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Abstract This paper explores a stability region near the
1 : 1 retrograde resonance with the Moon in the planar bi-
circular restricted four-body problem. We find, in addition
to lunar distant retrograde orbits and Trojan orbits around
the triangular equilibria, another co-orbital stability region
in the Earth–Moon system under solar gravitational pertur-
bations. We identify three families of periodic orbits that
could be the possible origin of the stability region. As an
application, ballistic capture trajectories into the stability re-
gion from the vicinity of the Earth or interplanetary space
are computed with the aid of the symmetry of the model. We
reveal trade-offs among time-of-flights, characteristic ener-
gies, and lunar flyby altitudes for the ballistic capture trajec-
tories.

Keywords Retrograde co-orbital orbit · Stability region ·
Periodic orbit · Ballistic capture · Earth–Moon–Sun system

1 Introduction

Long-term stability regions in space have attracted interests
due to their importance in celestial mechanics and astro-
dynamics. Stability regions are natural candidates for hold-
ing small objects such as asteroids, comets, meteoroids, and
dust particles. The triangular libration points possess Tro-
jan asteroids widely in the Solar System (Murray and Der-
mott 1999; Stacey and Connors 2008; Connors et al. 2011),
and may trap dust particles even in the Earth–Moon system
(Kordylewski 1961; Slíz-Balogh et al. 2018, 2019). Distant
retrograde orbits (or quasi-satellite orbits, DRO/QSOs) also
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offer stability regions capturing small objects (Mikkola et al.
2006; Kinoshita and Nakai 2007; Kortenkamp 2013). Trojan
orbits and DRO/QSOs can be useful for engineering pur-
poses including the robust parking of a spacecraft around
planetary moons (Lam and Whiffen 2005; Lara et al. 2007)
and the long-term storage of natural objects for subsequent
explorations (Strange et al. 2013; Bezrouk and Parker 2017;
Tan et al. 2017). Trojan orbits and DRO/QSOs are in the
1 : 1 resonance with the secondary moving on prograde co-
orbital orbits around the primary in the restricted three-body
problem (Morais and Namouni 2017).

Recent discoveries of retrograde co-orbital objects around
the Sun (Wiegert et al. 2017; Li et al. 2018, 2019) may indi-
cate the existence of a novel co-orbital stability region in the
Earth–Moon system. However, the substantial gravitational
perturbations of the Sun can alter the linear stability of peri-
odic orbits computed in the Earth–Moon system (Boudad
et al. 2020). Although triangular libration points are lin-
early stable for a small mass ratio in the restricted three-
body problem (Murray and Dermott 1999), Gómez et al.
(2001) has found that planar stability regions around them in
the Earth–Moon system disappear due to solar gravitational
perturbations, whereas spatial stability regions survive. The
previous works have indicated that long-term stable regions
around DRO/QSOs exist under solar gravitational pertur-
bations both in the planar (Minghu et al. 2014) and spatial
(Oshima and Yanao 2019) dynamics. Since the qualitative
effect is various depending on families of orbits, the inclu-
sion of solar gravitational perturbations would be necessary
to assess long-term stabilities in the Earth–Moon system.

The present paper globally searches for a stability region
near the 1 : 1 retrograde resonance with the Moon in the
planar bicircular restricted four-body problem including so-
lar gravitational perturbations. The broad search via parallel
computing reveals a stability region consisting of orbits per-
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sistent for longer than one year near the 1 : 1 retrograde res-
onance. Special stability islands independent of solar phase
angles exist, which could be potential locations to search
for natural objects in the Earth–Moon system. We find that
the location of the stability region qualitatively agrees with
phase-space structures in the planar circular restricted three-
body problem. Based on the comparison, we identify three
families of periodic orbits that could be the possible origin
of the stability region. As an application, we explore ballistic
capture trajectories into the stability region. The symmetry
of the bicircular model enables an efficient search from the
dataset of the stability region for ballistic capture trajecto-
ries into one-year stable orbits from the vicinity of the Earth
or interplanetary space. We find a variety of ballistic cap-
ture trajectories and reveal trade-offs among time-of-flights,
characteristic energies, and lunar flyby altitudes.

The remainder of the present paper is organized as fol-
lows. Section 2 introduces mathematical models. Section 3
summarizes a grid search procedure. Section 4 presents re-
sults including stability regions, families of periodic orbits,
and ballistic capture trajectories. Section 5 summarizes con-
cluding remarks.

2 Mathematical models

2.1 Planar circular restricted three-body problem

2.1.1 Equations of motion

The planar circular restricted three-body problem (CR3BP)
models the motion of a massless particle P3 under the grav-
itational influences of two bodies P1 and P2 of masses m1,
and m2 (m1 > m2), respectively. The planar CR3BP as-
sumes that P1 and P2 move on circular orbits around their
barycenter and the bodies and P3 move on the same orbital
plane. In this paper, P1 and P2 correspond to the Earth and
the Moon, respectively. The non-dimensional equations of
motion in the Earth–Moon rotating frame (EMrf) are (Sze-
behely 1967)

dx/dt = vx,

dy/dt = vy,

dvx/dt = 2vy − ∂Ū/∂x,

dvy/dt = −2vx − ∂Ū/∂y,

(1)

where

Ū = −1

2
(x2 + y2) − 1 − μ

r1
− μ

r2
− 1

2
μ(1 − μ), (2)

r1 =
√

(x + μ)2 + y2, (3)

r2 =
√

(x − 1 + μ)2 + y2, (4)

and μ = m2/(m1 + m2).

Fig. 1 The trajectories propagated forward (dark curve) and backward
(light curve) in time from initial conditions

(
x0, y0, vx0, vy0, t, θS0

)
(dark star) and

(
x0,−y0,−vx0, vy0,−t,−θS0

)
(light star), respec-

tively, in the planar BCR4BP

In the planar CR3BP, the Jacobi energy

C = −(vx
2 + vy

2) − 2Ū (5)

is a constant of motion, which indicates the energy level of
trajectories (smaller C corresponds to higher energy).

2.1.2 Symmetry

The planar CR3BP possesses the symmetry
(
x, y, vx, vy, t

) → (
x,−y,−vx, vy,−t

)
, (6)

which does not alter Eq. (1).
Therefore, once an initial condition

(
x0, y0, vx0, vy0, t

)
is

propagated forward in time, its symmetric counterpart with
respect to the x-axis coincides with a result of propagat-
ing an initial condition

(
x0,−y0,−vx0, vy0,−t

)
backward

in time. This property indicates that a symmetric periodic
orbit passes through y = vx = 0.

2.2 Planar bicircular restricted four-body problem

2.2.1 Equations of motion

The planar bicircular restricted four-body problem
(BCR4BP) describes the motion of a massless particle P3

under the gravitational influences of three bodies P0, P1,
and P2 of masses m0, m1, and m2 (m0 > m1 > m2), respec-
tively. The model assumes that P1 and P2 move on circular
orbits around their barycenter and P0 moves on a circular
orbit around the P1–P2 barycenter. The bodies and P3 move
on the same orbital plane. In this paper, P0, P1, and P2 cor-
respond to the Sun, the Earth and the Moon, respectively.
The non-dimensional equations of motion in the EMrf are
(Koon et al. 2011)

dx/dt = vx,

dy/dt = vy,

dvx/dt = 2vy − ∂Ū4BP /∂x,

dvy/dt = −2vx − ∂Ū4BP /∂y,

(7)
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Fig. 2 Forward (dark) and backward (light) time evolutions of (a) the Kepler energy around the Earth H1, (b) the angular momentum around the
Earth h1, and (c) the distance from the Moon r2 for the trajectory in Fig. 1

where

Ū4BP = Ū − mS

r3
+ mS

a2
S

(x cos θS + y sin θS), (8)

r3 =
√

(x − aS cos θS)2 + (y − aS sin θS)2, (9)

θS = θS0 + ωSt, (10)

and t is time, θS0 is the Sun’s phase angle at t = 0, ωS is
the Sun’s relative angular velocity in the EMrf, aS is the
distance from the Sun to the Earth–Moon barycenter, and
mS = m0/(m1 + m2). The values of these parameters used
in the present paper can be found in Topputo (2013).

The planar BCR4BP is a non-autonomous system due to
the motion of the Sun in the EMrf and thus the Jacobi energy
in Eq. (5) is no longer a constant of motion. Although the Ja-
cobi energy varies with time in the planar BCR4BP, it is still
an instructive energy-like quantity and thus we use it to set
initial conditions for the grid search in Sect. 3. This model
coincides with the planar CR3BP in the limit of mS → 0.

2.2.2 Symmetry

The planar BCR4BP has the symmetry
(
x, y, vx, vy, t, θS

) → (
x,−y,−vx, vy,−t,−θS

)
, (11)

which does not alter Eq. (7). Therefore, once an initial
condition

(
x0, y0, vx0, vy0, t, θS0

)
is propagated forward in

time, its symmetric counterpart with respect to the x-axis
coincides with a result of propagating an initial condi-
tion

(
x0,−y0,−vx0, vy0,−t,−θS0

)
backward in time. This

symmetric property in the planar BCR4BP is useful for re-
ducing computational costs in Sect. 4.3.

Figure 1 illustrates this symmetric property. The dark star
indicates an initial condition

(
x0, y0, vx0, vy0, t, θS0

)
for the

forward propagation, while the light star represents an ini-
tial condition

(
x0,−y0,−vx0, vy0,−t,−θS0

)
for the back-

ward propagation. The trajectories propagated forward (dark
curve) and backward (light curve) in time, respectively, are
symmetric with respect to the x-axis.

Fig. 3 The distribution of the grid points near the origin on the y0–θS0
plane. The arrow indicates an example of a pair of grid points exhibit-
ing the origin symmetry

Note that the symmetry also holds true for quantities such
as the Kepler energy around the Earth

H1 = (vx − y)2 + (vy + x + μ)2

2
− 1 − μ

r1
, (12)

the angular momentum around the Earth

h1 = (x + μ)(vy + x + μ) − y(vx − y), (13)

and the distance from the Moon r2. Figure 2 highlights sym-
metric time histories of these quantities for the trajectory
in Fig. 1. The sharp peaks in the Earth-centered two-body
quantities H1 and h1 correspond to the local minima in r2.

3 Grid search

The present study searches for initial conditions of trajec-
tories persistent in the vicinity of the 1 : 1 retrograde reso-
nance with the Moon for longer than one year in the pla-
nar BCR4BP dynamics. Although the definition of the long-
term stability varies depending on the scope of each work,
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Fig. 4 Initial conditions (light
dots) of trajectories with vx = 0
and vy > 0 persistent for longer
than one year near the 1 : 1
retrograde resonance with the
Moon. Datasets of (x0, y0,C0)

exhibiting the one-year stability
independent of θS0 are shown in
dark dots

Fig. 5 Trajectories propagated
for one year from
(a) (x0, y0,C0, θS0) =
(−1,−0.4,−0.4,0) and
(b) (x0, y0,C0, θS0) =
(−1,0,−1.2,0). The arrow
indicates the direction of motion

Fig. 6 Classifications of fates of the initial conditions defined in Ta-
ble 1 with vx = 0 and vy > 0 into one-year capture (light dots), escape
from the 1 : 1 retrograde resonance (dark dots), Earth collision (dark

asterisks), and Moon collision (light asterisks) on the x–y plane with
the prescribed values of C0 and θS0 indicated at the top of each panel.
There is no Earth collision orbit in this figure

the one-year stability region would be useful for many engi-
neering applications and could become good starting points
for exploring longer-term stability regions. Throughout the
paper, we define the vicinity of the 1 : 1 retrograde condition
as −0.6 < H1 < −0.4 and h1 < 0.

Four parameters (x0, y0,C0, θS0) determine initial condi-
tions for propagations with vx0 = 0 and x0 < 0 adopted in
the present search. Using the initial Jacobi energy C0 yields

vy0 = ±
√

−vx0
2 − C0 − 2Ū (x0, y0), (14)

where only the positive sign satisfies the retrograde condi-
tion h1 < 0. Table 1 summarizes the search condition in the
four-dimensional parameter space.

Table 1 The search conditions in the x0–y0–C0–θS0 parameter space

Parameter Minimum Maximum Number of grids

x0 −4 −μ 400

y0 −4 4 401

C0 −2 2 50

θS0 −π (rad) π (rad) 51

Figure 3 shows the distribution of the grid points sym-
metric about the origin on the y0–θS0 plane. Since vx0 = 0,
there is always one pair of initial conditions (x0, y0, vx0,

vy0, θS0) and
(
x0,−y0,−vx0, vy0,−θS0

)
. This origin sym-

metry of the grid points is useful for exploiting the symmetry
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Fig. 7 The one-year stability region in the BCR4BP (light dots) shown
in Fig. 4 and phase-space structures (dark dots) in the CR3BP with
vx = 0 and vy > 0 in the x–y–C space

Fig. 8 Phase-space structures (small dots) with vx = 0, vy > 0, and
C = −0.9 visualized in the x–y–vx space. The initial guess for a pe-
riodic orbit (curve) is propagated from the vicinity of the center of the
resonance island and divided into 4 segments by 5 nodes (large dots).
The panel (a) is the amplification of the panel (b)

in the planar BCR4BP in Eq. (11) to efficiently find ballistic
capture trajectories in Sect. 4.3.

The selection of negative x0 leads to initial positions far
from the Moon enabling immediate scanning in terms of the

Fig. 9 Three families of periodic orbits I, II, and III and the phase-
space structures (dark dots) in the CR3BP shown in Fig. 7 with vx = 0
and vy > 0 in the x–y–C space. The darker curves (red, dark green,
and blue) indicate the linearly stable ranges of the families I, II, and
III, respectively, whereas the lighter curves (magenta, light green, and
cyan) correspond to the unstable ranges of the same families. The panel
(b) is the amplification of the panel (a)

Earth-centered two-body quantities. We only propagate ini-
tial conditions satisfying −0.6 < H1 < −0.4 and h1 < 0.
However, trajectories can temporarily violate this condition
when they are near the Moon as indicated in Fig. 2. There-
fore, during propagations, we evaluate H1 and h1 only when
a trajectory is far from the Moon satisfying r2 > 0.5. We
stop propagations if one of the following conditions is satis-
fied: propagation time exceeds one year; a trajectory violates
−0.6 < H1 < −0.4 or h1 < 0 when r2 > 0.5; a trajectory
collides with the surface of the Earth or the Moon.

4 Results

4.1 Stability region

Figure 4 presents initial conditions (light dots) of trajectories
persistent for longer than one year near the 1 : 1 retrograde
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Fig. 10 Examples of the linearly stable periodic orbits of the families (a) I with C = −1.1, (b) II with C = −1, and (c) III with C = −1.2. The
arrow indicates the direction of motion

resonance with the Moon under solar gravitational perturba-
tions. It is notable that another broad stability region in the
Earth–Moon system exists around the 1 : 1 resonance with
the Moon, in addition to lunar distant retrograde orbits and
Trojan orbits around the triangular libration points. Note that
the retrograde motion around the Earth causes high relative
velocities with the Moon and thus the Jacobi energies are
much smaller than typical prograde orbits.

The dark dots represent special datasets of (x0, y0,C0)

exhibiting the one-year stability independent of θS0. They
could be potential locations to search for natural objects in
the Earth–Moon system because of their capability of cap-
turing small objects with less dependency on epoch.

The isolate stability islands (the dark dots) in Fig. 4 indi-
cate the existence of different families of one-year stable or-
bits. Figure 5 exhibits examples of the two different families
propagated for one year from (a) the larger stability island
and (b) the smaller stability island. We set θS0 = 0 for both
trajectories because the one-year stability of the datasets are
independent from θS0. See the caption for the initial condi-
tions. The crossing points of the trajectory in the panel (a)
with vx = 0 and vy > 0 qualitatively explain the two nearly
symmetric stability islands about y = 0 in Fig. 4(a).

The high dimensionality of the phase space in the pla-
nar BCR4BP causes difficulties in visualizing fates of the
initial conditions due to the possibility of overlapping each
other in a single figure. However, it is still possible to visu-
alize a unique set of initial conditions on a surface of section
with prescribed C0 and θS0 owing to the constraints vx0 = 0
and vy0 > 0. This approach enables detailed classifications
of the initial conditions according to their fates at the ex-
pense of limited information for C0 and θS0. Figure 6 clas-
sifies fates of the initial conditions into one-year capture,
escape from the 1 : 1 retrograde resonance, Earth collision,
and Moon collision on the x–y plane with the prescribed
values of C0 and θS0 indicated at the top of each panel. The
emergence of the stability island in the vicinity of y = 0 in
Fig. 6(b) may indicate the occurrence of a bifurcation. The
possible origin of this phenomenon will be investigated in
Sect. 4.2. These slices of the phase space indicate that the

Fig. 11 TOF and C3 of ballistic capture trajectories from 10,000 [km]
altitude from the Earth to the retrograde one-year stable orbits. (a) The
color denotes prograde (h1 > 0, dark) and retrograde (h1 < 0, light)
orbits, respectively, at 10,000 [km] altitude from the Earth. (b) The
color indicates the minimum altitude from the lunar surface for initially
prograde solutions. Four sample solutions (i)–(iv) are indicated

boundaries of the stability regions closely correlate with the
initial conditions of lunar collision orbits. This is one of the
reasons we will take care of lunar flyby altitudes in Sect. 4.3.
In the restricted three-body problem, stability boundaries of
long-term stable orbits have been also associated with un-
stable periodic orbits and their stable and unstable mani-
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Fig. 12 Ballistic capture
trajectories (dark curve) from
10,000 [km] altitude from the
Earth into one-year stable orbits
near the 1 : 1 retrograde
resonance with the Moon (light
curve) in the Earth–Moon and
Sun–Earth rotating frames
(EMrf and SErf), respectively.
The sample numbers are
indicated at the upper-left
corner of each panel. In the
SErf, the light circle represents
the lunar orbit and the left and
right crosses denote the
Sun–Earth L1 and L2 libration
points, respectively

folds (Gómez et al. 2001; Ross and Scheeres 2007; Scott and
Spencer 2010; Ren et al. 2012; Oshima and Yanao 2015). It
would be interesting to investigate the stability region from
this perspective, though which is beyond the scope of the
present paper.

4.2 Families of periodic orbits

This section explores the origin of the stability region visu-
alized in the previous section. Although solar gravitational
perturbations can alter the linear stability of periodic orbits
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(Boudad et al. 2020), the broad stability region of the ret-
rograde co-orbital orbits around the Earth in Fig. 4 may in-
dicate that linearly stable periodic orbits in the Earth–Moon
planar CR3BP are still responsible for long-term stable or-
bits under solar gravitational perturbations.

Figure 7 confirms this expectation by comparing the one-
year stability region in Fig. 4 (light dots) with phase-space
structures (dark dots) in the Earth–Moon planar CR3BP
with several energy levels. The stability islands in the
CR3BP are qualitatively in good agreement with the sta-
bility region in the BCR4BP. Thus, we explore families of
linearly stable periodic orbits in the CR3BP as the possi-
ble origin of the stability region near the 1 : 1 retrograde
resonance with the Moon under solar gravitational perturba-
tions.

Figure 8 shows an example of generating an initial guess
for a linearly stable periodic orbit from the vicinity of the
resonance island surrounded by the invariant curves. The
nearly periodic initial guess is converged into a periodic or-
bit via the multiple shooting scheme (Betts 1998) and its
continuous family is generated via the continuation proce-
dure (Keller 1977).

Figure 9 presents three families of periodic orbits I, II,
and III superimposed on the phase-space structures in the
CR3BP. These families have been found in Broucke (1968),
Morais and Namouni (2013), Huang et al. (2018). See the
caption for the color code distinguishing the linear stability
of each of the families. The linearly stable ranges (darker
curves) of each of the families penetrate the centers of the
resonance islands and thus play the role of backbone struc-
tures for the stability regions. Especially, the linearly sta-
ble range of the family II (dark green curve) are responsible
for stability regions of the broad energy levels. On the other
hand, the linearly stable range of the family I (red curve) is
narrow in terms of the energy level as shown in the panel (b).
The panel (b) also highlights the connection between the
families I and III, where a period-doubling bifurcation dou-
bling the period of the family III at the bifurcation point oc-
curs. The linearly stable range of the family III (blue curve)
could be the origin of the emergence of the stability island
in the vicinity of y = 0 in Fig. 6(b).

Figure 10 exhibits examples of the linearly stable peri-
odic orbits of the families (a) I, (b) II, and (c) III. Note
the similarities in appearance between the panel (b) and
Fig. 5(a), and between the panel (c) and Fig. 5(b), which
also indicate the significance of the families of the periodic
orbits for long-term stable orbits under solar gravitational
perturbations. The geometries of the orbits in the panels (a)
and (b) intersecting vx = 0 and vy > 0 twice explain the
existence of the two curves for each of the families I and
II in Fig. 9. At the period-doubling bifurcation point, the
single-revolutional orbit of the family III connects with the
double-revolutional orbit of the family I.

Fig. 13 TOF and C3 of ballistic capture trajectories from r1 = 5 to the
retrograde one-year stable orbits. The color indicates the minimum al-
titude from the lunar surface. The upper limit of the color bar is smaller
than that in Fig. 11(b). Four sample solutions (i)–(iv) are indicated

4.3 Ballistic capture

The present study investigates a ballistic capture scenario
such that the forward propagation from one initial point re-
sults in a one-year capture trajectory, while the backward
propagation from the same point leads to a non-capture tra-
jectory. The overall trajectory thus achieves ballistic capture
into the one-year persistent orbit near the 1 : 1 retrograde
resonance with the Moon far from the stable orbit. The sym-
metric distribution of the grid points enables efficient scan-
ning of the ballistic capture solutions.

The origin symmetry of the grid points on the y0–θS0

plane illustrated in Fig. 3 indicates that a result of propa-
gating one initial point forward in time, which is classified
according to the end of Sect. 3 into one-year capture, es-
cape from the 1 : 1 retrograde resonance, Earth collision, or
Moon collision, coincides with a result of propagating the
other symmetric initial point backward in time. This is be-
cause the time-reversal symmetry in Eq. (11) holds true for
the quantities H1, h1, r2 (and also r1) used in the classifica-
tion as highlighted in Fig. 2.

Therefore, we first extract initial conditions that lead
to escape from the 1 : 1 retrograde resonance or a colli-
sion with the surface of the Earth. Note that Earth col-
lision orbits can be useful as initial guesses for transfers
from low Earth orbits. We then flip the sign of (y0, θS0) of
the initial conditions. As noted in Sect. 3, there always ex-
ists one pair of initial conditions

(
x0, y0, vx0, vy0, θS0

)
and(

x0,−y0,−vx0, vy0,−θS0
)

with vx0 = 0 in this computa-
tional setting. If the flipped initial condition is destined to
exhibit one-year capture in the forward propagation, which
has been already computed, then the flipped initial condition
is a patch point of a ballistic capture trajectory.

We then propagate from the patch point backward in
time and stop propagation if one of the following condi-
tions is satisfied: propagation time exceeds 1 year; a trajec-
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Fig. 14 Ballistic capture
trajectories (dark curve) from
r1 = 5 into one-year stable
orbits (light curve) near the 1 : 1
retrograde resonance with the
Moon in the Earth–Moon and
Sun–Earth rotating frames
(EMrf and SErf), respectively.
The sample numbers are
indicated at the upper-left
corner of each panel. In the
SErf, the light circle represents
the lunar orbit and the left and
right crosses denote the
Sun–Earth L1 and L2 libration
points, respectively

tory reaches 10,000 [km] altitude from the Earth; a trajec-
tory reaches r1 = 5; a trajectory collides with the surface of
the Moon. The cases reaching 10,000 [km] altitude from the
Earth and r1 = 5 correspond to ballistic capture trajectories
from the vicinity of the Earth and interplanetary space, re-
spectively.

Figure 11(a) shows time-of-flights (TOFs) and launch en-
ergies C3 = 2H1 at 10,000 [km] altitude from the Earth for
ballistic capture trajectories into the retrograde one-year sta-
ble orbits. The color indicates prograde (h1 > 0, dark dots)
and retrograde (h1 < 0, light dots) orbits, respectively, at
10,000 [km] altitude from the Earth. Although retrograde



88 Page 10 of 11 K. Oshima

launches are more advantageous for transferring into the ret-
rograde one-year stable orbits, Fig. 11(b) extracts the solu-
tions of typical prograde launches. The color indicates the
minimum altitude from the lunar surface, small values of
which may lead to critical events during the transfers. The
orbital characteristics of the sample solutions indicated in
the figure are presented next.

Figure 12 exhibits the ballistic capture trajectories of the
samples (i)–(iv) in the Earth–Moon and Sun–Earth rotating
frames, respectively. The sample (i) is a fast solution im-
mediately jumping into the one-year stable orbit. The sam-
ple (ii) experiences one lunar flyby before the ballistic cap-
ture. In addition to lunar flybys, the sample (iii) exploits
solar gravitational perturbations, which cause the small C3

(Belbruno and Miller 1993). The sample (iv) resembles the
sample (iii), but it also experiences a high-altitude lunar
flyby soon after the launch to further reduce C3 (Oshima
et al. 2019). These ballistic capture trajectories do not re-
quire insertion maneuvers and may be useful for in-situ de-
tections of natural objects such as meteoroids and dust parti-
cles near the 1 : 1 retrograde resonance with the Moon. The
quasi-periodic nature of the long-term stable orbits would
also be advantageous due to multiple chances for detections
as compared with a single-loop trajectory around a stable
region (Uesugi 1996).

Figure 13 presents ballistic capture solutions from inter-
planetary space into the retrograde one-year stable orbits in
terms of TOF and C3 at r1 = 5 colored according to the min-
imum altitude from the lunar surface. Note that Eq. (12) sug-
gests the lower limit of H1 at r1 = 5 as approximately −0.2,
which corresponds to the lower limit of C3 ≈ −0.4 in the
figure. The sample solutions (i)–(iv) indicated in the figure
are detailed next.

Figure 14 exhibits the ballistic capture trajectories of the
samples (i)–(iv). The two consecutive lunar flybys in the
samples (i) and (ii) enable ballistic captures of energetic par-
ticles from interplanetary space. A less critical single lunar
flyby in the samples (iii) and (iv) is also useful for capturing
less energetic particles. Such ballistic capture trajectories
from interplanetary space into long-term stable orbits may
be useful for Asteroid Redirect Robotic Mission (Strange
et al. 2013)—like missions cheaply bringing and storing nat-
ural objects in the Earth–Moon system. This result also in-
dicates that interplanetary objects experiencing lunar flybys
can be captured into the long-term stable retrograde orbits
around the Earth.

5 Conclusion

The present paper has found a novel stability region in
the Earth–Moon system near the 1 : 1 retrograde resonance
with the Moon under solar gravitational perturbations. The

broad search via parallel computing has globally explored
the phase space in the planar bicircular restricted four-body
problem. Three families of periodic orbits in the planar cir-
cular restricted three-body problem have been identified as
the possible origin of the stability region. As an application,
a variety of ballistic capture trajectories into the stability re-
gion from the vicinity of the Earth and interplanetary space
has been computed and orbital characteristics of sample so-
lutions have been presented.
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