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Abstract
The current paper is concerned with the universe evolution behavior within the framework of Lyra’s geometry. The mod-
ified Einstein’s field equations based on this geometry are solved under a specific creation function and a linearly varying
deceleration parameter. The energy conditions are also discussed.
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1 Introduction

Since 1998 the phenomenon of the accelerated expansion
of the Universe has attracted a great deal of interest among
all astrophysicists, cosmologists, and astronomers. There
are many models that refrained from investigating the be-
haviour of the Universe. In the past, before the discovery
of the fast expansion of the universe, many scientists were
interested in studying the evolution of the Universe with its
constant deceleration parameter (Berman 1983; Berman and
de Mello Gomide 1988). Consequently, a number of Cos-
mological models has been proposed. Some of these models
have been obtained as particular solutions for the Einstein
field equations; for instance, see (McVittie 1962; Sciama
and Dodelson 1971). Researchers intended to study the ex-
panding Universe after countless discoveries that were made
by the Supernova Legacy Survey (SNIa); for instance, see
Riess et al. (2004), Gold sample of Hubble Space, Tele-
scope by Astier et al. (2006), and large scale structure (LSS)
by Eisenstein et al. (2005). After that time, researchers be-
gan to study the Cosmological models with a variable de-
celeration parameter to explore the new theories about cos-
mic expansion; for instance, see (Choudhury and Padman-
abhan 2005; Clark and Stephenson 2016; Akarsu and Dereli
2012; Sahoo et al. 2018; Bakry and Shafeek 2019; Sahni
and Starobinsky 2000; Grøn and Hervik 2007). In addition,
a substantial number of investigations of the models, with

each cosmological term as a time variable, was proposed
during the last two decades, see, e.g. (Chen and Wu 1990;
Pavón 1991; Arbab and Abdel-Rahman 1994; Overduin and
Cooperstock 1998; Carneiro and Lima 2005). The aim of
the previous investigations was to generate a model that ex-
plains the phases of evolution of the Universe in line with
modern observations. Cosmologists have tried to explain the
expansion of the universe in two possible ways, the first
of which is of dark energy, whereas the second is a set of
modified theories of gravitation. Therefore, various alterna-
tive or modified theories of gravitation like bimetric theory,
scalar-tensor theories, vector-tensor theories, Weyl theory
(1918), f (R) theory (Sotiriou and Faraoni 2010), f (R,T )

theory of gravity (Reddy et al. 2012), Brans Dickey theory
(1961), and Lyra Geometry (Singh and Desikan 1997; Prad-
han et al. 2001; Rahaman et al. 2005), etc., have been pro-
posed. Among all these alternative theories we will discuss
the Lyra’s geometry which is a modification of Riemannian
geometry which is itself modified by introducing a gauge
function into the structure-less manifold that bears a simi-
lar appearance to Weyl geometry. This resulted in the elimi-
nation of non-integrability of length transfer, which implies
that the frequency of the spectral line emitted by atoms could
not remain constant, but rather depends on their past history
which is in direct contradiction to the observed uniformity
of their properties. As known, Lyra’s geometry (Lyra 1951)
can be considered as a candidate for modification of the con-
temporary cosmological models. In the consecutive inves-
tigations, Sen (1957) and Sen and Dunn (1971) proposed
a new scalar tensor theory of gravitation and constructed a
correlation among Einstein field equations based on Lyra’s
geometry in a normal gauge function. The aim of this ar-
ticle is to study the behaviour and development of the uni-

� M.A. Bakry
mohamedbakry928@yahoo.com

1 Department of Mathematics, Faculty of Education, Ain Shams
University, Roxy, Cairo, Egypt

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-022-04063-4&domain=pdf
http://orcid.org/0000-0003-0748-8435
mailto:mohamedbakry928@yahoo.com


35 Page 2 of 8 M.A. Bakry

verse in light of its successive acceleration, and to compare
the results with astronomical observations in order to predict
the future of the universe according to the current observa-
tions. In order to crystallize the organization of the current
manuscript, the rest of the paper is organized as follows:
Sect. 2 is devoted to investigating the modified Einstein’s
field equations in Lyra’s geometry. The fundamental cos-
mological parameters are illustrated in a varying decelera-
tion parameter. Finally, the concluding remarks are drawn in
Sect. 5.

2 The modified Einstein’s field equations in
Lyra’s geometry

Many Physicists have been investigating about gravita-
tion in different contexts after Einstein. Hermann Weyl at-
tempted to generalize the idea of geometrizing the gravita-
tion and electromagnetism by applying different techniques
and methods (Weyl 1918). He described both gravitation and
electromagnetism geometrically by formulating a new kind
of gauge theory involving metric tensor with an intrinsic ge-
ometrical significance. A scalar-tensor theory of gravitation
proposed by Sen and Dunn (1971) is based on Lyra’s mani-
fold rather than Riemannian’s (Lyra 1951). The results show
that this new theory predicts the same effect within the scope
of observation in Einstein’s theory. In the Lyra geometry, the
connection is metric preserving as in the Riemannian geom-
etry, which means length transfers are integrable. Also, in
Lyra’s manifold, as obtained by Sen (1957), the Einstein
field equations in a normal gauge are

Rμν − (
1

2
R + 3

4
φλφ

λ)gμν + 3

2
φμφν = −Tμν, (1)

where φμ = gμνφ
ν is the displacement vector field of Lyra

geometry, Tμν is the energy-momentum tensor, Rμν is the
Ricci tensor, and gμν is the metric tensor. We assume that the
gravity coupling constant 8πG = 1. In the literature there
are two choices for the displacement vector. First, the gen-
eral time dependent displacement vector field is given by
(Beesham 1988; Singh and Desikan 1997; Rahaman et al.
2005; Darabi et al. 2015)

φμ = (β(t),0,0,0)), (2)

where β(t) in the displacement field φμ. The physical
meaning of the time component of the displacement vector
was introduced by considering it as a part of the energy-
momentum tensor as a viscosity (Hegazy and Rahaman
2019, 2020; Hegazy 2020).

Second, the constant displacement vector (Halford 1970)
is as follows:

φμ = (β,0,0,0)), (3)

where β is a constant. In Lyra’s geometry, the constant dis-
placement field φμ plays the role of a cosmological constant
in normal general relativistic treatment (Halford 1970).

In this work, in order to have a general form of field equa-
tions, we will consider its general time dependent form.

We may rewrite the field equations (1) in the mixed form
as follows

Gμν − 3

4
φλφ

λgμν + 3

2
φμφν = −Tμν, (4)

where

Gμν = Rμν − 1

2
Rgμν. (5)

In the presence of creation of matter, the energy-momentum
tensor Tμν can be written as follows (Bishi and Lepse 2021):

Tμν = (ρ + P + Pc)uμuν − (P + Pc)gμν, (6)

where ρ is the energy density, p is the pressure of the fluid,
pc is the creation pressure, and uμ is the fluid-four velocity
vector where uμuμ = 1.

In order to analyze the modified Einstein’s field equa-
tions based on Lyra’s geometry (1), it is necessary to make
some simplifying assumptions, such as choosing a metric
with a significant degree of symmetry. In the current pa-
per, one may consider the Robertson-Walker metric with a
maximally symmetric spatial section as follows (Robertson
1932):

ds2 = dt2 − S2(t)

(
dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

)
, (7)

where S(t) is the Cosmic scale factor—which measures how
much the Universe stretches as a function of time, and the
spatial curvature index k ∈ {−1,0,1} corresponds to the
spatially open, flat and closed Universes, respectively. For
the metric (7), the energy-momentum tensor and Eq. (5)
yield

T 0
0 = ρ, T 1

1 = T 2
2 = T 3

3 = −(P + Pc), (8)

and

G00 = −(
3k

S2
+3

Ṡ2

S2
), G11 = G22 = G33 = −( k

S2 + Ṡ2

S2 + 2S̈
S

).

(9)

In a co-moving coordinate system, the modified Einstein
field equations as given by Eqs. (8), (9) and (4) yield the
following equations

ρ = 3H 2 + 3k

S2
− 3β2

4
, (10)
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and

P + Pc = −
(

3H 2 + 2Ḣ + k

S2 + 3β2

4

)
, (11)

where the over dot denotes the derivative with respect to
Cosmic time t , and the Hubble’s parameter is defined as

H = Ṡ

S
, (12)

it measures the expansion rate of the Universe as a function
of time.

Equations (10) and (11) lead to the continuity equation

ρ̇ + 3

2
ββ̇ + 3H(ρ + P + Pc + 3

2
β2) = 0. (13)

A record of the perfect fluids that are relevant to the Cos-
mology results in an equation of state (EoS) in the form

p = ωρ. (14)

The three greatest mutual examples of the Cosmological
fluids with constancy ω are the dust (ω = 0), vacuum en-
ergy (ω = −1), and radiation (ω = 1/3). It is known that
fluids with (ω < −1/3) are usually considered in the set-
ting of Dark Energy (DE) since they give rise to accelerat-
ing expansion. These cases will be discussed in depth in the
Cosmological models proposed throughout this paper, with
(−1 ≤ ω ≤ 1).

The creation pressure is given by (Bishi and Lepse 2021)

Pc = −(1 + ω)
ρ

3H

Ṅ

N
, (15)

where Ṅ
N

is the rate of change of the particle number in a
co-moving volume V .

The particular form of the particle source function is
given by (Bishi and Lepse 2021)

Ṅ

N
= bH, (16)

where b ≥ 0 is a constant. Now, the elimination of ρ from
(10) and (11) yields (Bishi and Lepse 2021)

Pc = −
(

2Ḣ + 3H 2(1 + ω) + k

S2
(1 + 3ω)

+ 3β2

4
(1 − ω)

)
. (17)

Using Eqs. (10), (15)–(17), one obtains

β2 = − 4

(b + 3) + ω(b − 3)

(
2Ḣ + H 2(1 + ω)(3 − b)

+ k

S2
(1 + 3ω − b(1 + ω))

)
. (18)

Substituting from Eq. (18) into Eqs. (11) and (17), the en-
ergy density and particle creation take the following form

ρ = 6

(b + 3) + ω(b − 3)

(
Ḣ + 3H 2 + 2k

S2

)
, (19)

Pc = − 2b(1 + ω)

(b + 3) + ω(b − 3)

(
Ḣ + 3H 2 + 2k

S2

)
. (20)

Substituting from Eq. (19) and (20) into (11), the pressure
of the resulting model is expressed as

P = 6ω

(b + 3) + ω(b − 3)

(
Ḣ + 3H 2 + 2k

S2

)
. (21)

3 Fundamental cosmological parameters

At this stage, one may introduce some fundamental cosmo-
logical parameters that describe the kinematics of the Uni-
verse, namely the deceleration parameter, the Hubble pa-
rameter, and the scale factor. These parameters may be de-
fined by the following mathematical equations:

The deceleration parameter is defined as

q = dH−1

dt
− 1. (22)

From Eq. (9), one can see that the Cosmological models with
the variable deceleration parameter must go throughout the
decelerating expansion if q > 0, reach an expansion with the
constant rate if q = 0, and end at an accelerating power-law
expansion if −1 < q < 0. The Cosmological model is the de
Sitter expansion (exponential expansion) if q = −1.

Throughout this section, the linearly varying deceleration
parameter is used as follows (Akarsu and Dereli 2012)

q(t) = m − 1 − at, (23)

where m and a are constants.
In the current paper, one may choose the coefficient value

to match the observed kinematics of the Universe as follows
(Katore and Shaikh 2015):

m = 2, and a = 0.126.

For these reasons, one gets

q(t) = 1 − 0.126t, (24)

where t : 0 → 2m/a = 31.8.
Equations (23) and (24) lead to the following Hubble pa-

rameter and its derivative

H(t) = 2

t (2m − at)
= 2

t (4 − 0.126t)
, (25)

Ḣ (t) = 4(at − m)

t2(2m − at)2
= 4(0.126t − 2)

t2(4 − 0.126t)2
. (26)
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Fig. 1 The deceleration parameter q(t) versus the cosmic time
t : 0 → 31.8

The scale factor S(t) is obtained by integrating the Hubble
parameter as follows:

S(t) = S0

(
t

2m − at

)1/m

= S0

(
t

4 − 0.126t

)1/2

, (27)

where S0 is the constant of integration and can be taken as a
unity.

It is worth noting that the scale factor S(t) differs from
that in the LVDP model; for instance, see (Akarsu and Dereli
2012).

We also solve the deceleration parameter q as a function
of the redshift z + 1 = Sz=0/S where Sz=0 is the present
value of the scale factor

q(z) = m − 1 − 2maSm
z=0

(1 + z)m + aSm
z=0

= 1 − 3.1

(1 + z)2 + 0.8
,

(28)

where Sz=0 = 2.46 at t = 13.7 Gyr.
In what follows, a set of diagrams will be plotted to show

the influence of some important physical parameters on the
model.

The previous figures may be illustrated as follows:
In Fig. 1, the deceleration parameter q(t) starts with de-

celeration q = 1 at the Big Bang (tbb = 0), and then moves
to the acceleration q < 0, until it eventually reaches the
strong acceleration q < −1 at a Big Rip(tbr = 31.8).

In Fig. 2, the scale factor S(t) starts with zero value at
the Big Bang (tbb = 0) and then it diverges at a Big Rip
(tbr = 31.8).

In Fig. 3, the Hubble parameter H(t) diverges at the be-
ginning and the end of the universe.

In Fig. 4, in general, the transition redshift of the accel-
erating expansion is given by 0.3 < zt < 0.9. In our model,
zt ≈ 0.51, the value agrees with the �CDM model; for in-
stance, see (Katore and Shaikh 2015).

Fig. 2 The Scale factor s(t) versus the cosmic time t : 0 → 31.8. The
Scale factor diverges at the Big Rip

Fig. 3 The Hubble parameter H(t) versus the cosmic time:
t : 0 → 31.8

Fig. 4 The deceleration parameter q(z) versus redshift z : 0 → 2

4 Big Rip model

By the two physically plausible relationships (10) and (17),
one can solve the field Eqs. (10), (11). Substituting from
Eqs. (25), (26) and (27) into Eqs. (19), (20) and (21), one
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Fig. 5 The displacement vector component β2(t) versus the cosmic
time: t : 0 → 31.8, and the state parameter ω : −1 → 1, b = 20 for flat,
open and closed universe

gets

β2 = − 4

(b + 3) + ω(b − 3)

(
8(at − m) + 4(1 + ω)(3 − b)

t2(2m − at)2

+ k(1 + 3ω − b(1 + ω))(2m − at)

t

)
, (29)

ρ = 6

(b + 3) + ω(b − 3)

(
4(3 − m + at)

t2(2m − at)2

+ 2k(2m − at)

t

)
, (30)

Pc = − 2b(1 + ω)

(b + 3) + ω(b − 3)

(
4(3 − m + at)

t2(2m − at)2

+ 2k(2m − at

t
)

)
. (31)

Also, the pressure of the resulting model is expressed as

P = 6ω

(b + 3) + ω(b − 3)

(
4(3 − m + at)

t2(2m − at)2

+ 2k(2m − at)

t

)
. (32)

Now, to demonstrate how the model matches the observed
kinematics of the universe and makes additional predictions,
we first plot the cosmological parameters by choosing m = 2
and a = 0.126, as before. In our model, the displacement
vector component β2 has the same behavior for closed, flat
and open universe. From Figs. 5, 6 and 7, one may notice
that β2 evolves with the singularities at t = 0 and 31.8,
that is, at the Big Bang and the Big Rip, respectively. The
displacement vector component β2 evolves with a positive
value at the Big Bang, then approaches zero with the evo-
lution of time, and eventually reaches a negative value at

Fig. 6 The displacement vector component β2(t) versus the cosmic
time: t : 0 → 31.8, and the state parameter ω : −1 → 1, b = 10 for flat,
open and closed universe

Fig. 7 The displacement vector component β2(t) versus the cosmic
time: t : 0 → 31.8, and the state parameter ω : −1 → 1, b = 1 for flat,
open and closed universe

the Big Rip for the flat, closed, and open universe, when
ω < −0.5 at b ≥ 10.

In Fig. 8, we plot the energy density of the fluid ρ(t) ver-
sus cosmic time t and the state parameter ω. For the spatially
closed, open and flat models, the energy density of the fluid
diverges at the beginning and the end of the universe. One
may observe that the spatially flat, open and closed mod-
els are possible since the positivity condition of the energy
density is satisfied in these models. In Fig. 9, we plot the
pressure of the fluid P(t) versus cosmic time t and the state
parameter ω. One can notice that when ω = 0, the pressure
diverges at the Big Bang and the end of the universe at the
Big Rip. But when 0 < ω < 1 has a positive value and when
−1 ≤ ω < 0, the pressure has an negative value. In Fig. 10,
we plot the particle creation pressure Pc(t) versus cosmic
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Fig. 8 The energy density ρ(t) versus the cosmic time: t : 0 → 31.8,
and the state parameter ω : −1 → 1, b > 0 for open, closed and flat
universe

Fig. 9 The pressure P (t) versus the cosmic time: t : 0 → 31.8, and the
state parameter ω : −1 → 1, b > 0 for open, closed and flat universe

time t and the state parameter ω. One may observe that the
creation pressure Pc(t) has singularity at the Big Bang and
the Big Rip. It has the value Pc(t) ≤ 0 for all values of b > 0.

From Figs. 5-10, one may discuss all the stages, such
as the Stiff matter model ω = 1, the Radiation dominated
model ω = 1/3, the Dust filled model ω = 0, and the Vac-
uum energy model ω = −1. From the previous figures, it is
possible to accept flat, open and closed universes because
these models fulfill the positive condition of the energy den-
sity. Also, the pressure begins with a positive value when the
deceleration expands and turns into a negative value with a
strong expansion, in line with the theory of dark energy.

Now we consider the energy conditions for our models.
To consider the Energy Conditions, in Fig. 11, we plot ρ +P

versus cosmic time t and the state parameter ω. We see that
our models satisfy the Dominant Energy Condition ρ +P ≥

Fig. 10 The pressure Pc(t) versus the cosmic time: t : 0 → 31.8, and
the state parameter ω : −1 → 1, b > 0 for open, closed and flat universe

Fig. 11 ρ + P versus the cosmic time: t : 0 → 31.8, and the state pa-
rameter ω : −1 → 1, b > 0 for open, closed and flat universe

0. Also, it satisfies the Null Energy Condition ρ − P ≥ 0 as
shown in Fig. 12. Strong Energy Condition is achieved when
−0.3 ≤ ω ≤ 1, while it is violated when −1 ≤ ω < −0.3.

5 Concluding remarks

From the previous analysis of the linearly varying decelera-
tion parameter and the particular form of the particle source
function, we can solve the modified Einstein’s field equa-
tions in view of Lyra’s geometry. The solution is analysed
for the Big Bang-Big Rip model. It starts with the Big Bang,
then passes through the Stiff matter model, the Radiation
dominated model, the Dust filled model, and the Vacuum
energy model at the end of the universe when the Big Rip
occurs. The physical behaviour of the displacement vector
component β , energy density ρ, pressure P and particle cre-
ation pressure Pc is studied. The observations for the Big
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Fig. 12 ρ − P versus the cosmic time: t : 0 → 31.8, and the state pa-
rameter ω : −1 → 1, b > 0 for open, closed and flat universe

Fig. 13 ρ + 3P versus the cosmic time: t : 0 → 31.8, and the state
parameter ω : −1 → 1, b > 0 for open, closed and flat universe

Bang-Big Rip model discussed in previous sections are as
follows:

• The Big Bang-Big Rip model has singularity at tbb = 0
and tbr = 31.8 Gyr.

• The transition redshift of the accelerating expansion oc-
curs in our model when this value corresponds to the as-
tronomical observations; see (Cunha and Lima 2008), and
(Riess et al. 1998).

• Our model gives the present value of the deceleration
parameter qday = −0.73 at tday = 13.7 Gyr, see (Spergel
et al. 2003).

• The pressure P > 0 in the stiff matter model and ra-
diation dominated model reaches P = 0 in the dust filled
model, while P < 0 in the vacuum energy model.

• It is worth noting here, from Figs. 5-10, that the nega-
tive pressure accompanies the acceleration of the Universe,
which leads to the Dark Energy. This argument would rule
out almost all the usual suspects, such as cold dark mat-

ter, neutrinos, radiation, and kinetic energy because they
have zero positive pressure; for instance, see Caldwell et al.
(2003). A Dark Energy with a significant negative pressure
will in fact cause the expansion of the Universe to speed up,
so the supernova observations provide an empirical evidence
of Dark Energy with a strong negative pressure; for instance,
see Refs. (Garnavich et al. 1998; Padmanabhan 2003; Car-
roll et al. 2003; Silvestri and Trodden 2009).

• The particle creation pressure Pc ≤ 0 for flat and closed
models. In case of the open model, it starts with Pc < 0 and
reaches Pc = 0 and ends Pc < 0.

• In view of the positivity of the displacement vector
component β2, it evolves with a positive value at the Big
Bang, then approaches zero with the evolution of time, and
reaches to a negative value at the Big Rip for the flat, closed,
and the open universe when ω = −1 and b ≥ 20. This means
that the displacement vector component β has imaginary
values at the Big Rip. Pure imaginary values for β have al-
ready been considered by Sen (1957) and by Kalyanshetti
and Waghmode (1982).

• One can notice that parameter b has a great influence
on the behavior of the displacement vector component β2.
From Eqs. (16), (25), and (27), we can write the particular
form of the particle source function as follows,

N = (
t

4 − 0.126t)
)b/2, (33)

which gives N → 0 at the Big Bang and N → ∞ at the Big
Rip.

It is worth noting here that all the results we have reached
in this article are in full agreement with the previous lit-
erature, for example, the same case was studied using a
quadratic deceleration parameter (Bishi and Lepse 2021),
and also (Halford 1970; Beesham 1988). If β = 0, our mod-
els are reduced to the linearly varying deceleration parame-
ter (Akarsu and Dereli 2012).

• All the discussed models satisfy the Dominant Energy
Condition and the Null Energy Condition, but the Strong
Energy Condition is achieved when −0.3 ≤ ω ≤ 1, while it
is violated when −1 ≤ ω < −0.3 (Dark energy stage).

• It is worth noting here that all the results we have
reached in this article are in full agreement with the previ-
ous literature, for example when the same case was studied
using a quadratic deceleration parameter (Bishi and Lepse
2021), and also (Halford 1970; Beesham 1988). If β = 0
our models are reduced to the linearly varying deceleration
parameter (Akarsu and Dereli 2012).
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