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Abstract
This contribution is aimed at an analysis of the dynamics of free-electron density fluctuations in the ionospheric critical
plasma frequency f0F2 by using some tools from the theory of nonlinear dynamical systems. The results suggest the exis-
tence of low-dimensional attractors that point to a characterization of the free electron density fluctuations in the f0F2 as a
deterministic chaotic system. The study carried out focused on the response of the ionosphere to solar activity as a function
of the ascending and descending phases of the solar cycle.
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1 Introduction

The ionospheric critical plasma frequency f0F2 is not
steady, it varies with latitude, season, time of the day, and
other factors. Also, the f0F2 critically depends on the so-
lar activity stage. Related to the latter, different indices of
solar activity, as well as geomagnetic indices, have been
widely used as input variables for numerous ionospheric
models based on the statistical correlations between them
(e.g., Buresova et al. 2014; Perna and Pezzopane 2016;
Blagoveshchensky 2018; Tshisaphungo et al. 2018; Ippolito
et al. 2020; and references therein). The time series profile
of the ionospheric critical plasma frequency f0F2 variation
is highly structured in time representing a real-world sys-
tem that strongly depends on several variables and there-
fore full determinism is not expected. In consequence, some
fundamental tools of the Nonlinear Dynamics and Chaos
Theory are used and applied to two different profiles of the
ionospheric critical plasma frequency f0F2 fluctuations cor-
responding to different phases of the solar cycle (ascend-
ing and descending). State-space, Lyapunov exponent, and
strange attractor dimension are calculated to deduce if the
fluctuations are generated by a deterministic but chaotic dy-
namic corresponding to different solar cycle stages.

2 Data description

The dynamic response of the ionospheric critical frequency
f0F2 to the solar activity depending on the ascending
and descending phase of the solar cycle is analyzed. The
ionospheric data (f0F2 profiles, hourly data) is from the
Ionosonde Station Juliusruh (Germany, 54.6 N 13.4 E)
and was obtained from Space Weather Service-Australian
Government-Bureau of Meteorology (https://www.sws.bom.
gov.au/World_Data_Centre/1/3). We selected two same sea-
sonal periods (winter) corresponding to two different phases
of the solar cycle: ascending and descending phases. The
analyzed periods were November 01, 1987 to February 10,
1988 and November 01, 2002 to February 10, 2003. These
two periods correspond to solar cycle 22 ascending phase,
and solar cycle 23 descending phase respectively. Table 1
displays the main characteristics of these two solar cy-
cles. The data for the solar cycles was obtained from the
Space Weather Prediction Center, National Oceanic and At-
mospheric Administration, NOAA (https://www.swpc.noaa.
gov/products/solar-cycle-progression). Figure 1 shows seg-
ments of the corresponding profiles of the f0F2 fluctuations
under study.

Deterministic chaotic behavior can be detected from the
inspection of observational time series representing real-
world systems, revealing the nature of the temporal evo-
lution of the underlying process. Calculations of parame-
ters related to quantifying how chaotic (or deterministic) a
time series is, are sensitive to the length of the time series
and the reliable limit for the number of structures for di-
mension in the state-space. These conditions are satisfied if
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Fig. 1 f0F2 fluctuations.
Segments of the profile for
Nov. 01, 1987-Feb. 10, 1988 (a)
and for Nov. 01, 2002-Feb. 10,
2003 (b)

(a)

(b)

Table 1 Main characteristics of the solar cycles 23 and 23

Solar cycle Duration Average spots
per day

Slope of the
corresponding phase

22 9.9 years 106 (ascending) 8.5 units

23 12.3 years 82 (descending) 3.4 units

(Isliker 1992):

Ns := N�/tautocorr ≥ 100 (1)

where Ns is the number of structures representing the num-
ber of full orbits in state-space, N is the length of the time
series in number of data-points, � is the temporal resolution
of the time series, and tautocorr is the autocorrelation time, the
time at which autocorrelation decays to 1/e. Table 2 resume

Table 2 Condition (1) for the two analyzed time series, showing that
both satisfied it

Data N � tautocorr Ns

Nov. 1987-Feb. 1988 2424 1 hour 4 606

Nov. 2002-Feb. 2003 2448 1 hour 5 490

condition (1) for the two analyzed time series, showing that
both satisfied it.

3 Methods and results

3.1 State-space reconstruction

State-space is a multidimensional abstract space of all pos-
sible system states. A point in the state-space specifies the
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state of the system, and vice versa. Dynamical systems are
usually defined by a set of first-order ordinary differential
equations acting on a state-space. The coordinates of the
state-space are defined by the independent variables of the
dynamic system under study. The state-space can be recon-
structed from a one-dimension scalar time series according
to an m-dimensional vector x(t) by the embedding method
of time delay (Takens’ theorem, Takens 1981):

x(t) = [x(t),x(t + τ), . . . ,x(t + (m − 1)τ ] (2)

where t represents the time and x(t) is the measured value
at time t, τ represents a time delay (any multiple of time
resolution), and m is the embedding dimension of the sys-
tem. Takens’ theorem asserts that the state-space of a dy-
namical system reconstructed according to (2) will have the
same mathematical properties as the original system. The
fundamental assumption underlying Takens’ idea is that an
observable time series is the realization of some dynamical
process since all degrees of freedom are intertwined: every
single coordinate of the time series contains the information
on all others.

From a mathematical point of view, the time delay be-
tween successive elements is, in general, arbitrary and there-
fore almost any choice of time delay would be acceptable
(Takens 1981). In consequence, the optimum time delay for
the state-space reconstruction is a sort of conjecture, and
there is no unique guess for an optimum time delay, there-
fore, for choosing it any tool for detecting correlations in a
time series can be used. The main argument for choosing the
optimum time delay for the reconstruction of the state-space
is: it should be as large as possible because a small value
means successive elements of the delay vectors are strongly
correlated, resulting in all elements of the state-space are
clustered around the diagonal line f(x) = x. On the other
hand, it should not be too large because successive elements
are already almost independent, and the points fill a large
cloud in the state-space. The seminal paper of Fraser and
Swinney (1986) states the first minimum of the mutual in-
formation as the better criterion for choosing time delay for
state-space reconstruction than the autocorrelation function.
This was the used method to find the optimum time delay τ

for the reconstruction of state-space associated with the two
analyzed time series.

A set of nontransient trajectories is a state-space is the
typical portrait of a deterministic chaotic system (Ruelle
and Takens 1971). This set of nontransient trajectories is
a bounded region in the state-space to which all trajecto-
ries are asymptotically attracted: the attractor. Once a sys-
tem reaches its attractor, it does not leave such state un-
less strong external perturbation is applied. Figure 2 shows
the reconstructed state-space for the two dynamical systems
under study corresponding to analyzed periods: November
01, 1987 to February 10, 1988, and November 01, 2002, to

February 10, 2003. The plotted state-space in two dimen-
sions is for visualizing, in a first approximation, the under-
lying dynamics of the time series after selecting the opti-
mum time delay for the state-space reconstruction. A two-
dimension plot with coordinates x(ti) and x(ti+τ ), where τ

is the selected optimum time delay, is intuitively reasonable
and then enough to be used as a visual inspection and for
inferring the existence of an attractor (Kantz and Schreiber
1999). The presence of an attractor region in both can be
inferred, suggesting a chaotic but deterministic behavior of
such dynamical systems.

3.2 Lyapunov exponents

State-space reconstruction is a 2-dimensional map of an m-
dimensional space, therefore, for most real physical sys-
tems, it is too difficult to visualize the actual trajectories
from one state to the next in the dynamics of the system.
In a completely deterministic system, for example, in a peri-
odic regime, all the trajectories form one state to the next, in
its state-space remain close to each other: in this case, each
state of the system is determined by the previous states. In
this way, if nearby trajectories separate very quickly, or say,
if the trajectories diverge in the course of time during which
the system evolves, the system is going to be less determin-
istic. In completely deterministic systems, the trajectories in
their state space do not diverge. But, on the contrary, if the
trajectories diverge with an exponentially fast rate of sepa-
ration, the system is chaotic.

Lyapunov exponents determine the rate of divergence
or convergence of initially nearby trajectories in the re-
constructed state-space. According to Eckmann and Ruelle
(1985) if at least one of these exponents is larger than zero,
the system is chaotic. Lyapunov exponents uniquely deter-
mine whether the system is chaotic or not; it is not a quan-
titative measure of how deterministic a system is. The Lya-
punov exponents, Λ, represents a characteristic quantity of
any dynamical system and it is expressed as an inverse of
time and gives a typical time scale for the divergence or con-
vergence of nearby trajectories in the state-space. Actually,
the Lyapunov exponent value is not a quantification about
the dimension of the attractor in the state-space; it is just to
point out if the system is fully deterministic (Λ ≤ 0), chaotic
(0 < Λ < ∞), or full stochastic (Λ → ∞). In order to quan-
tify how chaotic a system is (how close or far to be fully
deterministic), the dimension of the attractor must be calcu-
lated by using other tools.

The maximal Lyapunov exponents were calculated (Wolf
et al. 1985) for the reconstructed state-space of the exam-
ined data sets to confirm the presence of attractor and the
inquired time series are originated from a chaotic system.
Table 3 shows the obtained values, pointing to the presence
of an attractor as a signature of a deterministic but chaotic
behavior in both state-space as was suggested from Fig. 1.
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Fig. 2 Reconstructed 2D
state-space for Nov. 01,
1987-Feb. 10, 1988. Delay,
t = 6 (a) and for Nov. 01,
2002-Feb. 10, 2003. Delay,
t = 7 (b)

(a)

(b)

Table 3 Calculated quantities characterizing the nonlinear dynamics of
the systems generating the f0F2 fluctuations considered in this paper:
maximal Lyapunov exponent (Λ), deterministic factor (λ), and point-
wise correlation dimension, (PD(2))

Time series Λ λ PD(2)

Nov. 1987-Feb. 1988 0.9156 0.8079 3.30±0.52

Nov. 2002-Feb. 2003 0.5543 0.8597 2.99±0.40

3.3 Determinism

One of the goals of the non-linear dynamical systems the-
ory is to find out how deterministic the system is. Deter-
minism is an important qualitatively key to decide if the dy-
namic of the system is generated by a deterministic, rather
than a stochastic, process. In Kaplan and Glass (1992) a re-

liable determinism test is introduced based on a proper re-
construction of the state-space and it is used to distinguish
between deterministic and stochastic dynamics. In case the
presence of an attractor in state-space can be inferred, the
Kaplan-Glass determinism test is a measure of the degree
to which the attractor results from the evolution of a deter-
ministic system. The degree of determinism is given by the
factor λ, being close to 1 for deterministic systems and close
to zero for stochastic systems. The applied determinism test
shows considerably high values for the deterministic factors
(see Table 3) and this can be considered as pointing out an
indication for deterministic processes. However, this result
should be tested with other calculations.

Once the degree of determinism of the system is esti-
mated, the correlation dimension is used to quantify how
deterministic a dynamical system is when it is known that
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Fig. 3 Average pointwise
correlation dimension, PD(2) for
Nov. 01, 1988-Feb. 10, 1989 (a)
and for Nov. 01, 2002-Feb. 10,
2003 (b)

(a)

(b)

those systems it is. The correlation dimension D(2) is re-
lated to the scaling properties of spatial correlations between
attractor points and how many degrees of freedom play a
role, that is, how much sensitivity to the initial conditions is
present (Eckmann and Ruelle 1985) giving a lower limit for
the number of independent variables or degree of freedom
involved in the system and then the minimum number of
ordinary differential equations needed to fully describe the
system. In order to describe quantitatively the complexity of
the dynamics of time series associated with the fluctuations
of f0F2, we calculated the pointwise correlation dimensions,
PD(2), (Farmer and Ott 1983) as a locally alternative variant
of the correlation dimension D(2) to characterize the chaos
regime based on the fact that local dimension estimations
have the property that they can be used with non-stationary
data. The way to calculate the pointwise dimension is cal-
culating the probability pi to find points in a neighborhood
of a point χi with size r in the state-space (r is the radius

of a state-space neighborhood around χi ). The pointwise di-
mension is calculated over an embedding dimension range
centered on the optimum value of the embedding dimension.
The used embedding dimension range was between 2 and
10, which is considered large enough. The scanning reso-
lution or the radius of a state-space neighborhood around
every point was 10 (r = 10). The calculated pointwise cor-
relation dimension is the average of all PD(2)(χi) over all
points of the state-space. In Table 3 the calculated average
of pointwise correlation dimensions, PD(2) is shown.

The optimum embedding dimension value was estimated
from the false nearest neighbors’ method (Kennel et al.
1992). In the state-space reconstruction, the optimum em-
bedding dimension, according to Taken’s theorem, is an up-
per bound of the correlation dimension, that is, the embed-
ding dimension must be larger or at least, equal than the di-
mension of the attractor. The calculated embedding dimen-
sion for the two analyzed time series was 5, which agreed
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according to the obtained values for the dimensions (3.30
and 2.99) with the mentioned condition.

4 Discussion and conclusions

The reconstructed state-space using Takens’s delay-embed-
ded theorem suggests the presence of an attractor region, as
well as the obtained values for the maximal Lyapunov ex-
ponent, Λ, and deterministic factor, λ, seems to confirm the
existence of a chaotic-deterministic process underlying the
generation of the f0F2 fluctuations. The dimension corre-
sponds to the number of degrees of freedom that are acti-
vated in a process. It is therefore a lower limit to the number
of involved system of variables. By having the dimension
(in our case calculated from pointwise dimension) it is pos-
sible to have an idea about the lower limit of the number of
degrees of freedom of the system and therefore, how many
variables are activated. The calculated pointwise correlation
dimension, PD(2), indicates a low dimensional chaotic de-
terministic process that can be characterized by a relatively
low number of exited degrees of freedom and consequently
a relatively low minimum number of independent non-linear
equations needed to specify the evolution of the f0F2 iono-
spheric layer.

On the other hand, the calculated pointwise correlation
dimension, PD(2), shows a little difference between the two
analyzed time series, that is, different strangeness of the cor-
responding attractors in its state-space. In this sense, Fig. 3
shows the two profiles of the average pointwise correlation
dimension. Is noticeable the greater variability for Nov. 01,
1988-Feb. 10, 1989 f0F2 fluctuations time series (Fig. 3a).
Sudden leaps of the average pointwise correlation dimen-
sion, indicate changes in the system’s dynamic complex-
ity, showing more complexity in the Nov. 01, 1988-Feb. 10,
1989 f0F2 fluctuations time series, which is associated with
the ascending phase of the solar cycle 22.

It is attractive for us, to find such a difference for the two
f0F2 profiles corresponding to different phases of the solar
cycles also with different ascending and descending slopes.
This fact can be an indicator of a natural phenomenon (fluc-
tuations of the free electron density in the f0F2 ionospheric
layer) with sensitive dependence on the solar cycle stage, in
this case, different ascending and descending phases of the
solar cycles 22 and 23. This can be in consonance with many
cited and controversial papers regarding the strong connec-
tion between the solar cycles’ factors and its influence on the
Earth’s environment (example Friis-Christensen and Lassen
1991).
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