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Abstract We are considering the spacetime described by
the metric proposed by Mannheim and Kazanas. The effec-
tive potential and the circular orbits are discussed. The ro-
tational velocity derived from the geodesics equation agrees
with the observed flat galactic rotation curves. Finally, solu-
tions to the Gordon equation for massless bosons evolving in
this spacetime are obtained in terms of Heun general func-
tions.

Keywords Mannheim–Kazanas spacetime · Black holes ·
Gordon equation · Heun functions

1 Introduction

About thirty years ago, the Mannheim-Kazanas (MK) met-
ric has been obtained as an exact exterior solution to confor-
mal Weyl gravity associated with a static, spherically sym-
metric gravitational source (Mannheim and Kazanas 1989).
The Schwarzschild term 2M/r is accompanied by a lin-
ear potential, γ r , and a quadratic contribution, of the form
−λr2. The linear term is generated through the effect of
cosmology on individual galaxies, while the quadratic one
is induced by inhomogeneities in the cosmic background.
These inhomogeneities are associated with distances larger
than 1 Mpc. Since the two contributions have opposed signs,
the galaxies are able to support bound orbits.

Even though the MK metric has not been obtained in Ein-
stein’s General Relativity, it has the advantage of solving the
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problem of the shape of the galactic rotation curves (Rubin
et al. 1978), without postulating the dark matter existence.

As it is known, in real galaxies, at large values of r , the
rotational velocity remains at nearly the same level or is in-
creasing. Thus, in order to maintain the high velocity, an
additional contribution to the Newtonian one is required.

In this respect, the MK metric agrees with the empiri-
cal expression of the orbiting velocities of the visible matter
around the center of galaxy

v2 = a

R
+ bR ,

where R is the distance to the center of the galaxy, while the
parameters a and b contain the number of stars in the galaxy.

In the last years, the MK metric was tested on a broad
sample of galaxies whose rotation curves extend well be-
yond the galactic optical disks. The universal quantity γ /λ

gives a natural limit on the size of galaxies (Mannheim and
O’Brien 2011).

The present work is devoted to particles evolving on
the Mannheim-Kazanas spacetime. The effective potential
and the conditions to have closed trajectories are discussed.
Working within a tetradic approach, the solutions to the Gor-
don equation are obtained, for different ranges of the radial
variable.

The study of the motions of particles in this metric is very
important since it provided a way to detect the presence of a
global de Sitter-like component and to found a specific value
for its strength (Mannheim and O’Brien 2011).

2 The Mannheim-Kazanas metric and the
Galaxy rotation curves

Let us start with the original expression of the Mannheim-
Kazanas (MK) vacuum solution (Mannheim and Kazanas
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1989)

g00 = 1 − 3βγ − β(2 − 3βγ )

r
+ γ r − λr2 , (1)

where γ and λ are universal constants, the same for
all galaxies, γ = γ0 = 3 × 10−28m−1 and λ = 9.54 ×
10−50m−2.

Also, β = M can be associated to the mass at the galaxy
center, and one may work in the approximation 3γM � 1.

The metric (1) can be written in the more transparent
physical expression

g00 = 1 − 2M

r
+ γ r − λr2 (2)

and the spherically symmetric line element

ds2 = g11(dr)2 +r2
[
(dθ)2 + sin2 θ(dϕ)2

]
−g00(dt)2 , (3)

for g11 = g−1
00 , is given by

ds2 = (dr)2

g00
+ r2

[
(dθ)2 + sin2 θ(dϕ)2

]
− g00(dt)2

= − dτ 2 , (4)

where τ is the proper time.
Using the Lagrangian

−L = 1

2

[
(ṙ)2

g00
+ r2θ̇2 + sin2 θϕ̇2 − g00 ṫ

2
]

,

one can derive the conserved energy and angular momentum

g00 ṫ = E , r2 sin2 θϕ̇ = −K , (5)

where dot means the derivatives with respect to τ .
If the motion of the particle with zero angular momentum

is on the equatorial plane, i.e. θ̇ = ϕ̇ = 0, the relations (4)
and (5) lead to the important constraint

g00 ṫ
2 − ṙ2

g00
= 1 ,

i.e.

ṙ2 = E2 − g00 . (6)

In the above expression, one may identify the effective po-
tential

Veff = g00 = 1 − 2M

r
+ γ r − λr2 , (7)

which is represented in the Fig. 1. The potential goes to −∞,
for r → ±∞ and has a singularity in r = 0.

Fig. 1 The effective potential (7), for � > 0

The force acting on a particle,

F = −V ′
eff = −2M

r2
− γ + 2λr ,

contains besides the attractive contributions, the repulsive
term λr2 which becomes important at cosmological dis-
tances.

For the metric (2), the horizons are given by the equation
g00 = 0, namely they are the solutions of the cubic equation

−λr3 + γ r2 + r − 2M = 0 . (8)

This has three real roots if the discriminant � = 18abcd −
4b3d +b2c2 −4ac3 −27a2d2 is a positive quantity (Shelbey
1969), i.e.

� = −108M2λ2 + 4(1 + 9γM)λ + γ 2(1 + 8γM) > 0 .

To first order in γM � 1 and λM2 � 1, the three roots of
(8) are given by the simple expressions:.

r1 ≈ − 1

γ

[
1 − λ

γ 2

]
; r2 ≈ 2M

[
1 + 4λM2 − 2γM

]
;

r3 = γ

λ
+ 1

γ
. (9)

Thus, there are two positive roots of the Eq. (8), correspond-
ing to the physical horizons. The first one is the black hole
horizon, rh = r2, situated in the Schwarzschild region, while
the second one corresponds to the cosmological horizon,
rλ = r3.

The existence of a circular orbit of radius Rc imposes
the conditions ṙ = 0 and ṙ ′ = 0, at r = Rc = const . The
corresponding equation

V ′
eff (r = Rc) = 0 ,

i.e.

−2λR3
c + γR2

c + 2M = 0 (10)
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Fig. 2 The particle with the energy E2 < Vmax is represented by the
dashed line. The two turning point are given by the intersections with
the effective potential

has a negative discriminant � = −8M(γ 3 + 54λ2M) and
therefore we have one real solution

Rc = 1

6λ

[
γ + γ 2

K1/3
+ K1/3

]
,

K = γ 3 + 108λ2M −
[
216λ2M

(
γ 3 + 54λ2M

)]1/2
.

To first order in Mλ2/γ 3, the circular orbit’s radius is

Rc ≈ γ

2λ
+ 4Mλ

γ 2
, (11)

and it depends, besides the universal constants γ and λ, on
the mass M .

Thus, a particle with the energy

E2 = Veff (r = Rc) = Vmax

will follow a circular orbit of radius Rc , with Rc in between
the two horizons. This circular orbit is unstable because the
potential is concave down.

For particles with the energy E2 < Vmax , there may be
two turning points (see Fig. 2). If one imposes ṙ = 0 in the
relation (6), he obtains the equation

E2 = 1 − 2M

r
+ γ r − λr2 .

The corresponding cubic equation

λr3 − γ r2 + εr + 2M = 0 , (12)

with ε = E2 − 1, has three real solution if � > 0. To first
order in ε, this means the energy range

0 ≤ ε <
2γ 3 − 27λ2M

9γ λ
,

for M < 2γ 3/(27λ2) ≈ 2 × 1014m ≈ 1011MS .
The two positive roots of (12), denoted by r1 and r2, are

situated in between the two horizons. In the Fig. 2, these are

given by the intersections of the dashed line with the poten-
tial. When the energy is increasing, the interval between r1

and r2 becomes smaller and the elliptic trajectory turns into
a circle for E2 = Vmax . The relations between the important
values of r discussed up to now are: rh < r1 < Rc < r2 < rλ.

Let us mention that a particle coming from large r values,
on her way to the horizon rh, is encountering a Minkowskian
region where the terms M/r and λr2 are compensated by
γ r and therefore g00 ≈ 1. The positive real solutions of the
equation g00 = 1, i.e.

−λr3 + γ r2 − 2M = 0 ,

whose � is positive for 2γ 3 > 27λ2M , can be approximated
to

R1 ≈ Mλ

γ 2 +
√

2M

γ
, R2 ≈ γ

λ
− 2Mλ

γ 2 . (13)

One can check that R1 � R2 and both R1 and R2 are in
between the two horizons in (9). Also, for large r values,
where the M/r contribution can be neglected, one has only
one universal Minkowskian region, at R = γ /λ, which gives
the size of galaxies.

Finally, let us discuss the intriguing subject of orbiting
velocities of matter around the galaxy center.

We are using a free of coordinates approach and intro-
duce, for the line element (3), the pseudo-orthonormal frame
Ea(a=1,4)

E1 = √
g00 ∂r , E2 = 1

r
∂θ ,

E3 = 1

r sin θ
∂ϕ , E4 = 1√

g00
∂t , (14)

whose corresponding dual base is

ω1 = dr√
g00

, ω2 = r dθ ,

ω3 = r sin θ dϕ , ω4 = √
g00 dt , (15)

so that ds2 = ηabω
aωb , with ηab = diag[1,1,1,−1].

Using the first Cartan’s equation,

dωa = a
.[bc] ω

b ∧ ωc, (16)

with 1 ≤ b < c ≤ 4 and a
.[bc] = a

.bc − a
.cb , we obtain the

connection coefficients

122 = 133 = −
√

g00

r
= −212 = −313

233 = −323 = − cot θ

r
,

144 = −414 = g′
00

2
√

g00
. (17)
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The equations for the timelike geodesics

dua

dτ
+ a

bcu
buc = 0 ,

where the four velocity components,

ua = ωa

dτ
,

are given by:

u1 = ṙ√
g00

, u2 = rθ̇ , u3 = r sin θϕ̇ , u4 = √
g00 ṫ ,

have the explicit form

r̈ − g′
00

2g00
ṙ2 − rg00

[
θ̇2 + sin2 θϕ̇2

]
+ g00g

′
00

2
ṫ2 = 0 ,

rθ̈ + 2ṙ θ̇ − r sin θ cos θϕ̇2 = 0 ,

r sin θϕ̈ + 2 sin θ ṙϕ̇ + 2r cos θ θ̇ ϕ̇ = 0 ,

ẗ + g′
00

g00
ṙ ṫ = 0 . (18)

For the circular orbit in the equatorial plane, i.e. ṙ = 0, θ =
π/2, θ̇ = 0, the first relation in (18) becomes

dϕ

dt
=

√
g′

00

2r
,

leading to the velocity

v = r
dϕ

dt
=

√
rg′

00

2
. (19)

Obviously, in the Schwarzschild case, one obtains the well
known Newtonian expression

v =
√

M

r
,

while for the metric (2), the velocity is given by

v =
√

1

2

[
2M

r
+ γ r − 2λr2

]
. (20)

For 2λr � γ , when only the first two terms in the parenthe-
sis are taken into account, one may notice that the velocity is
significantly increased, compared to the Schwarzschild ex-
pression.

The relation v2 ≥ 0 is satisfied by r ≤ Rc, where Rc is
the circular radius (11).

3 The Gordon equation and its Heun
solutions

Working in a free of coordinates approach (Dariescu et al.
2017), based on Cartan’s equations, the Einstein tensor com-
ponents in the tetradic frame (14) are:

G11 = 2γ

r
− 3λ ,

G22 = G33 = γ

r
− 3λ ,

G44 = 3λ − 2γ

r
. (21)

One may notice that, from the point of view of Einstein’s
General Relativity, the proper energy density ρ = T44 = G44

is negative for r < (2γ )/(3λ), leading to the conclusion that,
at values of r smaller than 2γ /(3λ), the astrophysical object
described by the MK metric is surrounded by exotic matter.

The scalar curvature,

R = 12λ − 6γ

r
,

has a singularity in r = 0 and is positive for r > γ/(2λ).
In the general expression of the Klein-Gordon equation

(Dariescu et al. 2017)

1

r2

∂

∂r

[
r2g00

∂�

∂r

]

+ 1

r2 sin θ

∂

∂θ

[
sin θ

∂�

∂θ

]
+ 1

r2 sin2 θ

∂2�

∂ϕ2

− 1

g00

∂2�

∂t2 − μ2� = 0 , (22)

where g00 given in (2) is depending only on r , one can per-
form the variables separation

� = F(r)Ym
� (θ,ϕ) e−iωt , (23)

where Ym
� are the spherical functions. The corresponding

radial equation,

1

r2

d

dr

[
r2g00

dF

dr

]
+

[
ω2

g00
− �(� + 1)

r2 − μ2
]

F = 0 , (24)

can be analytically solved only in particular cases.
Let us consider the very large distances, typical to clus-

ters and superclusters, for which the metric function can be
approximated to

g00 ≈ 1 + γ r − λr2 = −λ

[
r + b − γ

2λ

][
r − b + γ

2λ

]
, (25)
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where b = √
γ 2 + 4λ. There is an unique horizon, which is

the positive root of the equation g00 = 0, i.e.

rh = b + γ

2λ
, (26)

which can be understood as the boundary of this spacetime.
Using the numerical values of γ = γ0 and λ, we get rh ≈
100Mpc.

The radial function, solution to (24) with μ = 0, is ex-
pressed in terms of Heun general functions (Ronveaux 1995;
Slavyanov and Lay 2000), as

F(r) =
[
r − b + γ

2λ

]−4iωλ/b

×
[
r + b − γ

2λ

]4iωλ/b

r− 1±√
1+16λ�(�+1)

2

× HeunG [a , q, α, β, γ, δ,−(λrh)r] . (27)

As it is known from the theory (Slavyanov and Lay
2000), the Heun general function of variable x has four sin-
gular points and one may check that r = rh is one of them.

As we turn to regions well inside a galactic halo bound-
ary, the λ contribution can be neglected and the term 2M/r

becomes important. The metric (2) can be approximated to

g00 = 1 − 2M

r
+ γ r = γ

r

[
r + a + 1

2γ

][
r − a − 1

2γ

]
, (28)

where

a = √
1 + 8γM .

This case has been investigated, in detail, in Dariescu and
Dariescu (2021). Similarly to the previous case, there is one
horizon, close to the Schwarzschild radius,

rh = a − 1

2γ
≈ 2M(1 − 2γM) . (29)

In the massless case, the radial function is expressed in
terms of Heun general functions (Ronveaux 1995;
Slavyanov and Lay 2000), as

F(r) =
[
r − a − 1

2γ

] iω(a−1)
2γ a

×
[
r + a + 1

2γ

]− iω(a+1)
2γ a

× HeunG

[
a , q, α, β, γ, δ,1 + 2γ r

a + 1

]
. (30)

The function (30) is much more complex than the one
obtained for the Schwarzschild metric

g00 = 1 − 2M

r
,

where the amplitude function expressed in terms of the Heun
confluent functions as

FS =eiωr (r − 2M)∓2iωM

× HeunC

[
− 4iωM,∓4iωM,0,−8ω2M2,

× 8ω2M2 − �(� + 1),1 − r

2M

]
. (31)

Compared to the Heun general functions which have four
singular points, the Heun confluent functions have two regu-
lar and one irregular singularities and these can be obtained
from the Heun general functions by a confluence process,
when two of the singularities coalesce. The Heun conflu-
ent function can be computed as a power series expansion
around the origin z = 0, i.e. r = 2M , and the series con-
verges for |z| < 1, (Ronveaux 1995; Slavyanov and Lay
2000).

The horizon defined in (29) is closer to the r = 0 sin-
gularity compared to the Schwarszchild horizon, rS = 2M .
On her way to the horizon rh, the particle is crossing the
Minkowskian region r = R = √

2M/γ , where g00 ≈ 1.
One may notice that, when r → 0, the amplitude func-

tion (30) goes to infinity since the Heun general function, of
variable x, has a singularity in x = 1. However, we should
not worry about that because the metric (2) is valid only on
the external region of an astrophysical object of radius R.

4 Conclusions

In this work, we have considered a spacetime described by
the metric proposed by Mannheim and Kazanas (MK met-
ric) (Mannheim and Kazanas 1989), which contains two pa-
rameters, γ and λ. We have worked with the universal val-
ues: γ = γ0 = 3 × 10−28m−1 and λ = 9.54 × 10−50m−2, so
that γ /λ ≈ 100kpc (Mannheim and O’Brien 2011). Obvi-
ously, this value of γ is independent of the galactic mass.

At a first site, the MK metric can be seen as an extension
of the Schwarzschild solution. However, one can notice sig-
nificant differences between these two. Thus, for the metric
(2), the horizons are given by the roots of the cubic Eq. (8)
and have the approximate expressions given in (9). One can
identify a Minkowskian region, in between the two horizons,
where g00 ≈ 1, which has no analogue to the Schwarzschild
case. The constant potential is leading to approximately con-
stant rotational velocities which agree with the observed flat
galactic rotation curves (Rubin et al. 1978).

For a typical galaxy with M = 1011Ms , so that

M = 1011MSG

c2
≈ 1.5 × 1014m,
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the terms 2M/r and γ r are almost equal for r∗ = √
2M/γ ≈

30kpc, which corresponds to the Minkowskian region, once
we neglect the λr2 contribution.

Also, a particle moving in the potential (7), with suit-
able energy values, can follow an elliptic or a circular or-
bit. The radius (11) has been calculated in the approxima-
tion Mλ2/γ 3 ≈ 3M × 10−16 � 1. The universal quantity
γ /λ has been seen as a natural geometric limit on the size
of galaxies, in the sense that beyond this distance there
could no longer be any bound galactic orbits (Mannheim and
O’Brien 2011). In addition, a very important point has been
made in (Nandi and Bhadra 2012), with respect to the actual
size of the galaxies, which must be related to the radius of
the last circular stable orbit.

The velocity expression (20), derived from the geodesics
equation, agrees with the one obtained by O’Brien and
Mannheim in the framework of conformal gravity theory
(O’Brien and Mannheim 2012). As it is known, the Newto-
nian velocity falls below data as the orbital radius increases.
The presence of the linear term is leading to an excess in
the observed velocities. With no free parameters other than
the galactic mass, O’Brien and Mannheim proved that their
result can fit an impressive number of galaxies.

However, for fitting the observed orbital velocities for
more than 100 galaxies, γ has been taken as γ = γ0 + γG,
where γG = Nγ ∗, with N = M/MS and γ ∗ = 5.42 ×
10−39m−1 (Mannheim and O’Brien 2012). Thus, besides
the global cosmological linear term, there is a second one,
which is depending on the matter within the galaxy. Such
an analysis is beyond the purpose of our paper and for a
detailed discussion on this subject, we recommend (Nesbet
2018).

In the final part of the paper, we have worked out the
Gordon equation for massless bosons evolving in the MK

spacetime. The radial equation is considered for different re-
gions of the variable r , starting with distance scales between
1Mpc and 100Mpc, where g00 can be taken as in (25), down
to regions where the 2M/r term has a significant contribu-
tion and the term λr2 can be neglected.

The whole analysis is much more involved compared to
the Schwarzschild exterior metric, the solutions to the Gor-
don equation being given by the Heun general functions,
(Slavyanov and Lay 2000).
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