

ing stellar models for compact objects is an active field of
research in present times. The exact vacuum solution of
the Einstein Field equations (EFE) was first obtained by
Schwarzschild (1916). The singularity in the Schwarzchild
metric led to a black hole (BH) called Schwarzchild black
hole. The spurt in research activities to understand different
features of astrophysical objects with a radius more than the
Schwarzchild radius are interesting as the matter inside are

at extraterrestrial conditions which are not known in the lab-
oratory yet. Chandrasekhar (1931), Tolman (1939) and Op-
penheimer and Volkoff (1939) explored these objects the-
oretically, proposing models of relativistic stars with high
density imposing limits on the mass of white dwarf (WD),
BH, etc. The pressure inside highly compact astrophysical
objects, namely, X-Ray buster, X-Ray pulsar, Her X-1, etc.,
are studied by Ruderman (1972). Subsequently, it was pro-
posed by Witten (1984) that the pressure inside the com-
pact objects may not satisfy a pure linear equation of state
(EoS) and proposed that quark phase transition might be
essential to understand the features of some of the stars.
The EoS for the interior matter composition of strange stars
can be described by the MIT Bag model: p = 1

3 (ρ − 4Bg)

in an isotropic star, where p is the pressure, ρ is the en-
ergy density and Bg is the Bag constant. Farhi and Jaffe
(Farhi and Jaffe 1984) constructed stable stellar models with
strange quark matter for the Bag constant within the limit
57MeV/f m3 ≤ Bg ≤ 94MeV/f m3 in GR. This triggered
the investigation of an entirely new class of compact stars
called strange stars. It was proposed that Her X-1, SAX J
1808.4-3658, PSR 0943+10, 4U 1728-34, 4U 1820-30 are
the candidates for strange stars. The solution of the Einstein
field equation is used to construct stellar models, and sev-
eral such relativistic solutions are found which are employed
to construct stellar models. Delgaty and Lake (1998) first
showed that out of 127 exact solutions of Einstein field equa-
tions, only 9 of them are found physically viable. Since then,
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there have been a significant effort in finding exact solutions
in GR and modified theories of gravity relevant for the com-
pact objects. Maurya et al. (2015) obtained anisotropic so-
lutions analogous to the perfect fluid solution obtained by
Durgapal and Fuloria (1985) that are found by contracting
the anisotropy factor. Das et al. (2019) obtained closed-form
solutions of the Einstein field equation for a spherically sym-
metric anisotropic matter distribution for a physically rea-
sonable spatial metric potential with a specific choice of the
anisotropy. Recently, a new class of relativistic exact so-
lution of compact objects in hydrostatic equilibrium is ob-
tained in f (R,T ) gravity by Dey et al. (2021).

Tolman obtained a number of stellar models consider-
ing metric potentials that are permitted by the Einstein’s
field equation. In 1939, Tolman (1939) independently gave
an analytical solution of EFE assuming eight different
types of metric potentials. Zubair and Azmat (2020) ex-
tended the Tolman V solution to an anisotropic version
using gravitational decoupling by minimal geometric de-
formation (MGD) approach and analyzed the behavior of
the new solutions. Subsequently, MGD method is used to
construct strange star model using the Tolman ansatz in
the framework of Einstein-Gauss-Bonnet gravity (2022a)
and in f (Q) gravity (2022b). Maurya et al. (2022) found
strange star solutions in f (Q) gravity adoptiong a com-
plete geometric deformation (CGD) technique. In 1968, Ku-
chowicz (1968) independently gave a singularity-free metric
potential which can describe the stellar configuration. Naz
and Shamir (2020) studied the effects of electric charge for
static spherically symmetric stellar models in the modified
f (G) gravity making use of the metric given by Tolman-
Kuchowicz metric. Rej et al. (2021) also employed Tolman-
Kuchowicz metric to construct stellar model in the f (R,T )

modified gravity. Thereafter a number of papers appeared
in the literature (Maurya 2020; Majid and Sharif 2020; Rej
and Karmakar 2023) with the Tolman-Kuchowicz metric for
modelling of compact objects. Gangopadhyay et al. (2013)
considered 12 known strange star candidates and estimated
their radii. In recent years, a lot of work has also explored
the MIT Bag model to construct and analyse stable stellar
structure (Maurya and Tello-Ortiz 2019; Kaur et al. 2022;
Podder et al. 2022; Banerjee et al. 2022; Das et al. 2023).
Stellar models are also explored for polynomial functions
of pressure with density (Maharaj and Takisa 2012; Maurya
et al. 2017; Deb et al. 2022; Ditta et al. 2022). There are
also alternate ways to obtain stellar models as the EoS is not
known, where a known geometry is employed to find out
the EoS suitable for the stable, compact objects (Mukherjee
et al. 1997; Paul and Deb 2014; Paul and Dey 2018; Chanda
et al. 2019; Das et al. 2022).

The compact objects are studied assuming spherical sym-
metry and isotropic pressure. However, a dense compact ob-
ject may not be isotropic in nature. As pointed out by Canuto

(1974), two different pressure, namely, radial pressure (pr )
and transverse pressure (p⊥) in a high-density compact ob-
ject, may exist. Subsequently, an anisotropic matter distri-
bution in GR was considered by Bowers and Liang (1974)
to obtain a relativistic stellar model for anisotropic star and
examined the surface redshift and generalised gravitational
mass in hydrostatic equilibrium. Ruderman (1972) pointed
out that matter density in a compact object tends to be-
come anisotropic in nature for the energy density of the or-
der ∼ 1015 gm/cm3. Weber (1999) showed that the gen-
eration of an anisotropic pressure inside the compact star
may be due to a strong magnetic field. It is also shown that
anisotropy may originate for many other reasons viz., vis-
cosity, phase transition (Sokolov 1980), pion condensation
(Sawyer 1972), the shear of the fluid (Di Prisco et al. 2007).
Mak and Harko (2003) obtained a class of exact solutions
of EFE for a spherically symmetric anisotropic static star.
Petri (2004) obtained a self-gravitating spherically symmet-
ric compact object with local anisotropic pressure. For a re-
alistic anisotropic star, bounds on the surface redshifts are
also explored (2002). Maurya and his collaborators (Maurya
et al. 2017, 2019) did significant work to find exact solutions
for an anisotropic fluid sphere which are Buchdahl-type rel-
ativistic compact stars. Recently, a new class of relativistic
anisotropic stellar model in Einstein-Gauss-Bonnet gravity
is obtained by Das et al. (2022). Further, spherically sym-
metric charged anisotropic star has been probed by Kaur
et al. (2022) in the modified theories of gravity. The role
of pressure anisotropy on the structure of static spherically
symmetric compact objects are also investigated in the liter-
atures (Maurya et al. 2018, 2019; Chanda et al. 2019; Dey
and Paul 2020; Dey et al. 2021; Dey and Paul 2022; Das
et al. 2023).

The presence of an electromagnetic field affects the phys-
ical characteristics of a relativistic star. The coupled Ein-
stein and Maxwell field equations are considered to study
the effects of the electromagnetic field in the strong grav-
itational field of a compact object. Rosseland (1924) was
the first to propose the inclusion of a charged component
in a compact star. He considered that compact stars are
collections of electrons and ions and came to the conclu-
sion that because electrons have more kinetic energy than
ions, they may have a stronger tendency to escape the star.
Therefore, a star carries a significant amount of positive
charge. This phenomenon will continue until the star es-
tablishes an electric field to stop the further escape of elec-
trons. Majumdar (1947), De and Raychaudhuri (1968) and
Papapetrou (1947) studied relativistic charged dust mod-
els. Whitman and Burch (1981) pointed out that a homo-
geneous charged fluid sphere is more stable than a system
without charge. Bohra and Mehra (1971), and Omote and
Sato (1974) studied charged spheres in the presence of mat-
ter with the variation of mass with charge. Ghezzi (2005)
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and Ghezzi with Letelier (2007) constructed a stable equi-
librium configuration in the high-density regime that can
hold a massive amount of charge. Varela et al. (2010) an-
alyzed self-gravitating, charged, anisotropic fluid distribu-
tion in the coupled Einstein–Maxwell equations using Krori-
Barua metric (Krori and Barua 1975) potentials with a given
equation of state of matter. Arbanil et al. (2013) studied
both the Oppenheimer-Volkoff limit and the Buchdhal limit
for the charged polytropic spheres and found the extremal
limit that predicts a quasi black hole. The relativistic com-
pact stars in the presence of electric charge have been exam-
ined in the following works (Das et al. 2011; Sunzu et al.
2014; Maurya 2020; Maurya and Al-Farsi 2021; Maurya
et al. 2021).

The motivation of the paper is to construct a charged
anisotropic star satisfying MIT bag model with radial pres-
sure given by pr = 1

3 (ρ − 4Bg) in a generalized Tolman-
Kuchowicz (GTK) ansatz in GR. We present the paper as
follows: In Sect. 2, the basic mathematical formulation of
the coupled Einstein-Maxwell fields is derived. Stellar mod-
els in the generalized Toman-Kuchowicz metric are derived
in Sect. 3. Boundary conditions for a viable stellar model
have been discussed in Sect. 4. In Sect. 5, criteria for a phys-
ically stable stellar object are discussed. In Sect. 6, we an-
alyzed different physical features like energy density, and
pressure for a set of model parameters for which a physically
acceptable model is permitted. A comparative study of the
model with some well-known stars is discussed in Sect. 7.
Section 8 finally present a brief discussion about the stellar
model we obtained here.

2 Basic mathematical formulation of
Einstein-Maxwell spacetime

We consider a spacetime in four dimensions as follows
(Bondi 1947; Martin and Visser 2004):

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where t , r , θ φ are the coordinates and the exponents μ and
λ are functions of r only. We consider a generalised Tolman-
Kuchowicz metric given by,

eλ = (1 + ar2 + br4)n , eν = C2eAr2
(2)

where a, b, A and C are unknown model parameters and
n is a positive integer,i.e., n ≥ 1. The modified metric po-
tential gtt in the generalized Tolman-Kuchowicz (GTK)
ansatz contains an exponent n, which reduces to the orig-
inal Tolman-Kuchowicz ansatz for n = 1 (Tolman 1939;
Kuchowicz 1968). In the paper we consider anisotropic star
with charge for different values of n to study the structure of
the geometry in a compact object.

The Einstein-Maxwell coupled field equations (Debney
et al. 1969) are as usual given by,

Rμν − 1

2
gμνR = 8π(Tμν + Eμν), (3)

where Rμν is the Ricci tensor, gμν is the metric tensor, R is
the Ricci scalar, Tμν is the energy-momentum tensor of fluid
distribution and Eμν is the electromagnetic field tensor. We
have considered the natural unit here as G = c2 = 1. We
assume the energy-momentum tensor (Gutfreund and Renn
2017; Misner and Sharp 1964), Tμν as,

Tμν = diag(−ρ,pr,p⊥,p⊥), (4)

where ρ is the energy density of matter, pr is the radial
pressure, p⊥ is the transverse pressure. The electromagnetic
field tensor (Debney et al. 1969) is given by,

Eμν = 1

4π

(
Fα

μFνα − 1

4
FαβFαβgμν

)
, (5)

where Fμν is the second rank antisymmetric electromag-
netic field tensor which is defined as,

Fμν = ∂Aν

∂xμ
− δAμ

∂xν
, (6)

where Aν = (φ(r),0,0,0) is the four potential. The
Maxwell field equations can be obtained from,

F
μν

;ν = 1√−g

∂

xν
(
√−gFμν) = −4πjμ, (7)

Fμν;λ + Fνλ;μ + Fλμ;ν = 0, (8)

where jμ is the four-current density vector given by

jμ = ρe√
g00

dxμ

dx0 , (9)

In the above ρe denotes the proper charge density. The elec-
tric field can be obtained from Eq. (7) as,

F 01 = −e
λ+ν

2
q(r)

r2
, (10)

here q(r) represents the net charge inside a sphere of radius
r and it can be obtained as follows:

q(r) = 4π

∫ r

0
ρee

λ
2 r2dr. (11)

The electric field is determined by the quantity q(r) as fol-
lows,

E(r) = q(r)

r2
(12)



98 Page 4 of 16 B. Das et al.

For the spherically symmetric GTK metric given by (1),
the Einstein-Maxwell coupled field equations are obtained
as follows,

8πρ + q2

r4 = λ′

r
e−λ + 1

r2 (1 − e−λ), (13)

8πpr − q2

r4
= ν′

r
e−λ + 1

r2
(e−λ − 1), (14)

8πp⊥ + q2

r4 = 1

4
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

r
(ν′ − λ′)

)
. (15)

The prime denotes the differentiation with respect to r.

3 Stellar models in the GTK metric

Using the metric (2), the Einstein-Maxwell Eqs. (13)-(15)
yields,

8πρ = 1 + (
a(2n − 1)r2 + b(4n − 1)r4 − 1

)
ψ−1−n

r2

− q2

r4
, (16)

8πpr =
(
1 + 2Ar2

)
ψ−n − 1

r2
+ q2

r4
, (17)

8πp⊥ = r2
(
A2 − aA(n − 2) − 2bn

)
ψn+1

+ Ar4(aA − 2b(n − 1)) + (2A − an + bA2r6)

ψn+1

− q2

r4
, (18)

where, ψ = (1 + ar2 + br4). We consider MIT Bag model
for describing the strange quark matter distribution in an
anisotropic star as,

pr = 1

3
(ρ − 4Bg), (19)

where, Bg is the Bag constant and its unit is MeV/f m3

(Chodos et al. 1974; Deb et al. 2022). The above EOS can
be obtained assuming massless non-interacting quarks con-
fined by a bag constant. As the star is anisotropic we study
variation of the transverse pressure separately, which may
not vanish at the boundary of the star.

Using Eqs. (16)-(19), the electric field (E) obtained as,

E2 =
(
2
(
1 − 8πr2Bg

)
ψn+1 − 3Aψr2 − 2ψ

)
2r2ψn+1

+ n(a + 2br2)

2ψn+1
. (20)

Thereafter, the density and the radial and transverse pres-
sures yield from the Einstein field equation as,

ρ = Bg + 3
(
A + an + (aA + 2bn)r2 + Abr4

)
16πψn+1 , (21)

pr = −Bg +
(
A + an + (aA + 2bn)r2 + Abr4

)
16πψn+1 , (22)

p⊥ = Bg − nr2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψn+1

16πr2ψn+1

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψn

. (23)

We define measure of anisotropy as  = p⊥ − pr , which is
given by,

 = 2Bg − nr2
(
Ar2 + 2

) (
a + 2br2

) + ψn+1

8πr2ψn+1

−
(
A2r4 + 3Ar2 + 1

)
8πr2ψn

. (24)

4 Matching conditions

In this section, the unknown model parameters a, b, A

and C is determined using the matching conditions at the
boundary of the compact object described by generalised
Tolman-Kuchowicz metric with Reissner-Nordstrom metric
(Reissner 1916; Nordstrom 1918) as the exterior metric. The
Reissner-Nordstrom metric is given by,

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θdφ2). (25)

The Reissner-Nordstrom metric is the exterior metric where
the event horizon corresponds to r > M + √

M2 − Q2 (M
and Q are respectively the total mass and charge enclosed
within the boundary r = R). The continuity of the metric co-
efficients gtt , grr and ∂gtt

∂r
across the boundary r = R gives

us the boundary conditions of the star that can be obtained
from Eqs. (1) and (25) (Darmois 1927; Israel 1967; Bonnor
and Vickers 1981),

1 − 2M

R
+ Q2

R2 = C2eAR2
, (26)

1 − 2M

R
+ Q2

R2
= (1 + aR2 + bR4)−n, (27)
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M

R
− Q2

R2
= AR2C2eAR2

. (28)

Now, using the condition pr(R) = 0 (Bonnor and Vickers
1981) and the boundary conditions (26)-(28) we can obtain
the values of the constant a,b,A and C as follows,

a = −2n + U
(
2n + AR2(1 + 3Un)

)
nR2

(
1 + 3Un+1

) , (29)

b = U − 1 − aR2

R4
, (30)

A = 1

R2

(M
R

− Q2

R2 )

(1 − 2M
R

+ Q2

R2 )
, (31)

C = e− AR2
2

(
1 − 2M

R
+ Q2

R2

) 1
2
. (32)

where, U = (1− 2M
R

+ Q2

R2 )
−1
n . It is to be noted that the value

of a and b depends on the value of n. It is now evident that
there are six unknowns viz., a, b, A, C, n, Bg and five equa-
tions. Therefore to construct a stellar model we assume an
ad hoc relation, say different values of n (∈ Z) in Eq. (2).
Tolman-Kuchowicz metric (Tolman 1939; Kuchowicz 1968)
corresponds to n = 1. We consider n ≥ 1 in order to explore
the rich structure of the generalized geometry proposed here.
Analytical expressions of the energy-density (ρ), the radial
pressure (pr ), and the transverse pressure (p⊥) are given be-
low for different values of n in order to analyse different
physical features and stability of the models.

4.1 Case I: n = 1

For n = 1 Eqs. (21)-(23) becomes,

ρ1 = Bg + 3
(
a + A + (2b + aA)r2 + bAr4

)
16πψ2

, (33)

pr 1 = −Bg + a + A + (2b + aA)r2 + bAr4

16πψ2 , (34)

p⊥1 = Bg − r2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψ2

16πr2ψ2

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψ

. (35)

4.2 Case II: n = 2

For n = 2 Eqs. (21)-(23) becomes,

ρ2 = Bg + 3
(
2a + A + (4b + aA)r2 + bAr4

)
16πψ3

, (36)

pr 2 = −Bg + 2a + A + (4b + aA)r2 + bAr4

16πψ3
, (37)

p⊥2 = Bg − 2r2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψ3

16πr2ψ3

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψ2

. (38)

4.3 Case III: n = 3

For n = 3 Eqs. (21)-(23) becomes,

ρ3 = Bg + 3
(
3a + A + (6b + aA)r2 + bAr4

)
16πψ4

, (39)

pr 3 = −Bg + 3a + A + (6b + aA)r2 + bAr4

16πψ4
, (40)

p⊥3 = Bg − 3r2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψ4

16πr2ψ4

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψ3

. (41)

4.4 Case IV: n = 4

For n = 4 Eqs. (21)-(23) becomes,

ρ4 = Bg + 3
(
4a + A + (8b + aA)r2 + bAr4

)
16πψ5

, (42)

pr 4 = −Bg + 4a + A + (8b + aA)r2 + bAr4

16πψ5
, (43)

p⊥4 = Bg − 4r2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψ5

16πr2ψ5

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψ4

. (44)

4.5 Case V: n = 5

For n = 5 Eqs. (21)-(23) becomes,

ρ5 = Bg + 3
(
5a + A + (10b + aA)r2 + bAr4

)
16πψ6

, (45)

pr 5 = −Bg + 5a + A + (10b + aA)r2 + bAr4

16πψ6
, (46)

p⊥5 = Bg − 5r2
(
2Ar2 + 3

) (
a + 2br2

) + 2ψ6

16πr2ψ6
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Table 1 Different values of parameters a, b, A and C for SAX J 1808.4-3658 (M = 0.88M	;R = 8.9km;Q = 0.0089)

n a b A C Bg (MeV/f m3)

1 0.00424252 0.0000120733 0.00259941 0.759282 74.1237

2 0.00212794 93.12988 × 10−6 0.00259941 0.759282 74.7268

3 0.00141964 1.49391 × 10−6 0.00259941 0.759282 74.8643

4 0.00106504 9.05325 × 10−7 0.00259941 0.759282 74.9199

5 0.000852162 6.22808 × 10−7 0.00259941 0.759282 74.949

−
(
2A2r4 + 7Ar2 + 2

)
16πr2ψ5

. (47)

Since the equations are highly non-linear we adopt numeri-
cal analysis to explore the variation of the physical criteria
inside the star.

5 Criteria for a realistic model of compact
object

A realistic stable star must satisfy the following criteria:
(i) The energy density and the pressure must be positive

inside the star. They should be finite at the center of the star
also, i.e. ρ(0) = ρc and p(0) = pc .

(ii) Radial pressure must be equal to the transverse pres-
sure at the center (r = 0), i.e., pr0 = p⊥0 which signifies
that the anisotropy at the center must be zero.

(iii) The boundary of the star (R) can be found out by the
condition pr(R) = 0, i.e. the radial pressure vanishes at the
boundary of the stellar object.

(iv) The stellar model must satisfy the condition 0 ≤
v2
r (= dpr

dρ
) < 1 and 0 ≤ v2⊥(= dp⊥

dρ
) < 1 for maintaining

causality.
(v) The Adiabatic index (�) should be greater than the

critical value (�crit ) inside the star.
(vi) The energy conditions, i.e. null energy condition

(NEC), Weak energy condition (WEC), Strong energy con-
dition (SEC), Dominant energy condition (DEC) and the
Trace energy condition (TEC) must be satisfied inside the
star.

6 Physical analysis

Gravitational-field equations’ for inner region of a static
fluid sphere must adhere to some fundamental physical re-
quirements in order to be physically meaningful. Here we
will perform both an analytical and graphical analysis of the
physical conditions in order to test the physical viability of
the models. For a given value of n, we investigate the phys-
ical properties of anisotropic compact star with charge for
a given mass and radius of a star. We also explore stellar

models that are permitted for any value of mass and radius
satisfying the criteria liad down to obtain physically accept-
able model. To begin with, we consider a known compact
object namely, SAX J 1808.4-3658 (Ergma and Antipova
1999) with it’s observed mass M = 0.88 M	 and predicted
radius R = 8.9 km to obtain a relativistic stellar model. We
have also taken charge Q = 0.0089 to construct the stel-
lar model. The parameters for a physically acceptable stel-
lar models are determined using the prescription of Delgaty
and Lake (1998). The physical features of compact objects
are studied in the framework of the GTK metric tabulating
the model parameters in Table. (1) for a given compact star
namely SAX J 1808.4-3658.

6.1 Energy-density and pressure

The radial variation of energy density (ρ), radial pressure
(pr) and transverse pressure (p⊥) for different values of n

are shown in Fig. (1),(2) and (3) respectively. It is evident
that energy-density, radial pressure and transverse pressure
is positive inside the stellar interior and is maximum at the
center, which decreases away from the center. Moreover the
central density (ρc) and the central pressure (pc) can be ob-
tained as,

ρc = Bg + 3(A + a n)

16π
; pc = −Bg + A + a n

16π
(48)

It is clear from Fig. (1) that as n increase, energy density at
the center of the star increases. The radial variation of radial
and transverse pressure in Fig. (2) and (3) show that both
the pressure falls as n increase. The value of the central den-
sity for n ∈ [1,5] is within the range ∈ [50.6413,50.8597]×
10−5 km−2. The density at the surface is in the range of ∈
[39.2262,39.6630]×10−5 km−2. The central pressure stays
in the range ∈ [38.0525,37.3223] × 10−6 km−2. More-
over,at the boundary radial pressure vanishes and p⊥ > pr ,
giving rise to anisotropy.

6.2 Anisotropy factor

The anisotropy factor is,

 = p⊥ − pr (49)
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Fig. 1 Radial variation of matter density (ρ) in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of n.
Graph plotted following the numerical values from Table.(1)

Fig. 2 Radial variation of radial pressure (pr ) in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of n.
Graph plotted following the numerical values from Table.(1)

Fig. 3 Radial variation of transverse pressure (p⊥) in SAX J 1808.4-
3658 (M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1))

The anisotropy factor () arises due to difference in trans-
verse pressure (p⊥) and radial pressure (pr) that origi-
nates inside the star which yields an extra force gradient

Fig. 4 Radial variation of anisotropy factor () in SAX J 1808.4-
3658 (M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fig. 5 Radial variation of E2 in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

term in the TOV equation. Consequently for p⊥ > pr , the
force gradient that appears due to anisotropy signifies out-
ward pressure, resulting an increase in repulsive force gra-
dient and for p⊥ < pr , the anisotropy results a decrease in
anisotropic force gradient implying an increase in attractive
force (Gokhroo and Mehta 1994).

In the model, the radial variation of the anisotropy factor
is plotted in Fig. (4) for different values of n. For a given n

there is no anisotropy at the center and it increases gradu-
ally away from the center. It is clear that as one increase the
value of n,  increases upto a distance away from the cen-
ter at point where  is same for all; thereafter the trend of
anisotropy reverses. We also note that for n = 1 and n = 2,
p⊥ < pr inside the star,i.e.,  < 0. But for n > 2 we get p⊥
is always more than pr . Therefore, it is conclusive that for
n > 2, the model permits a stable stellar configuration for
which anisotropy is always positive,i.e.,  > 0.
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Fig. 6 Variation of Bg against n in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089). Graph plotted follow-
ing the numerical values from Table.(1)

6.3 Electric field

The expression for the electric field is given by Eq. (20) and
for a physically acceptable model the following condition
need to satisfied which leads to,

E2(r = 0) = 0 (50)

This condition gives us the expression for Bg which also
depend on n, which is given by,

Bg = 3(a n − A)

16π
(51)

The plot of the electric field is shown in Fig. (5). It is ev-
ident that for a given n, the electric field increases and at-
tains a maximum. Thereafter it decreases at the surface. It is
also found that as n increases E2 decreases. The variation
of Bg against different values of n in the range ∈ [1,25] is
plotted in Fig. (6). It is shown that the value of Bg is well
within the limit i.e., ∈ [74.1237,75.0191] MeV/f m3 for
n ∈ [1,25] (Farhi and Jaffe 1984; Kalam et al. 2013; Mau-
rya et al. 2015). It is also noted that as n increases, the bag
constant attains a saturated value.

6.4 Herrera’s cracking criteria

In order to fulfil the physical requirements for realistic mod-
els, it is important to examine the causality conditions of
the self-gravitating system. The causality condition sug-
gests that the square of the radial sound velocity (v2

r = dpr

dρ
)

and square of the transverse sound velocity (v2⊥ = dp⊥
dρ

)

must lie in the ranges 0 < v2
r < 1 and 0 < v2⊥ < 1 (Her-

rera 1992; Abreu et al. 2007). Moreover, for a relativistic
object Abreu’s conditions against Herreras’s cracking ap-

Fig. 7 Radial variation of square of radial velocity (v2
r ) and

square of transverse velocity (v2⊥) in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fig. 8 Radial variation of v2⊥ − v2
r in SAX J 1808.4-3658

(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of n.
Graph plotted following the numerical values from Table.(1)

proach can be mathematically expressed as,

|v2⊥ − v2
r | ≤ 1 →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 ≤ v2⊥ − v2
r ≤ 0

: Stable Region

0 < v2⊥ − v2
r ≤ 1

: Unstable Region

(52)

Plots of v2
r , v2⊥ and v2⊥ − v2

r for different n are shown
in Fig. (7) and (8) respectively. It is evident from Fig. (7)
that for all values of n, v2

r = 1
3 at all points inside the star.

We also note that v2⊥ decrease very sharply for n = 1 com-
pared to the other values of n, but inside the star causality is
maintained as 0 < v2⊥ ≤ 1 holds good. In Fig. (8), v2⊥ − v2

r

for SAX J 1808.4-3658 shows an interesting behaviour that
for n = 1 and n = 2, v2⊥ − v2

r is positive at the center which
decreases away from the center and v2⊥ − v2

r > 0, which im-
plies that cracking may occur leading the model to attain
instability. It is found that the inequality −1 ≤ v2⊥ − v2

r ≤ 0
is satisfied for n = 3,4 & 5, which shows no cracking for
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Fig. 9 Radial variation of � in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

those values of n within a stellar interior leading to a stable
stellar configuration (Abreu et al. 2007).

6.5 Adiabatic index

The radial variation of the relativistic adiabatic index, which
also describes the stiffness of the EoS for a specific density
is studied here. The stability of both relativistic and non-
relativistic compact star models are determined from the
magnitude of the adiabatic index. The collapsing condition
in case of a classical isotropic fluid distribution is � > 4

3
(Bondi 1964), which follows the Newtonian limit. However,
in the relativistic limit, the collapsing compact object can be
determined from the validity of the constraint (Chan et al.
1992, 1993),

� <
4

3
+

[
1

3
κ

ρ0pr0

|p′
r0|

+ 4

3

(p⊥0 − pr0)

|p′
r0|r

]
max

(53)

where ρ0, pr0 and p⊥0 are the initial density, radial pres-
sure and transverse pressure of the fluid at static equilib-
rium. On the right side of Eq. (53), the second and third
terms denote the relativistic correction and the anisotropy
adjustment, respectively. This general expression for the col-
lapsing condition revert back to the Newtonian limit for a
non-relativistic and isotropic fluid distribution (Ortiz et al.
2020; Maurya and Nag 2021). However, the relativistic ad-
justments in the parameter � may cause instabilities within
the compact star (Chandrasekhar 1964a,b). Consequently,
Moustakidis (2017) considered another constraint that is im-
posed on the adiabatic index to describe the stability of such
compact objects. The constraint found here lead to a critical
value of the adiabatic index (�crit ), which is also dependent
on the compactness factor (u = M/R) of the star as,

�crit <
4

3
+ 19

21
u (54)

Therefore, in order to have a stable stellar configuration it is
crucial to have � ≥ �crit . The expression for the adiabatic
index is given by,

� =
(ρ + pr

pr

)(dpr

dρ

)
S

(55)

Here the derivation is performed at constant entropy. It is
clear form Fig. (9) that the adiabatic index is greater than
the critical value (�crit = 1.46529) of the adiabatic index at
the center which increases thereafter. It is also found that
for all values of n considered, i.e., n ≥ 1 the adiabatic index
increases and found to satisfy the condition for stability of
the stellar models with the new GTK metric configuration.

6.6 Energy conditions

We consider the following energy conditions,

NEC : ρ + E2

8π
≥ 0 (56)

WECr : ρ + pr ≥ 0

WECt : ρ + p⊥ + E2

8π
≥ 0

⎫⎪⎬
⎪⎭ : WEC (57)

SEC : ρ + pr + 2p⊥ + E2

4π
≥ 0 (58)

DECr : ρ + E2

8π
− |pr − E2

8π
| ≥ 0

DECt : ρ + E2

8π
− |p⊥ + E2

8π
| ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

: DEC (59)

TEC : ρ − pr − 2p⊥ + E2

4π
≥ 0 (60)

Plots of the energy conditions are shown in Figs.(10)-(14).
It is evident that all the energy conditions are satisfied inside
the star with the GTK metric and the parameters considered
here.

6.7 Hydrostatic equilibrium under different forces

The structure of an isotropic, spherically symmetric en-
tity in static gravitational equilibrium is constrained by
the Tolman-Oppenheimer-Volkoff (TOV) equation. In the
present model there are four force gradient namely: (i)
anisotropic force gradient (Fa), (ii) electric force gradient
(Fe), (iii) hydrostatic force gradient (Fh), and (iv) gravita-
tional force gradient (Fg). Expressions for these force gra-
dients are,

Fg = −ν′(ρ + pr), (61)
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Fig. 10 Radial variation of NEC in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fig. 11 Radial variation of WEC in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fh = −dpr

dr
, (62)

Fa = 2

r
(p⊥ − pr), (63)

Fe = q

4πr4

dq

dr
, (64)

Fig. 12 Radial variation of DEC in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fig. 13 Radial variation of SEC in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Therefore, the hydrostatic equation yields,

−ν′(ρ + pr) − dpr

dr
+ 2

r
(p⊥ − pr) + q

4πr4

dq

dr
= 0 (65)

which can be expressed as,

Fg + Fh + Fa + Fe = 0 (66)
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Fig. 14 Radial variation of T EC in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of
n. Graph plotted following the numerical values from Table.(1)

Fig. 15 Radial variation of the forces in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of n.
Graph plotted following the numerical values from Table.(1)

In Fig. (15) and (16) we plot different force gradients and
found that the hydrostatic equilibrium is achieved with the
GTK metric. It is evident that Fg is balanced by the other
three force gradients for a certain radial distance inside the
star, but near the surface Fg and Fe is balanced by Fa and
Fh.

6.8 Mass and compactness

The mass-radius relation and the maximum mass are of spe-
cial significance in determining the viability of any pre-
scribed model. In GR the effective gravitational mass for a
perfect isotropic or anisotropic uncharged fluid distribution
is given by,

M0(r) = 4π

∫ r

0
r2ρ(r)dr (67)

In this context, Buchdahl (1959) found the upper limit of the
mass-radius ratio for the isotropic perfect fluid matter distri-
bution with decreasing trend of the energy density towards
the boundary. The maximum limit for mass-radius limit is
given by,

M0

R
≤ 4

9
(68)

where R is the radius of the compact object. However, in-
troduction of charge to the fluid distribution may change the
effective gravitational mass of the star. In Einstein-Maxwell
gravity the effective gravitational mass within radius r of a
charged star is (Murad and Fatema 2015),

Mch(r) = 4π

∫ r

0
r2ρ(r)dr + q2

2r
+ 1

2

∫ r

0

q2

r2
dr (69)

The presence of charge in a compact obejct changes the
mass-radius limit as found in Ref. (Maurya 2020; Mau-
rya and Al-Farsi 2021; Maurya et al. 2021). Andreasson
(2008) and Bohmer-Harko (2007) obtained the modified
mass-radius limit in presence of charge and found the fol-
lowing upper bound and lower bound to the limit which is
given by,

Q2(18R2 + Q2)

2R2(12R2 + Q2)

≤ Mch

R
≤ 2R2 + 3Q2 + 2R

√
R2 + 3Q2

9R2
(70)

The mass function is regular at the center as Mch(r) →
0 as r → 0. Therefore the compactness factor inside the
strange star of radius r is, u(r) = Mch(r)

r
. Compactness fac-

tor is useful to classify the compact objects in following: for
a normal star u(R) ∼ 10−5, for a white dwarf u(R) ∼ 10−3,
for a neutron star u(R) ∈ (10−5, 1

4 ), for ultra compact ob-
jects u(R) ∈ ( 1

4 , 1
2 ) and for black holes u(R) = 1

2 . For the
compact object SAX J 1808.4-3658 the lower limit of the
mass-radius ratio is 7.5 × 10−7 and the upper bound is
0.444445. The mass-radius ratio for the compact object is
0.194787, which satisfy the limiting range. The radial varia-
tion of the mass function and compactness factor are drawn
in Fig. (17). It is evident that a definite limiting value exists
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Fig. 16 Radial variation of the forces in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089) for different values of n.
Graph plotted following the numerical values from Table.(1)

for the mass-radius ratio of a compact object in the GTK
framework.

The Mass-Radius profile are plotted in Figs.(18) and (19).
In Fig.(18) the mass-radius profile is plotted for a fixed sur-
face density 4.5 × 1014 gm cm−3 taking n = 1 to 5. In Fig.
(19) the mass-radius profile is plotted for n = 4 only for dif-
ferent values of surface density. We found that for a given
surface density as n increases, the maximum allowed mass
for our model increases which is approximately 4M	 which
is similar to that of the result attained in Ref. (Rhoades and
Ruffini 1974).

Fig. 17 Radial variation of mass and the compactness factor in SAX J
1808.4-3658 (M = 0.88M	;R = 8.9km;Q = 0.0089)

Fig. 18 Mass-Radius profile for surface density 4.5 × 1014

gm cm−3 for different values of n in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089)

7 Comparative study of the model

We obtain relativistic model of a star with it’s known mass
and radius. The model parameters are determined for a sta-
ble hydrostatic equilibrium configuration. We considered
the following stars: Vela X-1 (Roupas and Nashed 2020)
(M	 = 1.77±0.08 & R = 10.654±0.14), Cen X-3 (Roupas
and Nashed 2020) (M	 = 1.49±0.08 & R = 9.178±0.13),
PSR J1614-2230 (Arzoumanian et al. 2018) (M	 = 1.97 ±
0.04 & R = 10.977 ± 0.0006) and SAX J178.9-2021 (Özel
et al. 2016) (1.81+0.25

−0.37 M	 & R = 11.7 ± 1.7 km); which
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Fig. 19 Mass-Radius profile for n = 4 for differ-
ent values of surface density in SAX J 1808.4-3658
(M = 0.88M	;R = 8.9km;Q = 0.0089)

are used to determine the values of the model parameters to
check the suitability of the model for different n as tabulated
in Table (2). It can be noted that for all the stars the central
density (ρc) is higher than the density at the surface (ρR).
We can also observe the central radial pressure for different
compact objects, taking Q = 0.0089. It has been found that
all the stars form a stablle stellar model for n ≥ 2.

8 Discussion

In the paper, relativistic stellar models for anisotropic
charged compact objects in Einstein-Maxwell gravity with a
generalised Tolman-Kuchowicz metric are obtained. The ex-
ponent n introduced in the GTK metric plays an important
role in deciding the matter configuration inside the com-
pact object. The exponent n = 1 corresponds to the Tolman-
Kuchowicz metric; however, it is found that one can extend
the exponent n > 1, which is considered here for construct-
ing a physically acceptable stellar model. Although n may
be taken with large value to construct stellar models, we
consider in the paper with n ∈ [1,5] (n ∈ Z) and analyse the
physical features of compact objects for a given mass and ra-
dius of a known star SAX J 1808.4-3658. The contribution
of an increase in n value is studied for evaluating the energy
density, pressure profiles and other physical features. We
found that n plays an essential role in determining a viable
stellar model. Since the relativistic field equations are highly
non-linear and it is impossible to determine the exact solu-
tions for compact objects, we adopt numerical techniques.
We note the followings:

(i) The energy-density and pressure profiles are found
positive for a given set of model parameters which are ob-
tained from the criteria for a realistic star as evident from
Fig. (1)-(3). It is evident that the energy density inside the
star increases as we increase n shown in Fig. (1). Thus a
dense star can be represented by a large value of n different
from that required by the TK metric. The energy-density at
the center for n ∈ [1,5] is found to satisfy a limit given by:

∈ [50.6413,50.8597] × 10−5 km−2. The density at the sur-
face lie in the range of ∈ [39.2262,39.6630] × 10−5 km−2.
From Fig. (2) and (3), it is evident that the radial pressure
(pr ) vanishes at the boundary, which is required to estimate
the boundary of a star, but the transverse pressure (p⊥) is
non-zero at the boundary which however decreases as one
increases n. The radial and transverse pressures at the cen-
ter are the same for a given value of n, but both pressures
decrease at the center as n increases. The central pressure
is found to satisfy the limit: ∈ [38.0525,37.3223] × 10−6

km−2 for n ∈ [1,5]. Bag constant (Bg) also increases as n

increases.
(ii) Although both the radial and the transverse pressures

are the same at the center they branch out away from the
center, satisfying an inequality, p⊥ > pr . The above obser-
vation predicts that the anisotropic force gradient yields re-
pulsive nature. The anisotropy in the stellar model enhances
the hydrostatic equilibrium leading to the stability of the
model. The anisotropy in pressure, which is zero at the cen-
ter, gradually increases as n increases up to 8.2 km inside
the star SAX J 1808.4-3658, where the anisotropy is iden-
tical for all n; thereafter, anisotropy decreases as n is in-
creased as shown in Fig. (4). We note an interesting result
that for charged anisotropic star in GTK metric with n = 1
and n = 2, the radial pressure is more than the transverse
pressure inside of the star resulting in a negative anisotropic
parameter, but away from the center at a considerable dis-
tance the role reverses, where radial pressure is less than the
transverse pressure resulting  > 0. However, for n = 3,4
and 5, the transverse pressure is found greater than the radial
pressure, always resulting in a positive anisotropic parame-
ter throughout the star. Therefore, n = 3,4 and 5 give us a
positive anisotropy inside the stellar body which permits a
stable stellar configuration.

(iii) In Fig. (5), the variation of the electric field is plot-
ted for different values of n. It is noted that E2 is positive
everywhere inside the star. We note that E2 increases away
from the center and attains a maximum; after that decreases
but never vanishes at the surface. We also note that E2 is
decreasing with the increasing value of n. Variation of Bg

against n is plotted in Fig. (6), which shows that the value of
the bag constant is within the limit and gets saturated with
increasing n.

(iv) The stability of the stellar models in Einstein-
Maxwell gravity with generalised Tolman-Kuchowicz met-
ric is ensured by studying the evolution of the sound speed
inside the star shown in Figs. (7) and (8). It is evident that the
sound speed is subliminal, and hence causality is maintained
inside the star. It is also noted that v2

r = 1
3 is constant for

all n, whereas v2
t decreases sharply for n = 1 compared to

other values of n. We also note that for n = 1 and n = 2, the
v2⊥ − v2

r is positive at the center, which decreases gradually,
which implies that the model becomes potentially unstable
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Table 2 Best fitted values of model parameters for different known compact objects

Compact a b A C ρ0(×10−4) ρR(×10−4) pr0(×10−4)

Star (×10−6) (km−2) (km−2) (km−2)

n = 1

Vela X-1 (Roupas and Nashed 2020) 0.00590913 22.5416 0.00423388 0.561549 7.0535 3.99936 1.01805

Cen X-3 (Roupas and Nashed 2020) 0.00768265 38.3225 0.00545538 0.573676 9.17046 5.31723 1.28442

PSR J1614-2230 (Arzoumanian et al. 2018) 0.00631319 25.095 0.00466849 0.517801 7.53581 3.92641 1.20313

SAX J178.9-2021 (Özel et al. 2016) 0.00439697 12.6782 0.00306624 0.597734 5.2485 3.17689 0.690537

n = 2

Vela X-1 (Roupas and Nashed 2020) 0.0029723 4.89246 0.00423388 0.561549 7.09584 4.08404 1.006393

Cen X-3 (Roupas and Nashed 2020) 0.00386403 8.4302 0.00545538 0.573676 9.2247 5.42566 1.26635

PSR J1614-2230 (Arzoumanian et al. 2018) 0.00317619 5.1685 0.00466849 0.517801 7.5826 4.01998 1.18754

SAX J178.9-2021 (Özel et al. 2016) 0.002211 2.86087 0.00306624 0.597734 5.27837 3.23663 0.68058

n = 3

Vela X-1 (Roupas and Nashed 2020) 0.001984 2.05771 0.00423388 0.561549 7.10468 4.10173 1.00098

Cen X-3 (Roupas and Nashed 2020) 0.002579222 3.58411 0.00545538 0.573676 9.23614 5.44853 1.26254

PSR J1614-2230 (Arzoumanian et al. 2018) 0.00212007 2.0797 0.00466849 0.517801 7.59196 4.0387 1.18442

SAX J178.9-2021 (Özel et al. 2016) 0.00147579 1.240064 0.00306624 0.597734 5.28478 3.24944 0.678444

n = 4

Vela X-1 (Roupas and Nashed 2020) 0.00148867 1.1183 0.0042338 0.561549 7.10787 4.10811 0.999922

Cen X-3 (Roupas and Nashed 2020) 0.00193529 1.96889 0.00545538 0.573676 9.23614 5.44853 1.26254

PSR J1614-2230 (Arzoumanian et al. 2018) 0.00159072 1.08157 0.00466849 0.517801 7.59513 4.04505 1.18336

SAX J178.9-2021 (Özel et al. 2016) 0.00110734 0.69413 0.00306624 0.597734 5.28717 3.25423 0.677646

n = 5

Vela X-1 (Roupas and Nashed 2020) 0.00119118 0.6977979 0.00423388 0.561549 7.10936 4.11108 0.999427

Cen X-3 (Roupas and Nashed 2020) 0.00154856 1.24082 0.00545538 0.573676 9.24229 5.46083 1.26049

PSR J1614-2230 (Arzoumanian et al. 2018) 0.00127281 0.0644058 0.00466849 0.517801 7.59651 4.0478 1.1829

SAX J178.9-2021 (Özel et al. 2016) 0.000886068 0.445225 0.00306624 0.597734 5.28833 3.25654 0.67726

for these values of n. Again the inequality −1 ≤ v2⊥ −v2
r ≤ 0

holds good for n = 3,4 & 5, i.e. we get a stable stellar con-
figuration for these values of n.

(v) The radial variation of the adiabatic index (�r ) is
plotted for different values of n in Fig. (9). It is evident that
the adiabatic index is always greater than the critical limit,

�crit =
(

4
3 + 19

21u
)

inside the star, indicating the stability of

the model.
(vi) The radial variation of the null energy condition,

weak energy condition, strong energy condition, dominant
energy condition and the trace energy condition are plotted
in Fig. (10)-(14) and found that the charged compact stellar
model obeys all the energy conditions inside the star SAX J
1808.4-3658.

(vii) In Fig. (15) and (16), all different force gradients
namely, gravitational force gradient (Fg), hydrostatic force
gradient (Fh), anisotropic force gradient (Fa) and electric
force gradient (Fe) are shown for different values of n. We
note that (Fg) is always negative and (Fh) is always posi-

tive and another two forces show mixed behaviour leading
to equilibrium configuration.

(viii) Fig. (17) plots the radial variation of mass and
compactification factor. It is evident that the compactness
factor decreases as the value of the exponent in GTK met-
ric: n increases. However, we found that the values obtained
above satisfies the limits obtained here for stable stellar
model.

(ix) The Mass-Radius profile plotted in Fig. (18) shows
that for a fixed density, the upper bound to the maximum
mass allowed in the model increases as one increases the
exponent (n) in the generalised Tolman-Kuchowicz metric.
In Fig. (19), we consider a given n say n = 4, to draw the
Mass-Radius profile, and it is found that the maximum mass
limit increases with the decreasing surface density.

(x) We also consider the observed mass and radius of
the following compact objects, namely, Vela X-1, Cen X-3,
PSR J 16142230 and SAX J178.9-2021 to construct stel-
lar models with generalised Tolman-Kuchowicz metric. The
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analysis carried out for stellar models is tabulated in Table.
(2) with best-fitted values of the model parameters, and it
is found that stable stellar configuration is obtained for all
these stellar objects for n ≥ 2. From the Table. (1) and Ta-
ble. (2) it is shown that stable stellar models can be obtained
for compact objects with different n.

Therefore, it is evident that for n = 1 and n = 2, the
stellar models we have constructed do not permit positive
anisotropy inside the compact object and do not follow the
inequality −1 ≤ v2⊥ − v2

r ≤ 0 also. Hence, the stellar model
we have constructed is potentially unstable for those given
model parameter values n for the compact object SAX J
1808.4-3658. For n = 3,4 and 5, the stellar model satisfies
all the necessary conditions to obtain stable stellar models,
giving us potentially stable stellar models for charged com-
pact stars in the framework of GR with a geometry described
by a generalised Tolman-Kuchowicz (GTK) metric.
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