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Abstract We generate new exact solutions to the Einstein-
Maxwell field equations for charged anisotropic stellar ob-
jects comprising three interior layers. We develop charged
stellar models comprising three interior layers with a spec-
ified equation of state: the linear quark equation of state at
the core layer, the quadratic equation of state at the inter-
mediate layer, and the Chaplygin equation of state at the
envelope layer. Earlier uncharged solutions, with different
equations of state, are regained as special cases. We plot
graphs for the geometrical and matter variables indicating
that the matter, gravitational potentials, and other physical
conditions are well behaved and consistent with astrophysi-
cal studies. A notable feature is that the outer layer satisfies
the Chaplygin equation of state.

Keywords Einstein-Maxwell equations · Equations of
state · Composite star

1 Introduction

The study of the interior in stellar objects is an influential
subject to many researchers in astronomy, astrophysics, and
other related disciplines. A number of mathematical models
have been established which provide a satisfactory explana-
tion for the matter distribution within stellar bodies. Various
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configurations of the matter content in superdense stellar ob-
jects account for an extensive variation of physical features
such as radii, charge densities, electric fields, radial and tan-
gential pressures, gravitational potentials, and many other
features in astrophysical studies. Relevant superdense stel-
lar bodies with the required physical characteristics include
neutron stars, white dwarfs, strange stars, and pulsars. These
are massive compact objects having special interior struc-
tures which require additional gravitational descriptions for
stellar spheres (Itoh (1970), Durgapal and Bannerji (1982)).
Most stellar models have a single energy momentum tensor
describing the interior. Some known models have two mat-
ter tensors for the core and the envelope. It is necessary to
consider the dynamical effect of three layers for a deeper un-
derstanding of the behaviour within stellar bodies. However,
the existence of more than two interior layers in physics is
still a challenging question to be answered by researchers
in relativistic astrophysics. A detailed analysis of the phys-
ical properties of neutron stars and other relativistic stellar
bodies with several layers needs to be performed.

For some years, researchers formulated simple models
consisting of two interior layers describing the interior phys-
ical matter of stellar spheres. This has been shown in the
treatment of Gedela et al. (2019) who generated an un-
charged model in two regions containing a new choice for
one of the metric potentials. Models developed by Mafa Tak-
isa and Maharaj (2016) and Mafa Takisa et al. (2019) show
that the core layer is compact and is enclosed by a crust
of baryonic matter. The core-envelope study performed by
Metcalfe et al. (2003) highlighted the properties of white
dwarfs in comparison to those of single-layered models per-
formed in the past. The model generated by Montgomery
et al. (2003) showed that for average to high frequency pul-
sars, there exist invariants in the physical features in the core
and the corresponding envelope. Other models developed
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with two regions include the works of Pant et al. (2019), Paul
and Tikekar (2005), Sharma and Mukherjee (2002), Thomas
et al. (2005) and Tikekar and Jotania (2009). We seek to ex-
tend these results with an extra internal layer by solving the
Einstein-Maxwell field equations with various equations of
state.

Recently, a study performed by Pant et al. (2020) has
shown that the interior structure of stellar bodies includes
a sublayer in the core-envelope colligation. The model de-
scribes three interior layers of an uncharged neutron star
among superdense objects. The core layer is equipped with
the linear equation of state (EoS), with intermediate and en-
velope layers satisfying a quadratic EoS. However in our
study, we consider a charged model containing three layers:
with linear EoS for the core layer, the quadratic EoS for the
intermediate layer, and Chaplygin EoS in the envelope layer.

In order to develop the stellar model, we incorporate
equations of state which depict the relation between radial
pressure and energy density. A number of studies conducted
in the past use an EoS satisfying the required general phys-
ical conditions within the stellar interior. The models de-
veloped using a linear EoS include the works of Chaisi
and Maharaj (2006a,b), Sharma and Maharaj (2007), Ma-
haraj et al. (2014), Murad (2016), Sunzu et al. (2014a,b),
Thirukkanesh and Maharaj (2008, 2009), Sunzu and Dan-
ford (2017), Varela et al. (2010) and Sunzu et al. (2019).
Models with a quadratic EoS include the papers of Bhar
et al. (2016, 2017), Maharaj and Mafa Takisa (2012),
Malaver (2014a,b, 2017a,b), Sen and Ayun (2017), and
Sunzu and Mashiku (2018). Some models have been for-
mulated using the Chaplygin EoS relevant to the gaseous
state. These include the treatments of Baruah (2016), Bhar
et al. (2017), Bhar (2015), Gorini and Moschella (2008),
Rahaman et al. (2010), Singh and Baruah (2016), and Bhar
et al. (2018).

On physical grounds it is crucial to include the electric
field in describing the physical behaviour of the matter con-
tent in the interior as shown by Varela et al. (2010). In ex-
isting research works, it has been shown that the electric
field does affect causal signals for a specific range of pa-
rameters, redshift, luminosity and masses of dense stellar
objects. It also improves stability due to its presence in the
stellar object. A thorough analysis done by Rahaman et al.
(2010) revealed that the existence of the charge surround-
ing the object increases stability which helps to prevent
gravitational collapse. This has also been highlighted in the
studies performed by Sharma and Maharaj (2007), Sharma
and Mukherjee (2002), Sunzu and Danford (2017), Sunzu
et al. (2014a,b, 2019), and Thirukkanesh and Maharaj (2008,
2009). Importantly, in this work we have omitted the singu-
larity at the centre (as discussed in Mafa Takisa and Maharaj
(2016)) to properly analyse the physical features of charged
stellar objects. We should also point out that in the recent

past several papers have been published with anisotropic flu-
ids, equations of state, multi-layered fluids and their connec-
tion to the Einstein equations or the Einstein-Maxwell equa-
tions. These include the treatments of Gedela et al. (2018),
Gedela et al. (2021), Pant et al. (2016), Pant et al. (2021) and
Singh et al. (2021)

The principal objective of this paper is to investigate and
analyse the interior physical features of relativistic stellar
objects containing three distinctive layers, namely the core,
the intermediate layer, and the envelope. Realistically, a sin-
gle equation of state cannot describe the whole interior of
the stellar object having non-uniform density matter in dis-
tinctive layers. We generate charged stellar models compris-
ing three interior layers to extend the work performed by
Pant et al. (2020) where in each layer a specified equation
of state is applied. The results of Pant et al. (2020) are con-
tained in our new class of solutions as a special case. The
linear equation of state is assumed for the quark core, the
intermediate layer obeys the quadratic equation of state, and
the envelope layer satisfies the Chaplygin equation of state.
We specify one of the gravitational potentials, and match the
three layers to the Reissner-Nordstrom exterior spacetime.
The physical features of the model are then investigated.

2 Fundamental equations

We describe the interior spacetime of the stellar object by
considering the static and spherically symmetric line ele-
ment given in Schwarzschild coordinates (xi = t, r, θ,φ) so
that

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (1)

The exterior spacetime is given by the line element

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r

+ Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (2)

Here ν(r) and λ(r) are the metric potentials, Q is the total
charge, and M is the total mass of the charged superdense
stellar object. The energy momentum tensor for charged
stellar objects is described by

τij = diag

(
−ρ − 1

2
E2,pr − 1

2
E2,

pt + 1

2
E2,pt + 1

2
E2

)
, (3)

where ρ is energy density, E is electric field, pr and pt are
radial and tangential pressures respectively.
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The nonlinear system of the Einstein-Maxwell field equa-
tions for the interior of charged stellar objects are then ob-
tainable in units 8πG = c = 1. The field equations can be
written as

ρ + 1

2
E2 = 1

r2
(1 − e−2λ) + 2λ′

r
e−2λ, (4a)

pr − 1

2
E2 = − 1

r2 (1 − e−2λ) + 2ν′

r
e−2λ, (4b)

pt + 1

2
E2 = e−2λ

(
ν′′ + ν′2 − ν′λ′ + ν′

r
− λ′

r

)

+2λ′

r
e−2λ, (4c)

σ = 1

r2
e−λ(r2E)′, (4d)

where primes (′) represent differentiation with respect to the
radial coordinate r . We use the transformation introduced by
Durgapal and Bannerji (1983) in the form

x = r2,Z(x) = e−2λ, e2ν = A2y2(x). (5)

When the system (4a)–(4d) is transformed using equations
(5), the simplified Einstein-Maxwell field equations become

ρ = 1 − Z

x
− 2

dZ

dx
− 1

2
E2, (6a)

pr = − 1

x
(1 − Z) + 4Z

1

y

dy

dx
+ 1

2
E2, (6b)

pt = 4xZ
1

y

d2y

dx2
+

(
4Z + 2x

dZ

dx

)
1

y

dy

dx

+dZ

dx
− 1

2
E2, (6c)


 = pt − pr,

= 4xZ
1

y

d2y

dx2
+

(
4xZ + 2x

dZ

dx
− 2Z

)
1

y

dy

dx

+dZ

dx
+ 1

x
(1 − Z) − E2, (6d)

σ = 2

(
x

dE

dx
+ E

)√
Z

x
, (6e)

where 
 stands for the measure of anisotropy.
The system (6a)–(6e) above has five equations and eight

variables (ρ,pt ,pr ,
,Z,y,σ,E). To solve these equa-
tions, two variables among the eight can be specified in or-
der to find the others. We specify the metric potential Z and
electric field E2 in the form

Z(x) = 1 − γ x + mxn, n ≥ 3 (7)

E2 = f x

1 + bx2
, (8)

where m, n, f , b, and γ are arbitrary real constants. When
n = 2, and f = 0 in our choice, we regain the potential Z

given by Pant et al. (2020).

3 The model

In order to achieve our objective, the three interior regions
of the stellar sphere, namely the core (ξ ), the intermediate
(δ) and the envelope (ψ ) are specified with the following
regions:

• The core layer (Region I): 0 ≤ r ≤ Rξ ,
• The intermediate layer (Region II): Rξ ≤ r ≤ Rδ , and
• The envelope layer (Region III): Rδ ≤ r ≤ Rψ .

With consideration of equation (1), the interior line elements
of the three layers are

ds2|I = −e2νξ dt2 + e2λξ dr2

+r2(dθ2 + sin2 θdφ2), (9a)

ds2|II = −e2νδ dt2 + e2λδdr2

+r2(dθ2 + sin2 θdφ2), (9b)

ds2|III = −e2νψ dt2 + e2λψ dr2

+r2(dθ2 + sin2 θdφ2). (9c)

For the three regions given above, we generate new exact
solutions in three different layers. Each layer is equipped
with a separate equation of state.

3.1 Region I (core layer)

Here we assume the innermost layer is quark matter satisfy-
ing the linear equation of state in the form

prξ = αρξ − β, (10)

where α and β are real arbitrary constants. We choose to
use the linear equation of state as it is convenient in describ-
ing heavy quark matter. When equations (6a) and (10) are
combined we obtain

prξ = α

(
1 − Z

x
− 2

dZ

dx
− 1

2
E2

)
− β. (11)

Equating equations (6b) and (11) we have

1

y

dy

dx
= (α + 1)

1 − Z

2xZ
+ α

2Z

dZ

dx
+ E2(α − 1)

4Z
− β

4Z
. (12)

We can eliminate Z and E in (12). Then the differential
equation (12) becomes

1

y

dy

dx
=[−f x2(α − 1) + 2(1 + bx2)(−m(2n − 1)xnα
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+ x(β + αγ )][4x(1 + bx2)(xγ

− mxn − 1)]−1. (13)

Substituting equations (7), (8) and (13) into the system
(6a)–(6e), the matter variables of the core region become

e2λξ = [
1 − γ x + mxn

]−1
, (14a)

e2νξ = A2[exp(S0(x))]2, (14b)

ρξ = [6γ (1 + bx2) − 2m(1 + bx2)(1 + 2n)xn−1

+f x][2 + 2bx2]−1, (14c)

prξ = mxn−1(1 + (2n − 1)α) + [f xα

−2(1 + bx2)(β + γ + αγ )][2 + 2bx2]−1, (14d)

ptξ = S1(x) + S2(x) − S3(x) + S4(x), (14e)


ξ = ptξ − prξ , (14f)

σξ =
[
x−1(3 + bx2)

(
f x

1 + bx2

)3/2

×
√

1 + mxn − xγ

x

]
f −1, f �= 0 (14g)

E2
ξ = f x

[
1 + bx2

]−1
. (14h)

In the above, we have set for convenience

S0(x) =
∫

[−f x(α − 1) + 2(1 + bx2)(−m(2n

−1)xn−1α + (β + αγ )][4(1 + bx2)

×(xγ − mxn − 1)]−1dx,

S1(x) = [2f (4α − 5 + mxn(n(1 + bx2)

×(α − 1)(4α − 1) + bx2(−1

−2(α − 1)α))) + 2f x(4α − 5

+mxn(−5 − 2(α − 3)α) − f 2x3

×(α − 1)2][4(1 + bx2)2(xγ

−mxn − 1)]−1,

S2(x) =
[
2f x2(2(α − 1)β + x−1(α − 4 + 2α2)

×γ + b(1 + 2x(α − 1)β + α(2α − 3)γ ))]

×[4(1 + bx2)2(xγ − mxn − 1)]−1 − γ,

S3(x) =
[
−4(1 + bx2)2(m2x2n(n + n(2n − 1)α

+(1 − 2n)2α2 + x(β + αγ )(−2 + x(β

+ αγ ))))][4(1 + bx2)2(xγ − mxn − 1)
]−1

,

S4(x) = [4mxn−1(1 + bx2)2(2xβ + 4n2α(xγ − 1)

+xα(−2β + (3 − 2α)γ )) + 4mxn−1

×(1 + bx2)2(2α − 1 − xβ + x(α − 1)

×(4α − 1)α)][4(1 + bx2)2(xγ

−mxn − 1)]−1.

The total mass of the sphere is given by

M(r) = 4π

∫
r2ρξdr, r2 = x

= 2π
(
x

(
f b−1 − (2m(1 + 2n)xn)(n + 1)−1

+ 3xγ ) − f xb−3/2 arctan
√

b
)

+ k0, (16)

where k0 is a constant of integration.

3.2 Region II (intermediate layer)

The density profiles of interior layers in stellar objects are
decreasing, consequently the middle layer should be less
dense than the core. The quadratic equation of state is rel-
evant in describing the physical features of the intermediate
region. The equation is given by

prδ = αρ2
δ + βρδ − μ, (17)

where α, β and μ are arbitrary real constants. In the inter-
mediate layer the energy density and the radial pressure are
given by

ρδ = 1 − Z

x
− 2

dZ

dx
+ 1

2
E2, (18)

and

prδ = −1 − Z

x
+ 4Z

1

y

dy

dx
+ E2

2
. (19)

Substituting equation (18) into equation (17) we obtain

prδ =α

(
1 − Z

x
− 2

dZ

dx
+ 1

2
E2

)2

+ β

(
1 − Z

x
− 2

dZ

dx
+ 1

2
E2

)
− μ. (20)

Equating equation (19) and (20) we have

1

y

dy

dx
= α

2Z

(
1 − Z

x
− 2

dZ

dx
+ 1

2
E2

)2

+ β

2Z

(
1 − Z

x
− 2

dZ

dx
+ 1

2
E2

)

+ 1

2Z

(
1 − Z

x
− 1

2
E2

)
− μ

2Z
. (21)
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Eliminating the metric function Z and electric charge E2 in
(21) gives

1

y

dy

dx
= [

(
−2mxn−1 − f x(1 + bx2)−1 + 2γ

+ 2β(−m(1 + 2n)xn−1 + f x(2 + 2bx2)−1

+3γ ) + 2α
(
−m(1 + 2n)xn−1

+f x(2 + 2bx2)−1 + 3γ
)2 − 2μ)]

× [4(1 + mxn − xγ )]−1. (22)

Substituting equations (7), (8) and (22) into the system
(6a)–(6e), the intermediate matter variables become

e2λδ = [
1 − γ x + mxn

]−1
, (23a)

e2νδ = A2y2(x) = A2[exp(τ0(x))]2, (23b)

ρδ = [6γ (1 + bx2) − 2m(1 + bx2)(1

+2n)xn−1 + f x][2 + 2bx2]−1, (23c)

prδ = β
(
−m(1 + 2n)xn−1 + f x[2

+2bx2]−1 +3γ ) + α (−m(1 + 2n)

× xn−1 + f x[2 + 2bx2]−1 + 3γ
)2 − μ, (23d)

ptδ = τ1(x) − τ2(x) + τ3(x) + τ4(x)

+τ5(x) + τ6(x) + τ7(x)

+τ8(x) + τ9(x), (23e)


δ = ptδ − prδ , (23f)

σδ =
[
x−1(3 + bx2)

(
f x

1 + bx2

)3/2

×
√

(1 + mxn − xγ )x−1

]
f −1, f �= 0 (23g)

E2
δ = f x

[
1 + bx2

]−1
. (23h)

For simplicity we have set

τ0(x) =
∫

(−2mxn−1 − f x(1 + bx2)−1 + 2γ

+2β(−m(1 + 2n)xn−1) + f x(2

+2bx2)−1 + 3γ + 2α(−m(1 + 2n)xn−1

+f x(2 + 2bx2)−1 + 3γ )2 − 2μ)(4(1

+mxn − xγ ))−1dx,

τ1(x) = mnxn−1 − γ − f x(1 + bx2)−1

+1

2

(
4 + 2m(2 + n)xn − 6xγ

)
J0(x),

τ2(x) = 1

2

(
4 + 2m(2 + n)xn − 6xγ

)
([β (−m(1

+2n)xn−1 + f x[2 + 2bx2]−1 + 3γ
)
]

×[1 + mxn − xγ ]−1
)

,

τ3(x) = 1

2

(
4 + 2m(2 + n)xn − 6xγ

)
(α (−m(1

+ 2n)xn−1 + f x[2 + 2bx2]−1 + 3γ
)2

−μ) (1 + mxn − xγ )−1,

τ4(x) = x(1 + mxn − xγ )
(
−4m(n − 1)xn−2

+ 4bf x2[(1 + bx2)2]−1 − f x[1 + bx2]−1
)

,

τ5(x) = x(1 + mxn − xγ )
(

2β(mnxn−1 − γ )

×(
(
−m(1 + 2n)xn−1 + f x(2 + 2bx2)−1

+ 3γ ))((1 + mxn − xγ )2)−1
)

,

τ6(x) = x(1 + mxn − xγ )
(

2β(mnxn−1 − γ )

×
(
−m(1 + 2n)xn−1 + f x(2 + 2bx2)−1

+3γ ) (1 + mxn − xγ )2)−1
)

,

τ7(x) = (2x(1 + mxn − xγ )
(
m(1 + n − 2n2)xn−2

+ (f − bf x2)(2(1 + bx2)2)−1
)

β)

×(1 + mxn − xγ )−1 + (2x(1 + mxn − xγ )

×(mnxn−1 − γ )μ)(
(
−m(1 + 2n)xn−1 + f x

×(2 +2bx2)−1 + 3γ
)2

)(1 + mxn − xγ )2)−1,

τ8(x) = 4x(1 + mxn − xγ )
(
m(1 + n − 2n2)xn−2

+ (f − bf x2)(2(1 + bx2)2)−1
)

J1(x))

×(1 + mxn − xγ )−1,

τ9(x) = x(1 + mxn − xγ ) (J2(x) − β (−m(1

+2n)xn−1 + f x(2 + 2bx2)−1 + 3γ
)
)

×(1 + mxn − xγ )−1
)2

,

J0(x) =
(
−2mxn−1 − f x(1 + bx2)−1 + 2γ

)
,

J1(x) = α
(
−m(1 + 2n)xn−1 + f x(2 + 2bx2)−1 + 3γ

)
,
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J2(x) = 2mxn−1 + f x(1 + bx2)−1 − 2γ − α (−m(1

+2n)xn−1 + f x(2 + 2bx2)−1 + 3γ
)2 + μ)

×(1 + mxn − xγ )−1.

3.3 Region III (envelope layer)

The envelope region may be modelled to be a pressure-less
fluid (gaseous state) which implies that it has smallest den-
sity of all three interior regions. We take the Chaplygin equa-
tion of state, which is adequately gaseous to describe the
outermost layer, in the form

prψ = αρψ − β

ρψ

, (25)

where α and β are the arbitrary real constants. Then the en-
ergy density and radial pressure are respectively

ρψ = 1 − Z

x
− 2

dZ

dx
+ 1

2
E2, (26)

and

prψ = −1 − Z

x
+ 4Z

1

y

dy

dx
+ E2

2
. (27)

Substituting equation (26) into (25) we obtain

prψ =α

(
1 − Z

x
− 2

dZ

dx
+ E2

2

)

− β

(
1 − Z

x
− 2

dZ

dx
+ E2

2

)−1

. (28)

Equations (27) and (28) yield

1

y

dy

dx
= 1

2Z

(
1 − Z

x
+ E2

2

)

+ α

2Z

(
1 − Z

x
− 2

dZ

dx
+ E2

2

)

− β

2Z

(
1 − Z

x
− 2

dZ

dx
+ E2

2

)−1

. (29)

Using the specified forms of the metric potential Z and the
charge E2 we get

1

y

dy

dx
=

(
6αγ − 2mxn−1(1 + α + 2nα) + 2γ

+f x(α − 1)(1 + bx2)−1 − 2β(3γ

− m(1 + 2n)xn−1)−1 +f x(2

+2bx2)−1
)

(4(1 + mxn − xγ ))−1. (30)

Therefore the matter variables in the envelope layer become

e2λψ = [
1 − γ x + mxn

]−1
, (31a)

e2νψ = A2y2(x) = A2[exp(G0(x))]2, (31b)

ρψ =
[
6γ (1 + bx2) − 2m(1 + bx2)(1

+2n)xn−1 + f x] [2 + 2bx2]−1, (31c)

prψ = 3αγ − m(1 + 2n)xn−1α + [αf x]

×[2 + 2bx2]−1 − β [3γ − m(1

+ 2n)xn−1
]−1 + f x

[
2 + 2bx2

]−1
, (31d)

ptψ = G1(x) − G2(x) + G3(x) + G4(x)

−G5(x) + G6(x) + G7(x), (31e)


ψ = ptψ − prψ , (31f)

σψ =
[
x−1(3 + bx2)

(
f x

1 + bx2

)3/2

×
√

(1 + mxn − xγ )x−1

]
f −1, f �= 0 (31g)

E2
ψ = f x

[
1 + bx2

]−1
. (31h)

For simplicity we have defined

G0(x) =
∫

6αγ − 2mxn−1(1 + α + 2nα)

+2γ + f x(α − 1)(1 + bx2)−1(4(1

+mxn − xγ )) − (2β(3γ − m(1

+2n)xn−1)−1 + 4f x(1

+mxn) − xγ ))(2 + 2bx2)−1

×(4(1 + mxn − xγ ))−1dx,

G1(x) = mnxn−1 + γ + f x(2(1 + bx2))−1

+ (
(4 + 2m(2 + n)xn − 6xγ )(f x

× (α − 1))

× (1 + bx2)−1
)

(4(1 + mxn − xγ ))−1,

G2(x) =
(

2
(
mxn−1(1 + α + 2nα) − α − 3αγ

+ β(−m(1 + 2n)xn−1)−1
)

+ f x(2

+2bx2)−1 + 3γ )(4(1 + mxn − xγ ))−1,

G3(x) = x(−mnxn−1 + γ )f x(α − 1)(1 + bx2)−1

−2mxn−1(1 + α) + 2nα)(1 + mxn − xγ )−1,

G4(x) = x(−mnxn−1 + γ ) (2α + 6αγ + 3γ
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+2β(−m(1 + 2n)xn−1)−1

+f x(2 + 2bx2)−1
)

(4(1 + mxn − xγ ))−1,

G5(x) = 1

4

(
f x(α − 1)(1 + bx2)−1 − 2mxn−1

×(1 + α + 2nα) +2γ + 6αγ − J3(x))2 ,

G6(x) = (1 + mxn − xγ )(2bf x2(α − 1)((1 + bx2)2)−1

+f (α − 1)(1 + bx2)−1 − 2m(n − 1)xn−2

×(1 + α + 2nα)),

G7(x) = 1

4
(1 + mxn − xγ )

[
4(f x2(bx2 − 1)

+ 2m(n − 1)(1 + 2n)xn (1 + bx2)2β)]
×

[
(f x2 − 2(1 + bx2)(m(1 + 2n)xn

−3xγ ))2
]−1

,

J3(x) = 2γ (3γ − m(1 + 2n)xn−1 + f x(2 + 2bx2)−1.

4 Matching conditions

We consider the matching criteria for the radial pressures
and gravitational potentials to be continuous at the interfaces
between the layers and at the stellar boundary. The matching
conditions are given below. The junction conditions at the
core-intermediate interface become

e2λξ (Rξ ) = e2λδ (Rξ ), (33a)

e2νξ (Rξ ) = e2νδ (Rξ ), (33b)

prξ (Rξ ) = prδ (Rξ ). (33c)

The junction conditions at the intermediate-envelope inter-
face become

e2λδ (Rδ) = e2λψ (Rδ), (34a)

e2νδ (Rδ) = e2νψ (Rδ), (34b)

prδ (Rδ) = prψ (Rδ). (34c)

The junction conditions at the envelope-surface interface re-
quire that the interior and exterior line elements (1) and (2)
should match smoothly at the surface r = Rψ . We have

e2λψ (Rψ) =
(

1 − 2M

Rψ

+ Q2

R2
ψ

)−1

, (35a)

e2νψ (Rψ) =
(

1 − 2M

Rψ

+ Q2

R2
ψ

)
, (35b)

prψ (Rψ) = 0. (35c)

These conditions give the equations
(

1 + γR2
ψ + mR2n

ψ

)
= H1(x), (36a)

A2[exp(G0(x))]2 = H2(x), (36b)

3αγ − m(1 + 2n)Rn−1
ψ α = αf Rψ

(2 + 2b)R2
ψ

+H3(x), (36c)

where for simplicity we have set

H0(x) = 2π
(
R2

ψ

(
f b−1 − (2m(1

+2n)R2n
ψ )(n + 1)−1

+ 3R2
ψγ

)
− R2

ψf arctan
√

b

b3/2

)
+ k0,

H1(x) =
(

1 − 2H0(x)

Rψ

+ f R2
ψ

1 + bR4
ψ

)−1

,

H2(x) = 1 − 2H0(x)

Rψ

+ f R2
ψ

1 + bR4
ψ

,

H3(x) = β

3γ − m(1 + 2n))Rn−1
ψ

+ f Rψ

(2 + 2b)R2
ψ

.

The existence of sufficient number of free parameters in the
three equations in (36a)–(36c) indicates that the matching
conditions are satisfied in our study.

5 Physical conditions

The regularity conditions for the potentials and the matter
variables, and other physical properties in the interior of the
stellar object have to obey particular criteria. These are given
by

(i) The radial pressure (pr), the tangential pressure (pt )

and the energy density (ρ) need to be finite and greater
or equal to zero, i.e. ρ ≥ 0,pr ≥ 0,pt ≥ 0, and decreas-
ing away from the centre towards the boundary.

(ii) The gravitational potentials e2λ and e2ν must be posi-
tive at the centre and continuous.

(iii) The radial sound speed must be less than the speed of

light so as to obey the causality condition, i.e.
dpr

dρ
< 1.

For each layer we obtain the following in our model

νξ = [−f (bx2 − 1)α + m(n − 1)xn−2(1 + (2n

−1)α)][m(1 + n + 2n2)xn−2 + (f

−bf x2)(2(1 + bx2)2)−1]−1, (38a)
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νδ = [f xα + (1 + bx2(−2m(1 + 2n)xn−1α

+x(β + 6αγ )))][1 + bx2]−1, (38b)

νψ = α + 4(x + bx3)2β[(f x2 − 2(1 + bx2)

×(m(1 + 2n)xn − 3xγ )2)]−1, (38c)

where νξ , νδ and νψ are the speeds of sound in the core
layer, the intermediate layer and the envelope layer re-
spectively.

(iv) The energy distributions in the interior must be contin-
uous functions complying with the strong energy con-
dition (SEC), weak energy condition (WEC) and the
null energy condition (NEC), i.e. SEC: ρ −pr − 2pt ≥
0, WEC: ρ − 3pt ≥ 0, ρ − 3pr ≥ 0, NEC: ρ − pr ≥ 0,
ρ − pt ≥ 0. For the null, weak and strong energy con-
ditions we obtain the following:
(a) Null energy condition

NECξ = −f x(α − 1)(2 + 2bx2)−1

+mnn−1(α − 2 − 2n(α + 1)

+β + γ (α + 4)), (39a)

NECδ = −m(1 + 2n)xn−1 + f x(2

+2bx2)−1 + m(1 + 2n)xn−1β

−f xβ(2 + 2bx2)−1

+3γ − 3βγ + μ − α (−m(1

+2n)xn−1 + f x(2 + 2bx2)−1

+3γ )2 , (39b)

NECψ = m(1 + 2n)xn−1(α − 1) + 3γ

−3αγ − f x(α − 1)(2 + 2bx2)−1

+β(−m(1 + 2n)xn−1 + f x(2

+2bx2) + 3γ )−1. (39c)

(b) Weak energy condition

WECξ = f x(1 − 3α)(2 + 2bx2)−1 − mxn−1

×(4 − 3α + n(2 + 6α))

+3(β + (2 + α)γ, (40a)

WECδ = −m(1 + 2n)xn−1 + f x[2 + 2bx2]−1

+3γ − 3β
(
−m(1 + 2n)xn−1 + f x[2

+ 2bx2]−1 + 3γ
)

+ 3μ − 3α (−m(1

+ 2n)xn−1 + f x[2 + 2bx2]−1

+ 3γ )2 , (40b)

WECψ = f x(1 − 3α)[2 + 2bx2]−1 + m(1

+2n)xn−1(3α − 1) + 3γ − 9αγ 2

+3β[
(
−m(1 + 2n)xn−1 + f x[2

+ 2bx2]−1 + 3γ
)
]−1. (40c)

(c) Strong energy condition

SECξ = (f x2 (
9α + mxn (α(13 − 4α)

+ 2(α − 1)(4α − 1)n
(
bx2 + 1

)

+((5 − 4α)α − 3)bx2 − 11
))

)(2x

×
(
bx2 + 1

)2 (−mxn + γ x − 1
)
)−1

+(x (−4(α − 1)β + (9 − α(4α + 3))

×γ + bx
(
α − 4α2γ x − 4αβx + 5αγ x

+4βx + γ x − 3)))(2x
(
bx2 + 1

)2

× (−mxn + γ x − 1
)
)−1

+(2
(
bx2 + 1

)2 (
m2

(
α

(
4n2 − 1

)

+ 2α2(1 − 2n)2 + 4n + 2
)

x2n − 11
)
)

×(2x
(
bx2 + 1

)2 (−mxn + γ x − 1
)
)−1

−(mxn
(
α − 8αn2 + γ x

(
6α + 4α2(2n

−1) + 8α(n − 1)n + 4n + 3)))

×(2x
(
bx2 + 1

)2 (−mxn + γ x − 1
)
)−1

+(2n (α + (4α − 1)βx − 2 − 4αβx

+5βx − 2) + x (β((4α + 3)γ x − 5)

×(2x
(
bx2 + 1

)2 (−mxn + γ x − 1
)
)−1

+(γ (−5α + (α + 1)(2α + 1)γ x − 1)

+ 2β2x
)

+ (α − 1)2f 2x4)(2x
(
bx2 + 1

)2

(−mxn + γ x − 1
)
)−1 + 5γ, (41a)

SECδ = (2mnxn−1 − m(1 + 2n)xn−1 + (3f x))((2

+2bx2))−1 + m(1 + 2n)xn−1β − f xβ(2

+2bx2)−1 + 5γ −3βγ − α(−m(1 + 2n)xn−1

+(f x(2 + 2bx2)−1 + 3γ )2 + μ − (4 + 2m(2

+n)xn − 6xγ ) − 2mxn−1 − f x(1 + bx2)−1

+2γ + β((−m(1 + 2n)xn−1 + f x(2
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+2bx2)−1 + 3γ ((1 + mxn − xγ ) + (α(−m

×(1 + 2n)xn−1)))−1 + f x(2 + 2bx2)−1

+3γ 2(1 + mxn − xγ )−1 + 4bf x2((1

+bx2)2)−1 − 2f (1 + bx2)−1 − μ((1 + mxn

−xγ ) − 2x(1 + mxn − xγ ) − 4m(n

−1)xn−2)−1 − (2β(mnxn−1 − γ )(−m(1

+2n)xn−1 + f x(2 + 2bx2) + 3γ )−1(1

+mxn − xγ )2 − (2α(mnxn − 1 − γ )(−m(1

+2n)xn−1)) + f x(2 + 2bx2)−1

+6γ 2((1 + mxn − xγ )2 + (2(m(1 + n

−2n2)xn−2)))−1 + (f − bf x2)((2(1

+bx2)2)β)−1(1 + mxn − xγ ) + (4(m(1 + n

−2n2)xn−2 + (f − bf x2)((2(1 + bx2)2)

×α(−m(1 + 2n)xn−1))−1 + f x(2

+2bx2)−1 + 3γ ((1 + mxn − xγ )

+2(mnxn−1 − μ))−1

×(1 + mxn − xγ )2 + (2mxn−1) + f x(1

+bx2)−1 − 2γ − β(−m(1 + 2n)xn−1)

+f x(2 + 2bx2)−1 + 3γ ((1 + mxn − xγ )

−(α − m(1 + 2n))xn−1)−1 + f x(2

+2bx2)−1 + 3γ 2((1 + mxn − xγ )

+μ((1 + mxn − xγ )2)−1)−1, (41b)

SECψ = 2mnxn−1 − m(1 + 2n)xn−1 + f x(1

+bx2)−1 + f x(2 + 2bx2)−1 + m(1

+2n)xn−1α − f xα(2 + 2bx2)−1

+5γ − 3αγ + β(−m

×(1 + 2n)xn−1 + f x(2 + 2bx2)−1 + 3γ )−1

−((4 + 2m(2 + n)xn − 6xγ )f x(α − 1)((1

+bx2) − 2mxn−1(1 + α + 2nα) + 2γ

+6αγ − (2β))−1 + (−m(1 + 2n)xn−1

+f x)((2 + 2bx2) + 3γ )))(2(1 + mxn

−xγ ))−1 − (2(1 + mxn − xγ ))) + x(4(

−mnxn−1 + γ )((f x(α − 1))−1

×[(1 + bx2) − 2mxn−1(1 + α + 2nα)

+2γ + 6αγ − (2β)(−m(1 + 2n)xn−1

+f x(2 + 2bx2) + 3γ )) + ((f x(α − 1))

+2m(n − 1(1 + 2n)xn(1 + bx2)2)β)(1

+bx2) − 2mxn−1(1 + α + 2nα) + 2γ

+6αγ − 2β(−m(1 + 2n)xn−1

+f x(2 + 2bx2) + 3γ ))2 + 4(1 + mxn

−xγ )(−((2bf x2(α − 1))(1 + bx2)2

×(1 + bx2) − 2m(n − 1)x(−2+n)(1 + α

+2nα) − (4(f x2(bx2 − 1)(f x2 − 2(1

+bx2)(m(1 + 2n)xn − 3xγ ))2

+(f (α − 1)))]. (41c)

(v) The stability of the stellar sphere, either in Newtonian
theory or in general relativity, with perfect or imperfect
fluids is determined by the adiabatic index �. For the
stellar object to be stable, the adiabatic index condition
must hold throughout the interior. In Newtonian perfect
fluids the collapse limit of the sphere is known to be

� ≤ 4

3
, while for imperfect fluids in general relativity

the sphere is stable if � = ρ + pr

pr

dpr

dρ
≥ 4

3
. For our

model in general relativity the adiabatic index for each
region becomes

�ξ = B1(x)
(
(α + 1)f x2 − 2

(
bx2 + 1

)

× (−2(α − 1)mnxn + αmxn + (α − 2)

× γ x + βx)))(B2(x)
(
x

(
αf x − 2

(
bx2

+1) (αγ + β + γ )) + 2m
(
bx2 + 1

)

× (α(2n − 1) + 1)xn
)
)−1, (42a)

�δ = (−B3(x) − β
(
f x(2bx2 + 2)−1 + 3γ

−m(2n + 1)xn−1
)

− f x(2bx2 + 2)−1

−3γ − μ + m(2n + 1)xn−1)(2
(
bx3 + x

)3

×
(
f − bf x2)(2

(
bx2 + 1)2)−1

+ m
(
−2n2 + n + 1

)
xn−2

)
)−1, (42b)

�ψ = [B4(x)

(
α + 4β

(
bx3 + x

)2
(
(
f x2

−2
(
bx2 + 1

)(
m(2n + 1)xn

−3γ x))2)−1
)
][3αγ − β(f x

×(2bx2 + 2)−1 + 3γ − m(2n
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+1)xn−1)−1 + αf x(2bx2 + 2)−1

+α(−m)(2n + 1)xn−1]−1, (42c)

where for simplicity we have set

B1(x) =
(
m(n − 1)(α(2n − 1) + 1)xn−2

− αf
(
bx2 − 1

)
(2

(
bx2 + 1

)2
)−1

)
,

B2(x) = (f − bf x2)(2
(
bx2 + 1

)2
)−1

+m
(
−2n2 + n + 1

)
xn−2,

B3(x) =
(
f x2(bx2 − 1) + 2m(n − 1)(2n + 1)

× (bx2 + 1)2xn
)((

bx2 + 1
)

× (
x(6αγ + β) − 2αm(2n + 1)xn

)

+ αf x2
)

α
(
f x(2bx2 + 2)−1 + 3 γ

− m(2n + 1)xn−1
)2

,

B4(x) =
(

3(α + 1)γ − β(f x(2bx2 + 2)−1

+ 3γ − m(2n + 1)xn−1)−1(α + 1)

× f x)(2bx2 + 2)−1
)

+ (α + 1)(−m)

× (2n + 1)xn−1.

6 Physical analysis

In this work, we described the interior of stellar objects con-
taining three distinct layers in the presence of an electric
field. We now discuss the physical features of the matter
variables and other physical conditions that are generated
by using the Python programming language. Plots gener-
ated include the gravitational potentials, energy density, ra-
dial pressure, tangential pressure, the measure of anisotropy,
mass, adiabatic index, electric field, charge density, radial
sound speed, and energy conditions. The plots are generated
in the interval (0 − 2.5) km, (2.5 − 4.0) km and (4.0 − 10)

km for the core layer, intermediate layer, and the enve-
lope layer respectively. All graphs are plotted against the
radial distance in the specified domain of radius as con-
tained in Pant et al. (2020). This assists in comparing our
results with those found in Pant et al. (2020). We obtain
the graphs by using the following values of the constants:
b = ±0.0003, f = ±0.0002,m = ±0.0001, n = 3.00, α =
0.00001, β = ±0.0000847, γ = ±2.39, ko = 0.5,A = 0.01
and μ = ±6.88.

Fig. 1 Energy density against radial distance

Fig. 2 Radial pressure against radial distance

Figures 1 and 2 show that the energy density and the ra-
dial pressure are consistently decreasing functions from the
centre towards the surface, where both vanish at the bound-
ary. The same profiles are also found in the treatments of
Pant et al. (2019, 2020), Gedela et al. (2019), Maharaj and
Mafa Takisa (2013), and Sunzu and Danford (2017). We also
observe that the tangential pressure in Fig. 3 is monotoni-
cally increasing function with radial distance. This profile
is also obtained in the studies performed by Mafa Takisa
and Maharaj (2016) and Ngubelanga and Maharaj (2015).
The measure of anisotropy in Fig. 4 is generally an increas-
ing function. It is zero at the centre and slowly increases
away from the centre. It is a physical requirement that the
measure of anisotropy should vanish at the centre when we
set x = 0. The positivity of the measure of anisotropy im-
plies that the tangential pressure is greater than the radial
pressure. These results also arise in the papers by Pant et al.
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Fig. 3 Tangential pressure against radial distance

Fig. 4 Measure of anisotropy against radial distance

(2020) and Ngubelanga et al. (2015). The gravitational po-
tentials are regular and finite: e2ν and e−2λ have been plot-
ted in Fig. 5, and we show that they have equal values at the
boundary. The energy conditions in Figs. 6, 7, 8, 9, and 10
are continuously increasing functions satisfying the condi-
tion of being greater or equal to zero. We observe in Fig. 11
that the model is stable and satisfies the stability condition(
� ≥ 4

3

)
. In our model, we obtain the minimum value for

the adiabatic index at x = 0 to be �0 = 1.39446 which is
physically acceptable. Similar trends are also found in the
works of Pant et al. (2019, 2020) and Gedela et al. (2019).
Figure 12 indicates that the radial sound speed is in the ac-
ceptable range of 0.196653 ≤ ν ≤ 0.820084 which is less
than the speed of light. Figure 13 depicts the charge density
as a decreasing function. Figure 14 indicates that the electric
field is an increasing function. This feature for the electric
field is also found in models by Maharaj et al. (2014), and
Sunzu and Danford (2017). Figure 15 shows that the mass
is an increasing function with radial coordinate. Hence the

Fig. 5 Gravitational potential against radial distance

Fig. 6 Energy condition against radial distance

Fig. 7 Energy condition against radial distance



76 Page 12 of 16 A.S. Lighuda et al.

Fig. 8 Energy condition against radial distance

Fig. 9 Energy condition against radial distance

Fig. 10 Energy condition against radial distance

Fig. 11 Adiabatic index against radial distance

Fig. 12 Radial speed against radial distance

Fig. 13 Charge density against radial distance
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Fig. 14 Electric field against radial distance

Fig. 15 Mass against radial distance

model has acceptable behaviour in all the three layers, and
matches to the exterior spacetime.

7 Stability

7.1 The TOV equation

With consideration of the Tolman-Oppenheimer-Volkoff
(TOV) equation, we can determine the variation of the equi-
librium forces for the relativistic stellar models (Maurya
and Ortiz (2019)). These are the forces which counterbal-
ance the system. For our charged model, the four differ-
ent interior forces are gravitational (Fg), hydrostatic (Fh),
anisotropic (Fa), and electric (Fe). The forces sum up to
zero: Fg + Fh + Fa + Fe = 0. The TOV equation is given in

Fig. 16 Variation of forces against radial distance

the form

−ν′

2
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) + σEe−2λ = 0, (44)

where in our model, we obtain

Fg = −ν′

2
(ρ + pr), (45)

Fh = −dpr

dr

= −(f x2(1 − bx2)α + mxn(n − 1 + b(n

−3)x2)(1 + (2n − 1)α))(2(x + bx3)2)−1, (46)

Fa = 2

r
(pt − pr) = 2

r

, (47)

Fe = σEe−2λ

= ((3 + bx2)3f x3
(

1 + mxn − xγ

x

)1/2

×(2(1 + bx2)3x2(1 + bx2)

×(1 + mxn − xγ ))−1. (48)

Figure 16 indicates the behaviour of the equilibrium forces
which are physically acceptable. We observe in Fig. 16 that
the anisotropic repulsive force (Fa), gravitational force (Fg),
hydrostatic force (Fh) and electric force (Fe) are well be-
haved and in equilibrium. Similar profiles are also found in
the paper by Jasim et al. (2020), Das et al. (2016), Maurya
and Ortiz (2019), Fulara and Sah (2018) and Jasim et al.
(2018).

7.2 Harrison-Zeldovich stability

A detailed analysis of the stability (adiabatic index) for a
pulsar are discussed in Harrison et al. (1965) and Zeldovich
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and Novikov (1971). In their works, they assumed that the
adiabatic index of the pulsar is identical which provides a
stable model only if the mass of the stellar sphere is mono-
tonically increasing with respect to the central density. Thus
∂m
∂ρ

> 0 for a stable model, and ∂m
∂ρ

< 0 and ∂m
∂ρ

= 0 for an
unstable model (Jasim et al. (2020)). This condition in our
model becomes

∂m

∂ρ
= (f x2(bx2 − 1)α − 2m(n − 1)xn(1 + bx2)2

×(1 + (2n − 1)α))(f x2(bx2 − 1) + 2m(n − 1)

×(1 + 2n)xn(1 + bx2)2)−1. (49)

We observe in Fig. 18 that the mass-density ratio is greater
than zero, which obey the Harrison-Zeldovich condition for
the model to be stable. Similar results are also found in the
work of Maurya and Ortiz (2019), Jasim et al. (2020) and
Fulara and Sah (2018).

7.3 Bondi stability

Here we consider the stability for both Newtonian and rel-
ativistic models. It has been noted that when the adiabatic
index in both Newtonian and relativistic objects is exactly
� = 4

3 , the model is in neutral equilibrium (Jasim et al.
(2020)). This condition was observed in the work by Bondi
(1964), who discussed the stability of the stellar sphere in
both Newtonian and relativistic approaches. From Fig. 11
we see that adiabatic index in our study is greater than 4

3 ,
which increases the stability range of �.

7.4 Herrera cracking condition

Another condition was established by Herrera (1992) to
study the stability of the stellar object under radial pertur-
bations through the cracking approach. The concept of Her-
rera has been extended by Abreu et al. (2007) coming up
with the stability factor [v2

t (r) − v2
r (r)] to examine the sta-

bility for anisotropic relativistic stellar objects. According to
Abreu et al. (2007) the cracking condition has two inequality
equations

(i) 0 < v2
t (r) − v2

r (r) < 1 for unstable region,
(ii) −1 < v2

t (r) − v2
r (r) < 0 for stable region.

In our study we obtain the following expressions

v2
t (r) = dpt

dρ

= (8f α + mnxn−1(−5 − 2(−3 + α)α)

+2f mxn−1(n2(1 + bx2)(−1 + α)(−1

+4α) − 2bx2(1 + 2(−1 + α)α) + bnx2(1

−8α + 6α2)) + (−mxn−1 + γ )(4(1 + bx2)2

Fig. 17 Herrera cracking condition against radial distance

Fig. 18 Mass-density ratio against radial distance

×(1 + mxn − xγ )2)−1 + bx((1 + bx2)3(−1

−mxn + xγ ))−1)(m(1 + n − 2n2)xn−2

+(f − bf x2)(2(1 + bx2)2)−1)−1, (50)

v2
r (r) = dpr

dρ

= (f x2(1 − bx2)α + mxn(−1 + n + b(n

−3)x2)(1 + (2n − 1)α))(2(x + bx3)2(m(1

+n − 2n2)xn−1 + (f − bf x2)(2(1

+bx2)2)−1))−1. (51)

From Fig. 17 we observe the region as suggested in the Her-
rera cracking condition for a model to be stable. The be-
haviour shown in Fig. 17 ensures that our model satisfies,
and meets the physical requirements for the stability condi-
tion. Similar trends are also observed in the work by Jasim
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et al. (2020), Das et al. (2016), Maurya and Ortiz (2019),
Fulara and Sah (2018) and Jasim et al. (2018).

8 Conclusion

In this paper we have developed a new model for a dense
relativistic star with three interior layers, each layer satisfies
a distinct equation of state. The core and intermediate layers
satisfy the quark and quadratic equation of state respectively.
Notably the envelope satisfies the gaseous Chaplygin equa-
tion of state which ensures that the outer layer of the star
is less dense than the interior. The Einstein-Maxwell field
equations are satisfied in each layer, and there is smooth
matching between each layer and the exterior Reissner-
Nordstrom spacetime. A detailed physical analysis shows
that the model is well behaved; in particular there is smooth
matching of the physical quantities between the three lay-
ers. It is for some interest to note that our model satisfies
all stability conditions. This is graphically illustrated in var-
ious figures. Our result is a generalization of earlier works
and shows that the approach of three interior layers is viable
and contains interesting physical features. In particular we
regain the work of Pant et al. (2020) for a suitable choice
of parameters. In addition our model contains an electro-
magnetic field which is absent in the treatment of Pant et al.
(2020). Our generalized charged model contains the results
o f Pant et al. (2020) in the uncharged limit and therefore is
applicable in the description of strange stars such as SAX
J1808.4-3658 and binary stars such as Vela X-1. Our results
emphasize the importance of considering three layers in the
modelling process. In future work we will develop models
with different forms of the gravitational potentials, electric
field and equations of state.
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