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Abstract In this paper we analyze the frequency shifts
of the light emitted by particles describing stable circular
geodesics around a static black hole immersed in an ex-
ternal magnetic field of arbitrary strength. This system is
represented by the Ernst solution of the Einstein-Maxwell
equations. The presence of the magnetic field and its mag-
nitude affects both the geodesics and the red-blueshifts of
the light emitted by neutral or charged particles orbiting the
black hole. When the magnetic field is turned off we recover
the characteristic redshifts coming from particles orbiting a
Schwarzschild black hole.

Keywords Black holes · Redshifts · Magnetic field and
circular orbits

1 Introduction

Astrophysical objects such as black holes have been of great
interest to the scientific community for many years; this
interest has increased even more due to the possibility of
observing strong field gravitational phenomena. For exam-
ple the analysis of black hole stability played and outmost
role in characterizing gravitational-wave signals detected
(Abbott et al. 2016). The project GRAVITY (Eisenhauer
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et al. 2009) tracks the stars orbiting around the supermas-
sive black hole at the center of our galaxy and the Event
Horizon Telescope (EHT) collaboration was able to obtain
an image of the supermassive black hole in M87* (Akiyama
et al. 2019), which opens the way for a phenomenological
approach for a deeper understanding of Black Holes (BH).
Therefore, it is necessary to study the relationship between
the observed gravitational phenomena and the parameters
that characterize BH, such as the mass, angular momen-
tum or charge. In this sense in (Cardoso et al. 2009) was
shown the relationship among parameters of the circular null
geodesics, Lyapunov exponents, and quasinormal modes of
black holes (BH). In this context, different BH solutions
have been studied (Fernando and Correa 2012) (Breton and
Lopez 2016) (Lopez and Hinojosa 2021). In (Konoplya and
Stuchlík 2017) the limits of applicability of this correspon-
dence were addressed.

Also in (Herrera-Aguilar and Nucamendi 2015) the au-
thors developed a theoretical approach to obtain the param-
eters of a Kerr BH in terms of the redshift and blueshift
of photons emitted by particles traveling along stable cir-
cular geodesics. Using this idea, different configurations
have been studied; in (Becerril et al. 2016), were derived
the red/blueshifts of static spherically symmetric BH and in
(Kraniotis 2021) were studied the red/blueshifts and frame
dragging of the Kerr–Newman–de Sitter and Kerr–Newman
BH.

On the other hand, observational evidence indicates that
in the center of each galaxy there are black holes (Begelman
2003) and always accompanied by magnetic fields whose
origin may be external or generated by currents in the accre-
tion disk.

The Ernst solution (Ernst 1976) of the coupled Einstein-
Maxwell equations describes the gravity of a static black
hole immersed in a uniform magnetic field; it is also known
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as Schwarzschild–Melvin (SM) BH. Despite being non
asymptotically flat, the magnetic Ernst solution is a useful
model for a black hole in certain astrophysical situations.
For charged particles geodesics of the Ernst BH have been
described in (Dadhich et al. 1979) as well as for Melvin Uni-
verse (magnetic universe), obtaining that for charged parti-
cles bound orbits always exist for realistic magnetic field
strengths.

Frequently it has been considered the external magnetic
field as a perturbation or test field (test field approximation);
for instance, the Wald (Wald 1974) solution consists in a
test magnetic field that does not affect the curvature. This
solution has been addressed in (Frolov and Shoom 2010),
where the bounded trajectories of charged particles near
a weakly magnetized Schwarzschild BH were derived; in
this setting neutral particles are not affected by the pres-
ence of the weak magnetic field. In (Lim 2015) is stud-
ied the influence of an external uniform electric or mag-
netic field on charged particles via the Lorentz interaction.
In (Tursunov et al. 2016) the analysis of circular orbits and
related quasi-harmonic oscillatory motion of charged par-
ticles around weakly magnetized rotating black holes was
addressed. In (Hackstein and Hackmann 2020) were stud-
ied the Innermost Stable Circular Orbits (ISCOs) of charged
particles in a weak electromagnetic field in the vicinity of a
Schwarzschild BH.

In (Aliev and Ozdemir 2002) the motion of charged par-
ticles around a rotating BH in a weak magnetic field was
analyzed, obtaining that the presence of the magnetic field
enlarges the region of marginal stability shifting the radius
of the marginal stable orbits towards the horizon. In (Kono-
plya 2007) corrections to the bending angle and time delay
due-to presence of weak magnetic fields in galaxies were
estimated.

As was briefly summarized, charged particles trajectories
have been thoroughly studied in the spacetime of a BH in a
weak magnetic field. Most of the treatments apply to test
magnetic fields that do not alter curvature, therefore it has
not effect on uncharged or neutral particles. The advantage
of studying an exact solution of the Einstein-Maxwell equa-
tions is that the magnitude of the magnetic field is arbitrary
and, as we show in the following, acting through curvature
it has an effect even on neutral test particles, enlarging as
well the region of stable circular orbits by pushing the ISCO
orbits towards the horizon.

In this work our aim is to determine the redshift of the
light emitted by particles orbiting the Ernst BH in stable cir-
cular trajectories; therefore we focus on these kind of orbits
for both, charged and uncharged test particles, pointing out
that the latter are indeed influenced by the magnetic field
even if it is not too strong; we present as well the region of
the ISCO, in terms of the dimensionless parameter mB (m
the BH mass and B the magnetic field). Moreover, we de-
termine the upper bound on mB that allows stable circular

orbits. Then is determined the influence of the external mag-
netic field on the redshifts coming from particles (charged or
uncharged) orbiting in stable circular trajectories around the
Ernst BH.

The paper is organized as follows: in Sect. 2 the Ernst
or Schwarzschild–Melvin (SM) BH is introduced as well
as the effective potentials for charged and uncharged par-
ticles. In Sect. 3 a short summary is given to determine the
frequency shifts of photons emitted from particles moving
in stable geodesics around a static BH. Also the frequency
shifts of light emitted by neutral and charged particles or-
biting the Ernst BH are determined. Finally, conclusions are
given in the last section.

2 The Ernst or Schwarzschild-Melvin black
hole

The Ernst solution or Schwarzschild–Melvin (SM) BH, also
known as electrified/magnetized Schwarzschild BH, de-
scribes the spacetime of a static BH immersed in an external
uniform magnetic or electric field; in spherical coordinates
the metric is described by (Ernst 1976),

ds2 = �2(−�dt2 + �−1dr2 + r2dθ2) + �−2r2 sin2 θdφ2,

(1)

with � = 1 + 1
4B2r2 sin2 θ and � = 1 − 2m

r
, where m is

the BH mass and B is the external magnetic field parameter.
As was shown in (Wild and Kerns 1980) where the Gaussian
curvature was examined, the event horizon remains the same
as for Schwarzschild, located at r = 2m and the curvature
singularity at r = 0. When m → 0 the metric reduces to the
Melvin’s magnetic universe (Melvin 1965).

It is worth to note that the effect of the magnetic field
resembles the one of a cosmological constant: writing
the t t metric component (with θ = π/2, just for simplic-
ity),

gtt = −��2 = −
(

1 + B2r2

2
+ B4r4

16
− 2m

r
�2

)
, (2)

the second term with dependence on r2 acts similarly to a
positive cosmological constant, from which we can guess
the confining effect that the magnetic field exerts on test
particles as well as on light. Also due to the presence of the
electromagnetic field, the metric (1) is not asymptotically
flat.

The vector potential Aμ = (At ,0,0,Aφ), for an electric
field E and magnetic field B , is given by (Lim 2015), (Kono-
plya and Fontana 2008),

At = Er�� cos θ, Aφ = 1

2�
Br2 sin2 θ. (3)
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In the context of astrophysics typically magnetic fields
are considered in the test field regime, that do not influence
the spacetime curvature. In that case the metric is simply the
Schwarzschild metric (� = 1 in (1)) with the magnetic field
associated to Aφ .

2.1 Effective potential for a charged test particle

The equations of motion of a charged particle with mass mc

and charge qc may be derived from the Lagrangian;

L = 1

2
gμνẋ

ν ẋμ + κAμẋμ, (4)

where κ = qc/mc is the specific charge of the test particle
and Aμ is the electromagnetic potential.

The momenta conjugate is given by

Pμ = gμνẋ
ν + κAμ. (5)

For axisymmetric stationary spacetimes a test particle has
two conserved quantities, its energy and its angular momen-
tum, related to the two Killing vectors ∂t and ∂φ , respec-
tively,

Pt = gtt ṫ + κAt = gttU
t + κAt = −E, (6)

and

Pφ = gφφφ̇ + κAφ = gφφUφ + κAφ = L. (7)

The components of the 4-velocity of the test particle are
Ut = −(E + κAt )/gtt and Uφ = (L − κAφ)/gφφ . If the 4-
velocity is normalized to unity UμUμ = −1 = gtt (U

t )2 +
grr (U

r)2 + gθθ (U
θ )2 + gφφ(Uφ)2 then we obtain;

−1 = (E + κAt )
2

gtt

+ grr ṙ
2 + (L − κAφ)2

gφφ

+ gθθ θ̇
2. (8)

Comparing with grr ṙ
2 +Veff = 0 we get the effective po-

tential over the test particle, which depends on E and L,

Veff = 1 + (E + κAt )
2

gtt

+ (L − κAφ)2

gφφ

. (9)

We shall consider only magnetic field, i.e. E = 0,At = 0;
for equatorial orbits θ = π/2 and using (1) and the vector
potential for the magnetic field (3) we obtain that

Veff = 1 − E2

��2
+ �2

r2

(
L − κ

Br2

2�

)2

. (10)

In Fig. 1a) is shown the behavior of Veff, Eq. (10), for differ-
ent values of the specific charge κ and Fig. 1b) shows Veff

for different values of the dimensionless parameter mB . The

Fig. 1 a) The behavior of the effective potential Veff for different val-
ues of the specific charge of the test particle, κ , with E = 0.5, L

m
= 2.1

and mB = 0.027. b) The behavior of the effective potential Veff vary-
ing mB with L

m
= 2.1, E = 0.5 and κ = 0.3 The effect of the magnetic

field is of confining, even for uncharged test particles (κ = 0)

effective potential presents maximum and minimum that in-
dicates there exist circular orbits, both, unstable and sta-
ble.

Therefore when considering a charged particle with mass
mc and charge qc , the effect of the effective potential de-
pends on the magnitude and sign of the specific charge κ .
When mB increases, the confining effect increases, as can
be seen in Fig. 1b).

When we consider the equation for radial motion grr ṙ
2 +

Veff = 0, the circular orbits correspond to the radii rc ,
where the potential and its derivative are zero (Veff(rc) = 0
and Veff

′
(rc) = 0). Then for circular orbits, from Eq. (10)

the following expression, that restricts L, should be ful-
filled

(
L − κAφ

)2
a(rc) + (

L − κAφ

)
, b(rc) + c(rc) = 0 (11)

where;

a(rc) = (4 + B2r2)

8(r − 2m)r3 [B2r2(3r − 5m) − 4(r − 3m)], (12)
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Fig. 2 Density plots for the parameters mB and L/m; the lighter regions correspond to the pairs (L/m,B) of the stable circular orbits of the Ernst
BH; the ranges are 0 ≤ mB ≤ 0.2 and 0 ≤ κ ≤ 1

b(rc) = 4Bκ

r
, c(rc) = 2[4m + B2r2(2r − 3m)]

r(r − 2m)(4 + B2r2)
. (13)

Moreover, the stability of the circular orbits requires that
V

′′
eff(rc) > 0. This analysis is performed numerically in the

range of mB shown in Fig. 2; the density plots for the pairs
(L/m,mB) correspond to the stable circular orbits; in the
ranges 0 ≤ mB ≤ 0.2 and 0 ≤ κ ≤ 1 a large number of stable
circular orbits (represented by the lighter part of the graphs)
is allowed.

2.2 Uncharged particles

The effective potential, Eq. (10), acting on uncharged test
particles, κ = 0 is given by

Veff = 1 − 16rE2

(r − 2m)(4 + B2r2)2 + L2

16r2

(
4 + B2r2

)2
.

(14)
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Fig. 3 a) For uncharged test particles, the effective potential as a func-
tion of r/m is plotted for different values of mB with E = 0.5 and
L
m

= 2.1. b). The same for different values of L
m

with E = 0.5 and
mB = 0.034

As shown in Fig. 3 the effective potential Veff presents
maximum and minimum, corresponding to circular orbits,
unstable and stable, respectively. In Fig. 3a) Veff (14) is
shown as a function of r/m for different values of mB and
in Fig. 3b) for different values of L/m. These plots show
that uncharged particles are affected by the presence of the
external magnetic field, even if it is not too strong, fact that
has been disregarded in most of the literature.

If mB increases then the confining effect increases (see
Fig. 3a)). The same happens when L/m increases (see
Fig. 3b)) and the maxima of the effective potential is shifted
towards the horizon, the effect is the opposite in the minima.

For the circular orbits the values of the energy and angu-
lar momentum of the test uncharged particle in terms of the
BH parameters (m,B) are,

E2 |rc=
(r − 2m)2(4 − r2B2)(r2B2 + 4)2

16r[4(r − 3m) − B2r2(3r − 5m)] , (15)

L2 |rc=
16r2[B2r2(2r − 3m) + 4m]

(4 + B2r2)2[4(r − 3m) − B2r2(3r − 5m)] , (16)

evaluated at rc , the radius of the circular orbit.

Fig. 4 The shaded region corresponds to the pairs (rc,mB) that define
a circular orbit. For values Bm > 0.189366, the maximum (not shown
in the plot), no circular orbits occur

The conditions 0 � E2 and 0 � L2 at r = rc lead to the
following constrictions between m, B and rc:

B2 <
4(rc − 3m)

r2
c (3rc − 5m)

, 3m � rc. (17)

The second condition is no other than rc should be larger
than the one corresponding to the photosphere radius for
Schwarzschild, rS

ph = 3m. The condition that rc corresponds
to a circular orbit that is stable is that the second derivative
of the effective potential be positive, V

′′
eff(rc) > 0. In Fig. 4

is shown the region of pairs (rc/m, (mB)2) that correspond
to circular orbits. As mB decreases the range of rc/m aug-
ments; mB presents a maximum at mB = 0.189366, this
means that for fields such that mB > 0.189366 no circular
orbits occur. As mB grows the available range for rc/m is
shorter.

As shown in Fig. 4, the larger number of circular orbits
is for values of mB well below the maximum (mB)max =
0.189366. For concreteness we include Table 1 with the or-
ders of magnitude of the parameter mB and the correspond-
ing BH masses in solar mass units and the magnetic field BSI

in Tesla. To obtain the magnetic field in inverse length units,
we use the factor

√
Gε0/c

2, where G is the gravitational
constant and ε0 is the vacuum dielectic contant; and M , the
BH mass, given in Kg. is transformed to length units with
m = GM/c2. The maximum (mB)max = 0.189366 could
correspond to a ten solar mass BH with a magnetic field of
BSI ≈ 1016 Tesla (that is huge), or to a more massive BH in
a less intense magnetic field.

The condition V
′′
eff(rc) > 0 (stable circular orbits) sets ad-

ditional bounds on the range of B already restricted by (17),

V ′′
eff(rc) = 2

{y3A3(m̃) + y2A2(m̃) + yA1(m̃) + A0(m̃)}
(1 − 2m̃)r2

c (4 + y)2[4(1 − 3m̃) − y(3 − 5m̃)]
> 0, (18)
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Table 1 The BH mass in units of solar masses, the magnetic field BSI

in Tesla and the corresponding value of the dimensionless parameter
mB . The first two rows are according to (Piotrovich et al. 2010). The
orders of magnitude we use in this paper are of 10−2 (three following
rows), and finally (mB)max = 0.189366 could correspond to a ten solar
masses BH with a magnetic field of BSI ≈ 1016 Tesla, or to a more
massive BH in a less intense magnetic field

BH mass BSI mB

10 104 1.4 × 10−11

106 1 1.2 × 10−10

106 108 10−2

101 1013 10−2

104 1010 10−2

101 1.6 × 1016 0.189

where we have used m̃ = m/rc and y = B2r2
c to compress

the expression, and

A0(m̃) = 64[−6m̃2 + m̃],
A1(m̃) = 672m̃2 − 624m̃ + 128,

A2(m̃) = −200m̃2 + 204m̃ − 48,

A3(m̃) = 30m̃2 − 37m̃ + 12. (19)

The denominator in Eq. (18) is positive since r > 2m, then
the condition for stable orbits, V

′′
eff > 0 amounts to the factor

in curly brackets being positive,

{y3A3(m̃) + y2A2(m̃) + yA1(m̃) + A0(m̃)} > 0. (20)

Moreover, the condition for ISCO is that the previous fac-
tor be zero. ISCO are the marginally stable orbits: circular
orbits with radius less than the ISCO are unstable and those
with radii larger than it are stable. Then the ISCO defines the
border of the region of bound orbits, or the inner radius of
an accretion disk. For charged and uncharged particles, the
ISCO are shown in Fig. 5, fixing the values of κ and L and
varying rc/m and (mB)2. In Fig. 5a) the ISCO for charged
particles are shown and in Fig. 5b) for the uncharged par-
ticles in the same ranges of rc/m and (Bm)2. The bound-
ary between the regions represents the ISCO, while the pairs
(rc/m, (mB)2) corresponding to stable circular orbits (SCO)
are in the region below the curve. For fixed L, the available
region of SCO is smaller for uncharged particles.

In the next section we establish the relationship between
the parameters of the stable circular orbits (orbits obey-
ing Veff(rc) = V

′
eff(rc) = 0 and Veff

′′
(rc) > 0) and the red-

shift of the light emitted by particles traveling along those
geodesics.

Fig. 5 a) The pairs (r/m, (mB)2) corresponding to ISCO for charged
test particles with κ = 0.4. In b) The respective pairs of ISCO for un-
charged test particles (κ = 0) are shown. In both L/m = 6. The regions
below the ISCO curve are the ones for SCO in each case

3 The red-blueshifts of the photons emitted
by particles orbiting the Ernst BH

The connection between the red-blueshifts of the pho-
tons emitted by massive particles (stars or gas) that move
in stable geodesics around a black hole was pointed out
in (Herrera-Aguilar and Nucamendi 2015). Let us start by
giving a summary of the method considering a static space-
time (for more details see (Becerril et al. 2016)).
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3.1 The red-blueshifts of the photons emitted by
charged particles

Light emitted from massive particles moving along stable
circular geodesics is characterized by a 4-momentum κμ

that is a null vector, κμκμ = 0; photon energy and angu-
lar momentum are conserved quantities, −Eγ = gtt κ

t and
Lγ = gφφκφ , and the photon impact parameter is defined as
b = Lγ /Eγ = ±√−gφφ/gtt .

The frequency shift z associated with the emission (e)
and detection (d) of photons emitted from particles in circu-
lar geodesics (Ur = 0) and equatorial motion (Uθ = 0), is
given by

1 + z = Ut
e − beU

φ
e

Ut
d − bdU

φ
d

. (21)

Considering that observational redshifts are reported in
terms of the kinematic frequency shift, zkin = z − zc, where
zc is the shift of a photon emitted by a static particle at b = 0
(on the line going from the center of coordinates) and using
the previous Eq. (21), zc can be written as

1 + zc = Ut
e

Ut
d

. (22)

For geodesics with Ur = 0 and Uθ = 0, in this same context
the kinematic frequency shift can be expressed as;

zkin = Ut
eU

φ
d bd − Ut

dU
φ
e be

Ut
d(Ut

d − bdU
φ
d )

; (23)

if we consider that the detector is located far away from the
black hole then from (7) and (23) we obtain

z = Uφ
e b+ |rc=

√
−gφφ

gtt

(
L

gφφ

− κAφ

gφφ

)
|rc . (24)

Therefore the redshift z, Eq. (24), of the light emitted by
charged particles from a stable circular orbit of radio rc in
the equatorial plane of the Ernst BH is determined by

z |rc=
√

1

r(r − 2m)

(
L − κAφ

)
. (25)

Choosing appropriate values of L from the ranges shown
in Fig. 4 and from Eq. (11) we determine the behavior of the
redshift z for the Ernst BH, as shown in Fig. 6 for differ-
ent values of κ and varying mB in the range (0,0.11). The
redshift z for the Ernst BH as a function of rc/m is shown
in Fig. 6a); we observe that z decreases as rc/m augments;
the behavior is similar for the photons emitted by neutral
particles but the available range of stable orbits is smaller.

In Fig. 6b) the behavior of z of the Ernst BH for dif-
ferent values of the specific charge κ is shown; increasing

Fig. 6 The redshift of light emitted by charged particles in stable cir-
cular orbits of the Ernst BH. a) The redshift z as a function of rc

m
, and

b) z as a function of Bm; in both are fixed L/m = 6

mB the redshift z increases as well, i.e. the redshift is larger
coming from particles in orbits nearer the horizon and z is
larger as well for a BH immersed in a magnetic field than
for Schwarzschild.

3.2 Redshift from uncharged particles orbiting the
Ernst BH

The redshift z of the light emitted by neutral particles in a
stable circular orbit of radio rc in the equatorial plane around
the Ernst BH is given by

z2 |rc=
r[m� + r�′(r − 2m)]

�2(r − 2m)[�(r − 3m) − 2r�′(r − 2m)] , (26)

since the radius is always larger than the one of the event
horizon, r > 2m, then the condition that z2 > 0 reduces to
[�(r − 3m) − 2r�′(r − 2m)] > 0; this condition reduces
to the inequality (17) that we derived from the requirements
that E2 ≥ 0 and L2 ≥ 0. Remember that rc > 3m, i.e. the
radius of stable orbits is always greater than 3m that is the
photosphere radius of Schwarzschild BH. In the case B → 0
we recover the redshift z for Schwarzschild BH (see (Becer-
ril et al. 2016)). From the previous expression we can deter-
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Fig. 7 The redshift of light emitted by neutral particles in SCO around
the Ernst BH. a) Behavior of z respect to rc

m
, for different values of Bm

and b) the redshift z as a function of Bm, for two values of the radius
of the circular orbits from which light is emitted, rc

m
= 4,5. For fixed

rc the presence of the magnetic field increases the redshift

mine m = rcG(z2,B2r2
c ) with;

G(z2,B2r2
c )

= −64 + 48y + (4 + y)2(11y − 20)z2 ± P(z2, y)

4(4 + y)2(5y − 12)z2
,

(27)

where P 2(z2, y) = 256(4−3y)2 −32(4+y)3(7y −20)z2 +
(4 + y)6z2, with y = B2r2

c . The redshift z, Eq. (26), of light
coming from uncharged particles is shown in Fig. 7 for dif-
ferent values of mB and rc/m. Figure 7a) shows z as a
function of rc; for mB → 0 the behavior of z is the one
of Schwarzschild BH. The redshift z for the Ernst BH de-
creases as rc

m
augments. For values of mB > 0.17 the curve

for z presents a minimum and then increases; the ranges for
rc
m

are the same as in Fig. 4. It is worth to mention that the
Schwarzschild BH redshift is less than the one coming from
the Ernst BH zS < zE , for a given BH mass, so that the ef-
fect of the magnetic field is of increasing the redshift but the
number of stable orbits is less.

In Fig. 7b) is displayed z as a function of mB for two
values of the radius of the circular orbits from which light is

emitted rc
m

= 4,5. For fixed rc the presence of the magnetic
field increases the redshift.

Moreover, from the condition V ′′
eff(rc) = 0 we obtain a

restriction for the ISCO, as a quadratic equation for r̃c =
rc/m,

[30y3 − 200y2 + 672y − 384] + [12y3 − 48y2 + 128y]r̃c2

+ [−37y3 + 204y2 − 624y + 64]r̃c = 0, (28)

here y = (mB)2r̃c
2; the previous Eq. (28), is equivalent to a

cubic equation for y,

y3[30 − 37r̃c + 12r̃c
2] + y2[−200 + 204r̃c − 48r̃c

2]
+ y[672 − 624r̃c + 128r̃c

2] + 64r̃c − 384 = 0. (29)

The 4-velocities of test particle emitters along the stable
circular orbits in terms of the BH parameters (m,B) and rc
are

(Uφ)2 = (4 + y)2[4m + y(2rc − 3m)]
16r2

c [4(rc − 3m) − y(3rc − 5m)] ,

(Ut )2 = 16rc(4 − y)

(4 + y)2[4(rc − 3m) − y(3rc − 5m)] , (30)

that impose the restriction on the magnetic field B , that (4 −
y) > 0 or B2 < 4/r2

c . The angular velocity of the emitters in
these circular geodesics is

�2 = (4 + y)4[4m + y(2rc − 3m)]
256r3

c (4 − y)
, (31)

recalling that m = rcG(z2, rc,B
2), Eq. (27), indeed these ve-

locities, Uφ,Ut ,� depend on the magnetic field and corre-
spond to a certain redshift z. In such a way that given a set
of observables {z, rc}i , Bayesian statistical analysis would
provide an estimate for both parameters m and B .

4 Conclusions

In this work we analyze the redshift of the photons emit-
ted by massive and charged test particles that move around
a black hole immersed in an external magnetic field, sit-
uation represented by the Ernst metric. We consider that
the emitters of light are moving along stable circular or-
bits (SCO). In terms of the effective potential SCO obey that
Veff

′
(rc) = Veff(rc) = 0 and Veff

′′
(rc) > 0.

The radii of the circular orbits are as well modified in
presence of the magnetic field; these radii rc are shifted to-
wards the horizon in proportion to the magnitude of the mag-
netic field, i.e. the minima of the effective potential rc is
nearer the horizon as mB augments; or rE

c > rS
c , i.e. the ra-

dius SCO in Schwarzschild BH is less than radius of SCO
for the Ernst BH. We obtain numerically the density regions
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of the pairs angular momentum-Magnetic fields (L,B) that
correspond to SCO of the charged test particles. The set de-
pends on the specific charge of the test particle.

Moreover, we determine the ranges of the parameters that
allow the existence of circular orbits of neutral test particles
corresponding to SCO. It is also presented the region for the
innermost stable circular orbits (ISCO) in terms of the ra-
dius of the orbit rc and the dimensionless parameter mB .
We found that there is an upper bound for the magnetic field
that allow SCO, (mB)max = 0.189366; this field could cor-
respond to a ten solar masses BH with a magnetic field of
BSI ≈ 1016, or to a lesser magnetic field with a more mas-
sive BH (see Table 1).

We have shown that the magnetic field affects, through
the curvature, neutral or uncharged test particles: the red-
shift emitted in the presence of the magnetic field is larger
than the shift in absence of the field, i.e. light coming from
particles orbiting the Schwarzschild BH is less redshifted
than the one coming from the BH immersed in a magnetic
field.

In summary, the presence of the magnetic field in the
vicinity of the BH, considering SCO of neutral and charged
particles, enlarges the redshift of the light coming from test
particles orbiting the BH. This effect should be taken into
account in observations, mainly when strong magnetic field
are involved; otherwise it could lead to overestimate the BH
mass.
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