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Abstract
Stable or weakly unstable orbits in cislunar space are attractive as potential locations that natural objects including dust
particles may be trapped. Identifying such orbits is not straightforward especially in high-dimensional, many-body dynamical
systems. The present paper adopts a strategy of limiting the search space around symmetric periodic orbits in the Earth–Moon
spatial circular restricted three-body problem. We find a variety of linearly stable or weakly unstable periodic orbits near the
1 : 1 retrograde resonance with the Moon. Characteristics of the periodic orbits are explored and their stabilities under solar
gravitational perturbations are assessed to understand representative behaviours of retrograde co-orbital orbits around the
Earth.
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1 Introduction

Periodic orbits have been useful for understanding dynam-
ical behaviours of small bodies in space. Stable and unsta-
ble manifolds associated with unstable periodic orbits are
responsible for transport phenomena or temporary capture
(Koon et al. 2011). Weakly unstable periodic orbits can sup-
port temporary but sticky capture from afar (Contopoulos
and Harsoula 2010). Invariant tori associated with linearly
stable periodic orbits offer long-term stability (Lara et al.
2007). These prominent roles of periodic orbits may lead to
an efficient search for captured orbits in a high-dimensional
phase space by exploring the vicinity of periodic orbits com-
puted in a simplified model (Dei Tos et al. 2018).

The recent discoveries of small bodies moving in long-
term stable, retrograde co-orbital orbits around the Sun
(Wiegert et al. 2017; Li et al. 2018, 2019) hint the existence
of a stability region around the Earth in the 1 : 1 retrograde
resonance with the Moon, in addition to the prograde co-
orbital stability regions associated with the triangular equi-
libria (Gómez et al. 2001; Slíz-Balogh et al. 2018, 2019)
and lunar quasi-satellite orbits (Minghu et al. 2014; Bezrouk

and Parker 2017; Oshima and Yanao 2019). Although retro-
grade periodic orbits and associated stable orbits in a variety
of resonances have been recently investigated in Sun-planet
systems (Morais and Namouni 2013, 2016, 2019; Kotoulas
and Voyatzis 2020; Morais et al. 2021; Kotoulas et al. 2022),
the unique dynamical environment in the Earth–Moon sys-
tem with the large Moon-to-Earth mass ratio and the sub-
stantial solar gravitational perturbations, which can desta-
bilise orbits in cislunar space (Boudad et al. 2020), would
require further investigations. In this context, Oshima (2021)
has globally explored stable orbits around the Earth near
the 1 : 1 retrograde resonance with the Moon in the Earth–
Moon–Sun planar bicircular restricted four-body problem
(BCR4BP). The broad stability region for planar orbits has
been revealed and relevant periodic orbits have been indi-
cated, but those for inclined orbits are still veiled due to the
high dimensionality of the phase space hindering straight-
forward explorations.

This paper adopts a strategy of limiting the search space
around symmetric periodic orbits in the Earth–Moon spa-
tial circular restricted three-body problem (CR3BP) instead
of investigating all possible orbits. Since orbits exhibiting
finite-time stability, either long-term or temporary, would be
characterised by periodic orbits, we focus on initial condi-
tions that symmetric periodic orbits near the 1 : 1 retrograde
resonance with the Moon can take. The symmetries of the
spatial CR3BP reduce the dimensionality of the search space
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to three, in which a comprehensive grid search becomes pos-
sible. The search reveals three-dimensional stability regions
consisting of initial conditions of orbits persistent near the
1 : 1 retrograde resonance with the Moon. Among the stable
populations, periodic orbits residing from coplanar to polar
states are computed and their characteristics are explored.
Finally, we add solar gravitational perturbations on the pe-
riodic orbits and investigate their stabilities in the spatial
BCR4BP to understand representative behaviours of retro-
grade co-orbital orbits around the Earth. We find a variety of
Sun-perturbed orbits including regular ones exhibiting long-
term stability, weakly unstable ones, and substantially desta-
bilised ones. In extreme cases of highly eccentric and highly
inclined orbits, orbital flips between prograde and retrograde
orbits through the polar inclination are observed and con-
firmed to be peculiar to the presence of solar gravitational
perturbations.

The remainder of the present paper is organised as fol-
lows. Section 2 introduces the mathematical models. Sec-
tion 3 describes the methodology. Section 4 presents the
main results. Section 5 summarises concluding remarks.

2 Mathematical models

This section introduces the spatial versions of the Earth–
Moon CR3BP and Earth–Moon–Sun BCR4BP used in the
present work. These models are concerned with the motion
of a massless particle under the gravitational influences of
the massive bodies. We assume that the Earth and Moon re-
volve in circular orbits around their barycentre and the Sun
and the Earth–Moon barycentre revolve in circular orbits
around their common barycentre on the same orbital plane
of the Earth and Moon. The motion of a particle is not lim-
ited on the orbital plane of the massive bodies.

2.1 Equations of motion

In both models, we adopt the Earth–Moon rotating frame to
represent the non-dimensional equations of motion

ẍ − 2ẏ = −∂Ū

∂x
,

ÿ + 2ẋ = −∂Ū

∂y
,

z̈ = −∂Ū

∂z
,

(1)

with the effective potential in the CR3BP (Szebehely 1967)

Ū = Ū3BP := −1

2
(x2 +y2)− 1 − μ

r1
− μ

r2
− 1

2
μ(1−μ), (2)

and that in the BCR4BP (Simó et al. 1995)

Ū = Ū4BP := Ū3BP − mS

r3
+ mS

ρ2
(x cos θS + y sin θS), (3)

where

r1 :=
√

(x + μ)2 + y2 + z2,

r2 :=
√

(x − 1 + μ)2 + y2 + z2,

r3 :=
√

(x − ρ cos θS)2 + (y − ρ sin θS)2 + z2,

(4)

θS := θS0 + ωSt, (5)

and θS0 is the initial solar phase angle at time t = 0. See Top-
puto (2013) for the physical constants used in this paper. We
also use vx , vy , and vz to represent the velocity components
ẋ, ẏ, and ż, respectively.

When mS = 0, i.e., ignoring the mass of the Sun, the
BCR4BP is reduced to the Earth–Moon CR3BP and the Ja-
cobi energy

C := −(ẋ2 + ẏ2 + ż2) − 2Ū3BP (6)

is a constant of motion.

2.2 Symmetries in the CR3BP

The equations of motion in the spatial CR3BP are invariant
under the following transformations (Russell 2006):

s1 : (x, y, z, vx, vy, vz, t
) → (

x,−y,−z,−vx, vy, vz,−t
)
,

(7)

s2 : (x, y, z, vx, vy, vz, t
) → (

x,−y, z,−vx, vy,−vz,−t
)
,

(8)

s3 : (x, y, z, vx, vy, vz, t
) → (

x, y,−z, vx, vy,−vz, t
)
. (9)

s1, s2, and s3 correspond to the symmetries with respect
to the x-axis, xz-plane, and xy-plane, respectively. Consider
a trajectory propagated forward in time from a certain initial
condition. The symmetries s1 and s2 indicate the existence
of time-reversal, mirror-image solutions with respect to the
x-axis and xz-plane, respectively, whereas s3 gives a mirror-
image solution with respect to the xy-plane with no reversal
of time.

3 Methodology

3.1 Grid search

The original dimensionality of the phase space in the spatial
CR3BP is six (position and velocity) indicating that a com-
prehensive search is computationally difficult. Instead, our
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Table 1 Search conditions in non-dimensional units with y0 = vx0 =
z0 = 0 (axi-symmetric case)

Parameter Minimum Maximum Number of grids

x0 −3 3 300

vz0 0 10 300

C0 −3 3 300

strategy limits the search space to possible initial conditions
of symmetric periodic orbits around the Earth in the vicinity
of the 1 : 1 retrograde resonance with the Moon.

In the similar way as defined in Oshima (2021), stabil-
ity regions in this paper consist of initial conditions of tra-
jectories persistent for longer than one year in the vicin-
ity of the 1 : 1 retrograde resonance with the Moon, i.e.,
−0.6 < K < −0.4 and hz < 0, where the Kepler energy
around the Earth

K := (vx − y)2 + (vy + x + μ)2 + vz
2

2
− 1 − μ

r1
(10)

and the out-of-plane component of the angular momentum
around the Earth

hz := (x + μ)(vy + x + μ) − y(vx − y). (11)

Since K and hz are quantities in the two-body problem with
respect to the Earth, they can temporarily be disturbed via
close encounters with the Moon. Therefore, we evaluate K

and hz only when a trajectory is far from the Moon satisfy-
ing r2 > 0.5.

The symmetry s1 in Eq. (7) implies that periodic orbits
symmetric with respect to the x-axis may start from y0 =
vx0 = z0 = 0. Similarly, the symmetry s2 in Eq. (8) may lead
to initial conditions y0 = vx0 = vz0 = 0 for those symmetric
with respect to the xz-plane. In both cases, the remaining
dimensionality of the search space is three. Furthermore, the
symmetry s3 in Eq. (9) reduces the search space for the out-
of-plane components by half.

Tables 1 and 2 summarise the search conditions. Note
that the initial Jacobi energy C0 is adopted instead of vy0,
which is calculated by

vy0 = ±
√

−vx0
2 − vz0

2 − C0 − 2Ū3BP (x0, y0, z0). (12)

The search conditions in Tables 1 and 2 can generate
initial conditions with r2 < 0.5. In that case, we propagate
them regardless of their K and hz. If r2 > 0.5 is initially sat-
isfied, we only propagate those satisfying −0.6 < K < −0.4
and hz < 0. We stop propagations if one of the following
conditions is satisfied: propagation time exceeds one year;
a trajectory violates −0.6 < K < −0.4 or hz < 0 when
r2 > 0.5; a trajectory collides with the surface of the Earth or
Moon. There exist trajectories that initially satisfy r2 < 0.5

Table 2 Search conditions in non-dimensional units with y0 = vx0 =
vz0 = 0 (xz-planar symmetric case)

Parameter Minimum Maximum Number of grids

x0 −3 3 300

z0 0 3 300

C0 −3 3 300

and never escape from the vicinity of the Moon, which are
excluded from the current scope.

3.2 Initial guesses for periodic orbits

Linearly stable or weakly unstable periodic orbits that sup-
port the existence of stable orbits should be embedded in the
stability regions found in the grid search. Among the stable
orbits, we extract initial guesses for the periodic orbits sat-
isfying
√

(x − x0)
2 + (z − z0)

2 + (vx − vx0)
2 + (vy − vy0)

2 + (vz − vz0)
2

< 0.1 (13)

on the surface of section y = 0 (y0 is always zero) for the
first time within 35 days.

Although a larger tolerance in terms of the difference in
position and velocity would be useful for finding highly un-
stable orbits, we adopt the tolerance because the periodic
orbits of interest are linearly stable or weakly unstable ones.
Additionally, the tolerance in terms of a period results in a
web of periodic orbits rich enough as will be shown later and
thus longer-period orbits are out of the scope of the present
paper.

3.3 Differential correction

Once a suitable initial guess for a periodic orbit is found,
a differential correction scheme (Russell 2006) is applied
to iteratively make it converge into a periodic orbit. The
scheme exploits a state transition matrix (STM) �(t1, t0)

mapping the initial deviation from initial time t0 to final
time t1. The STM is computed by propagating

�̇(t, t0) = A(t)�(t, t0), �(t0, t0) = I6, (14)

with the equations of motion in the CR3BP from t0 to t1,
where A(t) is the Jacobian matrix of the system and I6 is the
6 × 6 identity matrix. We use the notation �ij to represent
an element in the ith row and j th column of the STM.

The time-reversal symmetries s1 and s2 in Eqs. (7) and
(8) suggest that a periodic orbit of the corresponding sym-
metry with y0 = vx0 = z0 = 0 (axi-symmetric case) and
y0 = vx0 = vz0 = 0 (xz-planar symmetric case), respec-
tively, must satisfy y1 = vx1 = z1 = 0 and y1 = vx1 =
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Fig. 1 Initial conditions of stable orbits (black) persistent for longer
than one year in the vicinity of the 1 : 1 retrograde resonance with the
Moon found via the grid search with y0 = vx0 = z0 = 0 (left panel) and
y0 = vx0 = vz0 = 0 (right panel), respectively. On each plane, initial

conditions of the stable orbits (grey) as well as those of periodic or-
bits classified into planar (magenta), axi-symmetric (cyan), xz-planar
symmetric (blue), and doubly symmetric (green) ones are projected

vz1 = 0, respectively, after a half period. In the similar man-
ner, a planar symmetric periodic orbit with an initial con-
dition y0 = vx0 = 0 must satisfy y1 = vx1 = 0 after a half
period.

The differential correction scheme for three-dimensional
periodic orbits may be derived as

x0 → x0 − δx0,

vy0 → vy0 − δvy0,
(15)

where the correction terms for axi-symmetric orbits are

[
δx0
δvy0

]
=

[[
�31 �35
�41 �45

]
− 1

vy1

[
vz1
v̇x1

][
�21 �25

]]−1 [
z1
vx1

]

(16)

and those for xz-planar symmetric orbits are

[
δx0
δvy0

]
=

[[
�41 �45
�61 �65

]
− 1

vy1

[
v̇x1
v̇z1

][
�21 �25

]]−1 [
vx1
vz1

]
.

(17)

There are special three-dimensional orbits converged by
the scheme in Eq. (16) or Eq. (17) that satisfy both y = vx =
z = 0 and y = vx = vz = 0 along the revolution. Such or-
bits enjoying both of the symmetries are doubly symmetric
orbits (Russell 2006) and they are distinguished from axi-
symmetric or xz-planar symmetric orbits after convergence.

The scheme for planar periodic orbits may be derived as

vy0 → vy0 − δvy0, (18)

where

δvy0 = vx1

�45 − v̇x1
vy1

�25
. (19)

4 Result

4.1 Characteristics of periodic orbits

Figure 1 presents initial conditions of stable orbits (black)
persistent for longer than one year in the vicinity of the
1 : 1 retrograde resonance with the Moon found via the
grid search with y0 = vx0 = z0 = 0 (left panel) and y0 =
vx0 = vz0 = 0 (right panel), respectively, in the correspond-
ing three-dimensional search space. On each plane of the
search space, initial conditions of the stable orbits (grey) as
well as those of periodic orbits are projected for clear visu-
alisation. The periodic orbits are classified into planar (ma-
genta), axi-symmetric (cyan), xz-planar symmetric (blue),
and doubly symmetric (green) orbits. Note that, according
to the symmetry s3 in Eq. (9), flipping the sign of the out-
of-plane components of the initial conditions doubles the
number of the three-dimensional stable orbits in a straight-
forward manner. The search ranges in Tables 1 and 2 suffi-
ciently encompass the initial conditions of the stable orbits,
which possess two main stability regions, respectively, sep-
arated by the dynamically sensitive region around the Earth
at x ≈ −μ. The initial conditions of the periodic orbits are
widely distributed among those of the stable orbits, never-
theless not in a comprehensive manner possibly due to the
tolerance in terms of a period introduced in Sect. 3.2.

Although some structures of families of periodic orbits
are visible in Fig. 1, it is more intuitive to classify them
based on geocentric orbital elements. Since Fig. 1 includes
initial conditions that are in the vicinity of the Moon, we in-
vestigate intersections of the periodic orbits with the surface
of section y = 0 and vy > 0, on which x is confirmed to be
always negative.

Figure 2 visualises distributions of geocentric orbital el-
ements (semi-major axis a, eccentricity e, and inclination i)
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Fig. 2 Distributions of geocentric orbital elements of the periodic or-
bits on the surface of section y = 0 and vy > 0. The orbits of interest
are bounded by i > 90◦ and −0.6 < K < −0.4 corresponding to the
grey surfaces with constant a. (Left panel) The colour classifies the or-

bits into planar (magenta), axi-symmetric (cyan), xz-planar symmetric
(blue), and doubly symmetric (green) ones. (Right panel) The colour
denotes the maximum absolute value among six eigenvalues of the
monodromy matrix. Linearly stable periodic orbits are shown in blue

Table 3 The initial conditions (y0 = vx0 = 0) and the period (T ) of the sample periodic orbits indicated in Fig. 2(right)

Sample number x0 z0 vy0 vz0 T

(1) 0.812709030 0 −1.94490125 0 2.75149510

(2) −1.17391304 0 1.97270464 0 6.26067341

(3) 0.311036789 0 −2.59118566 0 6.34524340

(4) −1.17391304 0 2.04255911 0 6.24997582

(5) −1.17391304 0 2.10807126 0 3.51465476

(6) 0.921317268 0 −2.03329970 0.133333333 6.29988560

(7) −1.15754856 0.140000000 1.97093249 0 6.39841842

(8) 0.880822285 0.110000000 −2.06341968 0 6.77545909

(9) −1.12738404 0 2.06657997 0.133333333 6.84238502

(10) −1.01262286 0 1.86969545 0.500000000 6.33176043

(11) −1.00027085 0 1.07364225 1.00000000 6.25629646

(12) −1.67549069 0 1.72704292 0.433333333 6.26454251

(13) −0.980681162 0.180000000 2.01793883 0 6.29732696

(14) −1.19786182 0.930000000 1.76762026 0 6.37370218

(15) −0.0173056267 0.220000000 2.83649588 0 6.33644612

on the surface of section. The left panel classifies the sym-
metry property and the right panel highlights the linear sta-
bility of the periodic orbits. The colour in the left panel
classifies the orbits into planar (magenta), axi-symmetric
(cyan), xz-planar symmetric (blue), and doubly symmetric
(green) ones. Axi-symmetric orbits rarely appear in the con-
ditions investigated in the present paper. The linear stabil-
ity is assessed based on eigenvalues of the monodromy ma-
trix �(T ,0) (STM over a full period T ). The colour in the
right panel denotes the maximum absolute value among six
eigenvalues of the monodromy matrix, max(|λ|), indicating
the strength of instability (Koon et al. 2011). Linearly sta-
ble periodic orbits (blue) having unity max(|λ|) only exist
in the low-inclination regime (i > 165◦), but some highly

inclined, weakly unstable orbits exist including polar ones
(i ≈ 90◦). The orbits of interest are bounded by i > 90◦ and
−0.6 < K < −0.4 corresponding to the grey surfaces with
constant a and those outside the boundaries are out of the
scope of the present paper.

Sample solutions are marked with stars in the right panel
and corresponding orbits will be presented in the next sec-
tion. The samples (1)–(5) are linearly stable, planar or-
bits and the samples (6)–(15) are three-dimensional ones.
Among the three-dimensional orbits, only the sample (9)
is linearly stable. The other three-dimensional orbits are
weakly unstable. Note that a doubly revolutional geometry
in the Earth–Moon rotating frame may produce two differ-
ent sets of the orbital elements on the surface of section over
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Fig. 3 The sample (1)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 4 The sample (2)
propagated in the CR3BP (red)
and BCR4BP (grey)

one period, such as the samples (2), (4), (7), (12), (14), and
(15). Table 3 summarises the initial conditions and the pe-
riod of the sample periodic orbits.

Planar periodic orbits near the 1 : 1 retrograde reso-
nance with the Moon or Jupiter have been well studied
(Broucke 1968; Morais and Namouni 2013; Oshima 2021),
but only a few studies have addressed three-dimensional or-

bits (Morais and Namouni 2016, 2019). A variety of three-
dimensional periodic orbits near the 1 : 1 retrograde reso-
nance with the Jupiter directly bifurcated from the planar
orbits has been identified in Morais and Namouni (2019)
and we could not find qualitatively different properties from
those in Fig. 2(right) computed with the Moon-to-Earth
mass ratio. We point out that families of three-dimensional
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Fig. 5 The sample (3)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 6 The sample (4)
propagated in the CR3BP (red)
and BCR4BP (grey)

orbits further bifurcated from three-dimensional ones, such

as those including the samples (12), (14), and (15), have not

been reported in Morais and Namouni (2019). We also could

not find earlier works mentioning the families of three-

dimensional orbits including the samples (6) and (7).

4.2 Sample orbits

This section assesses the impact of solar gravitational per-
turbations onto the stability of the retrograde periodic or-
bits. The sample periodic orbits are propagated not only in
the Earth–Moon CR3BP but also in the Earth–Moon–Sun
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Fig. 7 The sample (5)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 8 The sample (6)
propagated in the CR3BP (red)
and BCR4BP (grey)

BCR4BP for three years under solar gravitational pertur-

bations with 20 clones of various initial solar phase an-

gles equally distributed in the range of 0 ≤ θS0 < 2π . The

left panels in Figs. 3–17 present the sample orbits in the

Earth–Moon rotating frame computed in the CR3BP (red)

and those propagated in the BCR4BP (grey) and the cor-

responding intersections with the surface of section vx = 0

and vy > 0 around the periodic orbits (star). The right pan-

els show time evolutions of the geocentric orbital elements

in the BCR4BP. Geometries of periodic orbits in the xyz-

space and time evolutions of the inclination of the planar

orbits are omitted in Figs. 3–7.
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Fig. 9 The sample (7)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 10 The sample (8)
propagated in the CR3BP (red)
and BCR4BP (grey)

The originally stable orbits of the samples (1), (3), (5),
and (9) exhibit remarkable stability even under solar gravi-
tational perturbations, and thus their orbital neighbourhoods
could be potentially interesting locations that natural objects
such as dust particles may be trapped. On the other hand,
the Sun-perturbed trajectories of the originally stable, pla-
nar orbits of the samples (2) and (4) are substantially desta-

bilised possibly due to the low perilune altitudes. Many of
the orbital clones of the three-dimensional orbits of the sam-
ples (6) and (7) shortly escape from the vicinity of the orig-
inal states.

It is interesting to note that the weakly unstable orbits
of the samples (8), (10), (11), (13), and (14) are fairly ro-
bust against solar gravitational perturbations. Their instabil-
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Fig. 11 The sample (9)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 12 The sample (10)
propagated in the CR3BP (red)
and BCR4BP (grey)

ity would limit the performance of trapping objects, but the
weakly unstable nature may produce sticky captures from
distant places. The mildly inclined orbits of the samples (10)
and (14) as well as the highly inclined ones of the sam-
ple (11) indicate the significance of exploring the three-
dimensional space.

The remaining samples (12) and (15) are highly eccen-
tric, highly inclined orbits. Their Sun-perturbed trajectories
reach e ≈ 1 and experience orbital flips between prograde
and retrograde orbits through i = 90◦. Especially, those of
the sample (15) collectively show the extreme behaviour
asymptotic to the polar inclination and always stay in the
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Fig. 13 The sample (11)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 14 The sample (12)
propagated in the CR3BP (red)
and BCR4BP (grey)

vicinity of the co-orbital resonance. Indeed, many of the or-

bital clones of the sample (12) and all clones of the sam-

ple (15) collide with the surface of the Earth when e ≈ 1

meaning the existence of natural Sun-perturbed pathways

between the Earth and the near-polar periodic orbits.

4.3 Impact of solar gravity on orbital flips

To highlight the significance of solar gravitational pertur-
bations inducing the orbital flips, we investigate long-term
behaviours of unstable manifolds associated with the weak
instability of the periodic orbit of the sample (15) in the
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Fig. 15 The sample (13)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 16 The sample (14)
propagated in the CR3BP (red)
and BCR4BP (grey)

Earth–Moon CR3BP. The unstable manifolds are computed
by propagating perturbed states (Koon et al. 2011)

XU(τ) := X(τ ) ± εvU(τ), (20)

where τ is a time-like parameter representing a phase on the
periodic orbit, X is a state vector, vU is an eigenvector as-

sociated with an unstable eigenvalue λ > 1, and ε = 10−5 is

the magnitude of the perturbation in non-dimensional units.

There is only one unstable eigenvalue for the periodic orbit.

We globalise the unstable manifolds from 20 phases equally

distributed in the range of 0 ≤ τ < T on the orbit of a pe-

riod T .
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Fig. 17 The sample (15)
propagated in the CR3BP (red)
and BCR4BP (grey)

Fig. 18 Time evolutions of the
eccentricity and inclination of
the unstable manifolds
emanating from the periodic
orbit of the sample (15)
propagated in the Earth–Moon
CR3BP. The difference in the
colours corresponds to the
different signs of the
perturbation in Eq. (20)
(magenta is used for +ε and
green is used for −ε)

Figure 18 shows time evolutions of the eccentricity and
inclination of the unstable manifolds propagated in the
Earth–Moon CR3BP. The difference in the colours corre-
sponds to the different signs of the perturbation in Eq. (20)
(magenta is used for +ε and green is used for −ε). The ex-
treme behaviours reaching e ≈ 1 are still valid for the half

of the unstable manifolds, but their motions remain retro-
grade with i > 90◦ and orbital flips do not appear in the
absence of solar gravitational perturbations. Since there is
only one unstable mode for the periodic orbit, the orbital
flips are considered to be peculiar to the spatial BCR4BP
dynamics.
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5 Conclusion

The present paper has investigated linearly stable or weakly
unstable periodic orbits in the vicinity of the 1 : 1 retrograde
resonance with the Moon in the Earth–Moon spatial CR3BP.
The characteristics of the periodic orbits have been analysed
on a surface of section based on the geocentric orbital el-
ements and the linear stability. We have found that many
of the linearly stable periodic orbits are robust against solar
gravitational perturbations, whereas some are substantially
destabilised. Several weakly unstable periodic orbits of vari-
ous inclinations may possess non-negligible performance of
capturing objects in a sticky manner. Highly eccentric and
highly inclined orbits exhibit orbital flips between prograde
and retrograde states through the polar inclination, which
have been suggested to be peculiar to the presence of solar
gravitational perturbations.
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