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Abstract

Since the initial finding of exoplanets, planet detection has gained prominence as a field of research in astronomy. Using
a variety of techniques, including gravitational microlensing, direct imaging, astrometry, and the radial velocity approach,
more than 5,000 exoplanets have been found. The majority of confirmed exoplanet discoveries, have been made using the
transit method. The machine learning (ML) models used in earlier approaches for prediction of exoplanets involve usage of
large datasets and complex architectures, which takes a lot of time for training and hence detection of exoplanets.

This work has presented a novel exoplanet detection approach based on the Object Detection algorithm- You only look
once (YOLO). The data was collected for 221 confirmed exoplanets detected by Telescope and Transiting Exoplanet Survey
Satellite (TESS) and light curves were downloaded for the same. The annotations were generated around the brightness dips
in the light curves, followed by YOLO-object detection. The presented work not only predicts the dips in brightness in the
light curve accurately but also takes less time to train the proposed model.

The work has achieved a mAP 0.5 of 0.82, a precision of 0.85, and a recall of 0.81. Additionally, a comparison of YOLO,
MobileNet-SSDv2, and EfficientDet Lite is presented. The EfficientDet Lite D2 scores mAP0.5 0.66 and Average Recall
0.56, which is very satisfactory considering it is running on low computing power devices such as mobile phones, Raspberry

Pi and other microcomputers.
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1 Introduction

Are we alone? Is there any other planet like Earth in the
universe? This is a uniquely human question that has deep
roots in all of us and probably originated when humanity
first looked up at the stars in the night sky.

Multidisciplinary science that includes astronomy, astro-
biology, geology, planetary science, and much more. Exo-
planet detection started about 25 years ago and continues to
give hope for the diversity of the world, well beyond our
solar system. The rapid unearthing of exoplanets has broad-
ened the field of scientific possibilities. This research prob-
lem drives an understanding of planetary processes outside
the solar system, and finding exoplanets opens up vast ex-
ploration areas to look for other habitable planets (Chickles
2021; Azari et al. 2020; Cannon et al. 2022).
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With recent technological advances and the use of sophis-
ticated telescopes such as NASA’s Kepler Space Telescope
and Transiting Exoplanet Survey Satellite (TESS) (Yu et al.
2019), scientists can now scan stars in the visible cosmos to
check if they have extrasolar planets (called “exoplanets”).
Depending on the diameter of the planet(stars), a planet may
travel in front of its host star, obscuring a portion of the star’s
light and causing the pragmatic visual illumination of the
star to decline by a tiny amount. So, for the transit method,
a star’s brightness is constantly measured, and “dips” in the
light curves are looked for.

One downside of this approach is that transits can only be
witnessed once the planet’s circle exactly aligned with the
position of the observer. Another worry is the high number
of false detections, which can be caused by binary systems
or asteroids that pass in front of each other. This means that
findings need to be backed up by more evidence.

This work is aimed at combining observations from light
curves of 221 confirmed exoplanets using an object detec-
tion technique, paving the way for a broader area of exo-
planet study, including planet size and characteristics. The
work deals with the following points: i) To come up with
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an algorithm that can accurately detect dips in light curves
with a minimum number of false positives. ii). To introduce
simpler or less computationally intensive ways of exoplanet
detection that perform similarly well or better than existing
approaches. iii). To do a comparative study between a few
object detection algorithms to determine the most efficient
one.

2 Literature review

(Wright and Gaudi 2012) research looked at several obser-
vational methods for finding planetary companions to stars,
with a focus on radial velocities, imaging, astrometry etc.
For each technique, this document derives or summarises the
main observable phenomena utilised to deduce the reality of
planetary partners, planet and star features that may be de-
termined from the size of these signals. This study then com-
pares the amount of the common causes of measurement er-
ror to the total experimental requirements for robustly iden-
tifying signals using each technique. Whereas (Botros 2014)
performs the basic analytics technique like preprocessing,
feature extraction on Kepler Telescope light curves for bi-
nary classification of exoplanets. There system generates 85
percent accuracy. To improve the accuracy further, the pro-
posed method works on Roboflow technique to do real time
object detection

(Malik et al. 2022) presents a traditional machine learn-
ing (ML), appeal in finding a planet. The solution involves
autonomously collecting time series characteristics from
light curves and feeding them into a gradient enhanced trees
model. The research shows that ML approaches can recog-
nize light curves containing planet signals more reliably than
BLS while dramatically lowering the amount of false posi-
tives. They able to predict a planet with an AUC of 0.94.
To further enhance the accuracy, the proposed work used
YOLO model, which takes lesser training time with near
equal results.

The study (Pearson et al. 2018) demonstrates the use of
an artificial neural network to study the photometric features
of a transiting exoplanet. As neural networks are discrimi-
native, they can only provide a qualitative evaluation of the
candidate signal by predicting the likelihood of sensing a
transportation within a subset of the given time sequence.
They used periodic transits by employing a phase folding
approach that provides a constraint when fitting for the or-
bital period of planet signals that are shorter than the noise

(Chintarungruangchai and Jiang 2019) used a light curve
from the Kepler Space Telescope and deep-learning models
were created and tested. According to the research, folding
can help retain high accuracy. Even when Signal to noise
(S/N) is less than 10, all models with folding may achieve
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Fig. 1 Image of a light curve

more than 98 percent accuracy. They show that the 2D-
CNN-folding-2 model has good value even when the folding
time differs from the transit length by 20%.

(Shallue and Vanderburg 2018) presented a deep learning-
based technique for identifying Kepler transiting planet can-
didates automatically. The neural network method can de-
termine the difference among transiting exoplanets and false
positives (FP) such as eclipsing binaries, observational arte-
facts, and stellar variability. On the test set, the model ranks
true planet candidates above FP 98.8 percent of the time.
While the model improves simulated planets at a decent rate
on simulated data, it fails to reject several kinds of simu-
lated FP, such as weak secondary eclipses, as well as the
more mature Robovetter system.

To further enhance the accuracy and to reduce the time
consumption, the propose work divides confirmed images
of exoplanet light curves into a grid of cells, with each cell
immediately predicting a bounding box around the dip and
dip categorization.

3 Proposed solution

Data in astronomy is rapidly expanding thanks to new and
advanced telescopes. Traditional procedures based on inef-
ficient human judgments that vary depending on the inves-
tigating expert. The YOLO Object detection model trains
on the dataset of light curves of 221 confirmed exoplan-
ets based on the brightness dips. The dataset is downloaded
from the TESS Input Catalog (TIC) ID’s of the confirmed
exoplanet sites (NASA 2022 & Berrios et al. 2021) https:/
exoplanetarchive.ipac.caltech.edu/, which is a NASA Exo-
planet Archive. The TIC ID aids in the determination of both
physical and observational parameters of planet candidates.
Itis intended for use by both the TESS research team and the
general public, and it is regularly updated. Figure 1 shows
the image of a light curve.

To perform the computation more effectively the work
has incorporated following tools and methods
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Fig.2 Annotated light curve

i. Labellmg- It is an annotation tool for graphical images.
This has been used to annotate, drawing bounding boxes
around brightness dips of the confirmed set of exoplan-
ets. Figure 2, illustrate the light curve after annotate.

ii. Roboflow has been used for real time object detection
and it also makes things easy/simple/clean by the fol-
lowing:

e Creates simple and effective file structure of train test
validation sets that aids in training.

e Creating train test validation sets

e Resizing of image data and transforming or cleaning
the data.

e Converting data to suitable formats required to train
object detection models.

iii. Weights & Biases (WB) is used for experiment track-
ing, dataset versioning, and collaborating on ML. It is
basically used for visualizing all the data that the model
outputs.

3.1 Proposed architecture

The presented work architecture is shown in Fig. 3, which
consists of the YOLOv1 architecture (Redmon et al. 2016)
and other subsequent models. Here, the input image is di-
vided into a GSxGS grid by the system. Each grid cell fore-
casts bounding boxes (around the bright-ness dips) and their
confidence ratings; these scores give certainty that the box
contains the dip (the object) and the accuracy of the pre-
dicted result. Each bounding box (He et al. 2019; Swiezewsk
2022) around the dip is represented using a 5-D vector:

o the box’s middle (bmX, bmY)

e Width (bmW)

e Height (bmH), a value denoting the object’s class with
the letter “c” (dog, cat..)

e A probability of an item being present in the box, rep-
resented by the value “pc”

The ‘C’ conditional class probabilities, Prob(Class-
Object), are also detected for respectively grid cell. These
probabilities depend on the grid cell in which an object(dip)

is situated. Irrespective of the number of bounding boxes,
they only estimate 1 set of class probabilities per grid cell
(Redmon et al. 2016). They multiply the discrete box confi-
dence, predict with the conditional class probabilities. This
provides with scores for every box in the class. These scores
encode the probability of that class presence in the box as
well as how well the projected box matches the item.

As each cell predicts an output, the number of anticipated
boxes might grow excessive, and the majority of them will
be empty. To address this issue, the technique employs the
Non-Max Suppression algorithm to delete boxes based on
‘pc’ that do not contain any objects (Redmon et al. 2016 &
Swiezewsk 2022).

3.2 Object detection model construction

Object detection is a computer vision task that includes both
localising and categorising one or more dips within a pic-
ture of verified light curves. It is a computer vision prob-
lem that requires both effective dip localization (finding and
drawing a bounding box around each dip in the image of
the light curve) and successful object classification (predict-
ing the proper class of dip that was localised), which aids in
predicting the planet’s likelihood of being an exoplanet.

3.2.1 Data pre-processing and annotations

The data being used is the TIC ID of the 221 confirmed ex-
oplanets. To detect the planets, the TESS satellite employs
a technique known as the transit method. TESS monitors a
star for 27.4 days, and if any planet orbiting the star passes
in front of it, that is, between the satellite and the star, the
brightness of the star decreases, which is detected and dis-
played in a graph called the light curve.

Labellmg has been used for annotations. It is a free, open-
source tool for graphically labelling images(light curves of
221 confirmed exoplanets). It’s written in Python and uses
QT for its graphical interface. Bounding boxes have been
created across the prominent dips for the generated light
curve images.

3.2.2 Data compatibility using roboflow

Roboflow is used here to convert the data into a compatible
format for YOLO V3 and YOLO V5. Roboflow makes it
simpler by cheating on training test validation sets and helps
resize the image data from the light curves and cleaning of
data. Roboflow is a computer vision platform that allows
us to create training-ready datasets for the YOLO models
more rapidly and accurately by improving data collection,
preprocessing, and model training by transforming the data
to a suitable format for YOLO versions V3 and V4.

Users may use Roboflow to upload custom datasets, draw
annotations, adjust image orientations, and resize photos to
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Image of light curve

Annotated light curve (green color)

Fig.3 Exoplanet detection using YOLOv1

improve compliance with the models used for training. It
may also be used to upload custom datasets, change image
contrast, alteration image orientations, resize, and perform
data augmentation and model training.

Object detection model training using Roboflow train:
models may also be trained using it and this report uses
Roboflow train to train on the annotated images of the light
curves of 221 confirmed exoplanets. The Roboflow training
turned our dataset into a compatible format and has the fol-
lowing advantages.

e Improved model performance for (YOLO V3 and
YOLO V5).

e Easy training and streamlined deployment.

e Active and real time learning (Object detection).

3.2.3 Object detection using YOLO

The “You Only Look Once,” or YOLO, family of models is a
set of end-to-end deep learning models developed by Joseph
Redmon for quick object recognition.

YOLO causes more localization errors but predicts fewer
FP in the related. Finally, YOLO learns extremely broad il-
lustrations of objects. It outperforms other detection algo-
rithms like DPM and R-CNN. Using transfer learning, the
model trained YOLOv3 and YOLOVS using the Ultralytics
framework.
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3.2.4 Proposed model training - epochs

The initial YOLO model versions provided a wide architec-
ture, whereas the second refined the design and employed
preset anchor boxes to improve bounding box suggestion
around brightness dips, and the final the third expanded the
model architecture and training procedure. The latest ver-
sion V5 has shown to be more exact and efficient for pre-
dicting brightness dips from light curves, resulting in better
exoplanet prediction.

Training had been done for YOLO version 3 and YOLO
version 5. For version 3, the model has been trained on 100
and 150 epochs as shown in Fig. 4 & 5. For YOLO version
V5, the model has been trained for 100 epochs as shown in
Fig. 6.

Roboflow, It has the ability to resize images to be com-
patible with the versions of YOLO used for a general com-
parison on the efficiency.

3.2.5 Detection of dips

The Object detection method makes use of a single deep
convolutional neural network (first a version of GoogleNet,
then modified and named DarkNet based on VGG) that di-
vides confirmed images of exoplanet light curves into a grid
of cells, with each cell immediately predicting a bounding
box around the dip and dip categorization.
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Fig.4 Detection of dips using YOLOV3 for 100 Epochs

Fig.5 Detection of dips using YOLOV3 for 150 Epochs

As a consequence, a huge number of potential bounding
boxes are generated and this constitutes a part of the annota-
tions, which are then aggregated into a final forecast of the
prediction of dips via a post-processing phase.

Figure 4 & 6 are the detection’s made for a test image
using VOLO v3 with 100 & 150 epochs. Similarly Fig. 6
shows VOLO v 5 with 100 epochs. By observing the light
curve of Fig. 4, 5 and 6, author has notice that the v3 is
unable to predict all four dips, whereas v5 is able to predict
all the four dips.

3.2.6 Exoplanet classification

The proposed model is applied to TESS data. As the length
is supplied, the most significant drop may be automatically
recognised, allowing for a better understanding for cate-
gorizing it as an exoplanet. Other ML models are typi-
cally black boxes with difficult to anticipate outcomes. Here
Roboflow train is used to make the annotated data in a com-
patible format for the YOLO model.

Fig.6 Detection of dips using YOLOVS for 100 Epochs

Thereafter the work has further compared with
MobileNet-SSDV2  and  Efficient Det-Lite. = Here
MobileNet—-SSDV2 uses two different kinds of blocks.
Block one is a residual block with a stride of one. Another
block is for downsizing with a stride of two. For both kinds
of blocks, there are three levels. 1 x 1 convolution with
ReLU6 makes up the first layer. The depthwise convolution
is the second layer. The third layeris 1 x 1 convolution once
more, but this time there is no non-linearity.

Subsequently to run object detection model on low power
devices such as mobile phone, Raspberry Pi, author has in-
corporated EfficientDet-Lite which is built specifically to
run object detection models on low-power devices. This
work compares EfficientDet-Lite-DO and EfficientDet-Lite-
D2 for 150 and 100 epcohs, respectively.

4 Results and discussion

The proposed work is validated using matrices and statisti-
cal measures such as mAP, Precision, Recall and F1 using
YOLO v3, YOLO v5, Mobile NET-SSDV 2 and Efficient
DET-LITE - DO & D2 as shown in Table 1.

Mean average precision In Fig. 7, blue and red lines denote
the results of YOLO V3 for 100 and 150 epochs respectively.
The mAP 0.5 shows the performance of the model at IOU
threshold of 0.5, which implies that 50% of the predicted
bounding boxes along the dips overlap with the ground truth
box. It can be concluded from the graphs of both the YOLO
versions that mAP of version 5 is higher than version 3 and
hence is a better performing model. Similarly Fig. 8, blue
and green lines denote the result of YOLO V5 during 1st
and 2nd run respectively.

@ Springer



75 Page6o0of8

S.R.M. Sekhar et al.

Table 1 Results of mAP, Precision, Recall and F1 using YOLO v3,
YOLO v5, Mobile NET-SSDV 2 and Efficient DET-LITE (DO & D2)

mAP Precision Recall F1
yoLovs 031062 0.7 0735 071
0.5:0.95 : 0.244
.5:0.82
YOLOvV5 0-5: 0823 0.856 0.8143  0.834
0.5:0.95 : 0.3987

Mobile NET-SSDV 2 0.50: 0.65 0.55 0.59 0.58
Efficient DET-LITE

0.51 0.52 0.55
DO: 0.5:0.53
Efficient DET-LITE

0.56 0.56 0.54
D2: 0.5:0.66

metrics/mAP_0.5
— v3_150 = v3_100
0.6
05
0.4
0.3
0.2
0.1
0 Step
0 20 40 60 80 100 120 140

Fig. 7 Mean Average Precision using YOLOV3 for 100 epochs (blue
line) and 150 epochs (red line)

metrics/mAP_0.5
= v5_2nd_run = v5_1st_run

0.8
0.6
0.4

0.2

Ste,
0 P

0 20 40 60 80 100

Fig.8 YOLOv5 mAP Mean Average Precision using YOLOVS5 for 1st
run (blue line) and 2nd run (green line)

Precision Precision for YOLO v5 is 0.83. Thus, 83% of all
the dips predicted by the model are confirmed. Figure 9
shows the precision for YOLO v3 is 0.6. here, 63% of all
the dips predicted by the model are confirmed. Result shows
that version 5 has a higher precision of 0.83 which results in
better prediction as displayed in Fig. 10.

Recall Recall for YOLO V3 is 0.6 which is comparatively
much lower and hence it accurately predicts 60% out of the
set as displayed in Fig. 11. Whereas recall value for YOLO
V5 is greater than 0.8, which implies that the suggested
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Fig. 9 Precision graph using YOLOV3, here blue line represents 100
epochs and red line represents 150 epochs

metrics/precision
= v5_2nd_run = v5_1st_run

0.8

0 20 40 60 80 100

Fig. 10 Precision graph using YOLOVS, here blue line represents 1st
run and red line represents 2nd run

metrics/recall
- v3_150 = v3_100

Step

0 20 40 60 80 100 120 140

Fig. 11 Recall graph using YOLOv3, here blue line signifies 100
epochs whereas red line 150 epochs

model is able to predict more than 80% out of all the dips as
shown in Fig. 12.

Meanwhile the most complex CNN models are able to
achieve this rate compared to the suggested model which is
less complex and takes less time and does more training

Training losses Training losses correspond to the model’s
predicted values to the actual values or the true values. This
helps with a more competitive study between both the ver-
sions of YOLO. The models are trained on 100 and 150
epochs. As the validation loss starts to plateau, the test is not
performed for a greater number of epochs. This will only
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Fig. 12 Recall graph using YOLOVS, here blue line represents 1st run
and red line signifies 2nd run

train/box_loss

= v5_2nd_run = v5_1st_run
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Fig. 13 Computation of box loss using YOLOVS

train/obj_loss

= v5_2nd_run = v5_1st_run

0.05
0.048
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0.044
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0.038

Step
0.036 !
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Fig. 14 Computation of obj loss using YOLOV5

result in an increment of the validation loss, which is not
required.

e Train/box loss: The proposed model predicts the bound-
ing boxes across the dips. The box loss metric gives a
classification as to how distinct the predicted box is com-
pared to the ground truth box as displayed in Fig. 13.

e Train/Object loss: The proposed model predicts the ob-
ject(dip) inside the bounding boxes. The object loss met-
ric gives a difference between a model’s predicted value
and its true value as shown in Fig. 14.

e Train/class loss: As it can be observed from the previous
figures, there is only one class to be predicted and hence
the cls loss graph is a constant like at 0 as show in Fig. 15.

train/cls_loss

= v5_2nd_run = v5_1st_run

Step

0 20 40 60 80

Fig. 15 Computation of cls loss using YOLOV5S

Box loss is low for YOLOVS5 and tends to decrease giving
the model better accuracy for the prediction. It also indicates
that the predicted bounding boxes are similar to ground truth
boxes.

The object loss also tends to decrease. The result con-
cludes that the graph obtained from both the YOLO models
state that v5 has lower training losses overall and thus gives
a more accurate prediction of the brightness dips.

5 Conclusion and future scope

Object detection models have advanced rapidly in the pre-
vious decade, and they are now an integral element of our
way of functioning. The majority of confirmed exoplanet
discoveries, have been made using the transit method. This
work presents a novel approach to detecting exoplanets us-
ing the object detection YOLO model. The model has been
trained on the light curves of 221 confirmed exoplanets, it
is successfully able to detect the brightness dips. In compar-
ison to the Mobile NET-SSDV 2 and Efficient DET-LITE
(D0 & D2) models. on ML-TESS data. Subsequently YOLO
V5 GPU metric signifies that the smaller amount of data
gives a better output by drawing boundary boxes around
the dips, which thus gives a better way of analyzing. Fur-
ther, the EfficientDet-Lite and MobileNet-SSDv2 object de-
tection models were evaluated in this study. The compar-
ative study between the different versions of YOLO mod-
els shows the competency of YOLO V5, giving a precision
of 0.856 which is atleast 15% better than the other mod-
els. However, the applications of the presented model can
be extended to determining the planet size/radius as an out-
put based on the length of the “dip” detected.
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