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Abstract It is shown that the solar wind interaction with
dusty plasma in planetary magnetospheres gives rise to
electrostatic instabilities and solitary structures. Non-Max-
wellian electrons increase the growth rate of shear flow in-
stability and reduce the amplitude of solitary pulses formed
by the modified dust ion acoustic wave (mDIAW) in non-
linear regime. Dust number density plays the similar role.
The kappa (κ) and Cairns distribution functions are used to
take into account the role of non-Maxwellian electrons in the
presence of stationary dust and flowing ions along the exter-
nal magnetic field with inhomogeneous velocity. This theo-
retical model is general and it can be applied to various dusty
plasma environments such as interstellar medium, cometary
tails and planetary magnetospheres. Here it has been applied
to the Saturn’s F -ring plasma.

Keywords Saturn’s F -ring · Streaming instability, solar
wind interaction

1 Introduction

Solar wind prevails everywhere in the interplanetary space
and its interaction with the magnetized planets form com-
plex structures of magnetospheres. Boundaries of magneto-
spheres act as obstacles on the way of solar wind and it does
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not penetrate into the atmospheres of magnetized planets di-
rectly. At the boundaries it is incident on the planetary plas-
mas at different angles and in some regions it is almost par-
allel to the field lines. Since solar wind consists of two parts
slow and fast (Lang 2001) and flows are not homogeneous
everywhere, therefore we think that field-aligned shear flow
is able to produce electrostatic instability pointed out long
ago (D’Angelo 1965) at those boundary regions of the mag-
netospheres where wind flow is almost parallel to the field
lines. In the presence of heavier stationary dust fluid, the
electrons and ions of solar wind can sustain dust ion acoustic
wave (DIAW) (Shukla and Silin 1992; Shukla and Mamun
2002) which has larger frequency compared to the usual
ion acoustic wave (IAW). Research on ion acoustic wave
was initiated long ago using Maxwellian velocity distribu-
tion for electrons (Davidson 1972; Rudakov and Sagdeev
1960). It has also been shown that IAW becomes an electro-
magnetic wave in an unmagnetized inhomogeneous plasma
(Saleem 1996) and it couples with drift wave and Alfven
wave in the magnetized plasma (Pottelette et al. 1990; Wei-
land 2000). Most of space (Amatucci 1999; Main et al. 2010;
Gavrishchaka et al. 1998) and astrophysical (Havnes 1988;
Lazarian and Yan 2002; Shan et al. 2008) plasmas have uni-
form and non-uniform flows. Laboratory plasmas also have
flows and associated instabilities appear because of free en-
ergy available in the system (Sen et al. 2000; McGarthy and
Maurer 1998).

It is difficult to attain and maintain the laboratory plasmas
in Maxwellian state in general. On the other hand, flows of
plasma species are very common in space plasmas and in the
presence of such flows the charge particles may not follow
Maxwellian distribution (Yoon 2005, 2018; Kourakis et al.
2012). The nonthermal distributions are now considered to
be the stationary states arising naturally in space plasmas
which have flows and nonuniformities. Nonthermal distri-
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butions have important effects on linear and nonlinear wave
dynamics. For example, Cairns et al. (1995) showed that if
electrons follow a nonthermal distribution (which is now
called Cairns distribution) then the nonlinear ion acoustic
waves produce both density humps and density dips contrary
to usual KdV solitons with only density humps when elec-
trons are assumed to follow Boltzmann distribution. Kappa
(or nonthermal) distribution function for electrons in mag-
netosphere was observed long ago (Vasyliunas 1968) which
has broader electron velocity distribution than Maxwellian.
Several authors have presented detailed analysis on under-
standing the plasmas containing species with kinetic ener-
gies higher than the average thermal energy, and their con-
sequent impacts on linear and nonlinear propagation of the
waves in different plasma scenarios (Kourakis et al. 2012;
Baluku et al. 2010; Lazar et al. 2018; Hellberg et al. 2009).
Effects of electron beam propagation in a plasma having
cold ions and kappa distributed electrons has also been in-
vestigated on ion acoustic solitary waves (Saini et al. 2010).
Recently in a review article, the effects of kappa distribu-
tion of electrons on nonlinear ion acoustic waves in O-H
plasma of upper ionosphere have been pointed out (Saleem
and Shan 2020).

In addition to kappa and Cairns distribution functions, q

non-extensive distribution was also proposed (Tsallis 1988)
which has been discussed by many researchers in literature
(Livadiotis and McComas 2009, 2011; Williams et al. 2013;
Verheest et al. 2013). Electrostatic instabilities and nonlin-
ear structures in the presence of field aligned shear flow have
been investigated using Cairns-Tsallis distribution for elec-
trons (Shan and Saleem 2017). Vertical sizes of 1-D and 2-D
electrostatic solitons in O-H plasma of upper ionosphere
using nonextensive and trapped electrons have been esti-
mated (Shan and Saleem 2018).

We expect that after attaining steady state with the in-
coming solar wind, the plasma of planetary dusty magne-
tospheres has non-Maxwellian electrons and if ion temper-
ature Ti is smaller than electron temperature Te, then elec-
trons may follow kappa (κ) or Cairns velocity distributions
while the ions remain Maxwellian. Density concentration
of dust particles and non-Maxwellian electrons have sig-
nificant influence on both the electrostatic linear instability
and formation of solitary structures. In case of Maxwellian
electron velocity distribution the linear dispersion relation
of DIAW in unmagnetized plasma for Ti < Te is given as
follows (Shukla and Silin 1992; Shukla and Mamun 2002),

ω2 = ni0

ne0

(
c2
s k

2

1 + λ2
Dek

2

)
(1)

In this case Poisson equation is used to have dispersion

in the waves. Here cs = (KBTe/mi)
1
2 is phase speed of

IAW, λDe = (KBTe/4πne0e
2)

1
2 is electron Debye length,

ni0 (ne0) is the ion (electron) equilibrium density and quasi-
neutrality demands ni0 = ne0 + Zdnd0 while nd0 is the
dust equilibrium density and Zd is the number of negative
charges on the dust particle.

In magnetized plasma, quasi neutrality gives the linear
dispersion relation of DIAW in the following form (Saleem
2018),

ω2 = ni0

ne0

(
c2
s k

2
z

1 + ρ2
s k2⊥

)
(2)

In this case dispersion occurs due to ρ2
s k2⊥ �= 0 where

ρs = cs/�i is the ions larmor radius at electron temperature
and �i = eB0/cmi is the ion gyro frequency.

In unmagnetized plasma, the dispersion term λ2
Dek

2 in
Eq. (1) appears due to the use of Poisson equation when
we do not assume quasi-neutrality. In magnetized plasma
even if we assume quasi-neutrality, the dispersion in ion
acoustic waves occurs through the term ρ2

s k2⊥as given in
Eq. (2). Since λ2

De << ρ2
s because v2

A << c2 (where vA is
Alfven wave speed and c is speed of light), therefore quasi-
neutrality is used in magnetized plasma.

Several authors have studied different aspects of dusty
plasmas (Waksman et al. 2012; Poedts et al. 2000; Birk
and Wiechen 2002; Pandey et al. 2012). Linear and non-
linear waves in plasmas having stationary and mobile dust
have also been investigated (Onishchenko et al. 2002; Vran-
jes and Poedts 2010; Garai et al. 2014, 2015; Saleem and
Haque 2004). More than a decade ago (Saleem 2006), solar
wind interaction with dusty magnetospheres of planets and
comets was considered, but the main effect of shear flow in-
stability was neglected.

In the present investigation we shall use the non-Max-
wellian Cairns and Kappa distributions for the electrons and
analyze their effects on the linear shear flow driven instabil-
ity and solitary electrostatic pulses formed by these waves
in nonlinear regime. In the next section theoretical model is
described. In Section 3, linear dispersion relation is written.
Solution of nonlinear equations is presented in Section 4.
In Section 5, the analytical results are applied to the dusty
plasma of Saturn’s F -ring. The last Section contains sum-
mary of the work.

2 Theoretical model

We assume that ions have shear flow parallel to external
magnetic field i.e. along z-axis such that B0 = B0ẑ, vi0 =
v0(x)ẑ, v0(x) is the ions shear flow speed, and heavier dust
particles are stationary. Cairn’s distribution for electrons is
given as (Cairns et al. 1995),

fe(v) = ne0

(3α + 1)
√

2πv2
e

[
1 + α

(
v4/v4

e − 2	
)2]
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× exp
[−v2/2v2

e + 	
]

(3)

where 	 = eϕ/KBTe is the normalized potential, ne0 is the
equilibrium density, v is the fluid speed, ve = √

KBTe/me

is the characteristic thermal velocity, me is the electron tem-
perature and α is a non-zero nonthermal parameter which is
a measure of the degree of deviation from Maxwellian be-
havior of the Cairns distribution. Allowing α to vary from
zero to infinity and integrating fe(v) over velocity space
under appropriate boundary conditions, we obtain electron
number density expression as,

ne = ne0
{
1 + β1	 + β2	

2} (4)

In the limit 	 � 1, we have β1 = 1 − β0, β2 = 1/2 and
β0 = 4α/(3α + 1) (Cairns et al. 1996). The value of β0 is
restricted between 0 ≤ β0 < 4/3. It is to be noted that for
larger values of β0 the distribution function develops wings
for higher velocities and becomes multi-peaked. Equation
(4) reduces to Maxwell Boltzmann distribution for α = 0.
The three-dimensional, isotropic Kappa distribution func-
tion (Summers and Thorne 1991, 1992; Shan and Haque
2012; Rehman et al. 2017) can be written as

fκe(v) = n0

(πκθ2
e )

3
2


(κ + 1)


(κ − 1/2)

(
1 + v2

e

κθ2
e

)−(κ+1)

, (5)

where n0 is the species equilibrium number density, θe =√
((κ − 3/2)/κ)2KBTe/me is the effective thermal speed

which is modified by the spectral index Kappa (κ), Te is
the kinetic temperature, and 
(x) is the gamma function.
Clearly, for a physically realistic thermal speed, the above
mentioned distribution function is convergent for κ > 3/2.

In order to obtain electron’s density expression, the distri-
bution function (5) can be integrated over the velocity space
(Hellberg et al. 2009) which yields,

ne = ne0

[
1 − eϕ

(κ − 3/2)KBTe0

]−κ+1/2

. (6)

For eϕ/(κ − 3/2)KBTe < 1, we apply Taylor series expan-
sion to obtain

ne = ne0
(
1 + K1	 + K2	

2), (7)

and in this case coefficients of 	 and 	2 terms become,

K1 = (κ − 1/2)

(κ − 3/2)
, and K2 = (κ2 − 1/4)

2(κ − 3/2)2

Now we consider ions equation of motion,

(∂t + vi · ∇)vi = e

mi

(
E + 1

c

)
v × B − ∇pi (8)

where mi , and pi = (niKBTi) are the ionic mass and ionic
pressure, respectively. The electric field E and electrostatic

potential ϕ are linked E = −∇ϕ, whereas e(c) is the mag-
nitude of the electronic charge (the speed of light in vac-
uum) such that ∇ = (0, ∂y, ∂z). In order to obtain the expres-
sion for component of ions velocity perpendicular to B0, we
take cross product of this equation with unit vector ẑ which
yields,

vi⊥ � c

B0
E⊥ × ẑ − 1

�i

(∂t + vi · ∇)vi⊥ × ẑ

− v2
T i

�i

∇ lnni × ẑ = vE + vP + vD (9)

where vT i = (KBTi/mi)
1
2 is thermal speed of ions, �i =

eB0/cmi is the ions gyro-frequency. For low frequency
waves using drift approximation | ∂t |<< �i , we obtain

vi⊥ � vE + vP + vD

Here De = cTe/eB0, the quantity vE = c
B0

E⊥ × ẑ is the
electric drift, whereas

vpi = −De

�i

[
∂t +v0(x) ·∇ +viz∂z +vE ·∇]

(1+Ti/Te)∇⊥	

and

vDi = −KBTi∇⊥ lnni × ẑ/mi�i

are polarization and diamagnetic drift velocities, respec-
tively. It should be noted that we are considering uniform
density (i.e., ∇n0= 0), therefore vDi contains perturbed part
of density. This term appears because we are not ignoring
ions pressure effects because phase velocity of the wave is
larger than ions thermal velocity due to 1 << ni0/ne0 in
dusty plasma. If Boltzmann density distribution for electrons
is used, then we can obtain dispersion relation Eq. (2) in this
limit (Saleem 2018) if ions temperature is ignored. It may be
mentioned here that our theoretical model is also valid if we
assume Ti << Te and in this case vDi term will disappear in
Eq. (9).

Parallel components of ions equation of motion are writ-
ten, respectively, as,

(∂t + v0∂z + vE · ∇ + viz∂z)viz + vE · ∇v0

= e

mi

Ez − v2
T i∂z lnni (10)

Perturbation has been assumed to be electrostatic E = −∇ϕ,
obliquely propagating relative to B0 with | ∂z |<<| ∇⊥ | and
having phase speed in between electron (ion) thermal speeds
such that vT i << ω/kz << vT e where ω is the frequency of

the modified dust ion acoustic wave, vT e = (KBTe/me)
1
2 is

the electrons thermal speed, and ω/kz is the phase speed of
the modified dust ion acoustic wave (mDIAW).
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The ions continuity equation for ∇ · vE = 0 can be ex-
pressed as,

(∂t + v0∂z)ni + ni0(∂zviz + ∇⊥ · vP ) + ∇ni · vE

+∂z(niviz) = 0 (11)

3 Linear dispersion relation

We assume that the wave propagates in the yz-plane with
frequency ω making an angle with B0 such that kz << ky

where kz(ky) is the parallel (perpendicular) component of
the wave vector k. In magnetized plasma, we can use quasi-
neutrality ni � (ne + Zdnd) which can be expressed as
(ni0 + ni) � (ne0 + ne) + Zd(nd0 + nd) whereas in this
expression the quantities without the subscript naught (0)
are the perturbed parts of densities of the species. Since we
are investigating ion acoustic waves which have phase speed
much greater than phase speed of dust acoustic waves in the
plasma containing heavy dust fluid, therefore dust density
fluctuations (nd) are ignored. Then under equilibrium con-
dition mentioned above, the quasi-neutrality expression in
the presence of stationary dust becomes ni ∼ ne for fluctu-
ating densities. We estimate ni using Eq. (11) along with
Eqs. (9) and (10) whereas electron perturbed density ne is
obtained from Eq. (4). In linear limit, perturbations are as-
sumed to be proportional to ei(kyy+kzz−ωt), and dispersion
relation under quasi-neutrality turns out to be,

�2
0 =

(
ni0

ne0

)
c2
s k

2
z

(1 + ni0
ne0

ρ2
s k2

y)

(
1 + β1ne0σi

ni0
− ky

kz

Si

)
(12)

where �0 = (ω − kzv0) is the Doppler shifted frequency
of the wave, Si = v′

0/�i is a shear flow parameter, v′
0 =

dv0/dx and σi = Ti/Te. The linear dispersion relation of
DIAW is modified if Si < 0 or | ky

kz
Si |< 1. Equation (12) is

the same as Eq. (17) of Ref. (Saleem 1996). If the following
condition
(

1 + β1ne0σi

ni0

)
<

ky

kz

Si (13)

holds, then instead of DIAW a purely growing instability
appears. This non-resonant mode is similar to D’Angelo
mode (D’Angelo 1965) but it has larger growth rate because
1 < ni0/ne0 holds in dusty plasmas, in general (Saleem and
Ali 2017). When the wave attains larger amplitude, then a
balance between dispersion and nonlinear wave breaking in
yz-plane produces electrostatic solitons.

Linear dispersion relation of DIAW is modified because
of the term containing β1 in Eq. (12) for the case of Cairns
distribution of electrons. On the other hand, whenever we
consider Kappa distribution function of electrons, then the

factor β1 should be replaced by K1 in the linear disper-
sion relation Eq. (12). Let us assume the linear flow profile
v0 = a0x + b0 where a0 and b0 are constants, then v′

0 = a0

and when the inequality Eq. (13) holds the RHS of Eq. (12)
becomes negative. One obtains �0 = ±iγ for 0 < γ , where
γ is a real quantity having frequency unit. In this case one
of the roots give purely growing instability (D’Angelo 1965)
and DIAW does not appear. On the other hand when Si < 0
or the inequality (13) is reversed, one obtains modified dust
ion acoustic wave (mDIAW) in the presence of shear flow of
ions. When the wave attains larger amplitude, then a balance
between dispersion and nonlinear wave breaking in yz-plane
produces electrostatic solitons.

4 Nonlinear analysis

To investigate the effects of non-thermal electrons on the
development of electrostatic solitary pulses, we define a co-
moving frame η = y + δz − ut where δ << 1 and u is the
speed of the solitons, because we are considering oblique
propagation of the perturbation in yz-plane as has been men-
tioned in linear analysis. If we consider the x-dependence of
perturbed quantities then convective derivative in nonlinear
dynamics will appear as (vE · ∇)vE �= 0 and vorticity in the
plasma will be finite. In this case vortex structure may ap-
pear (Saleem 2018),

Parallel component of ion momentum equation (11) in
η-frame is expressed in the following form as,

dviz

dη
= δc2

s

a

d	

dη
− c2

s

�i

dv0

dx

d	

dη
+ δ

2a

dv2
iz

dη

+ δv2
T i

a

{
d(ni/ni0)

dη
− 1

2

d(ni/ni0)
2

dη

}
(14)

where a = u − δv0. Ion continuity equation in η-frame is,

dni

dη
− ni0ρ

2
s

d3	

dη3
− ni0δ

a

dviz

dη
= δ

a

d(niviz)

dη
(15)

We can express ni in terms of 	 using quasi-neutrality
ni � ne. First we deal with the case of nonthermal electrons
assuming that they follow Cairns distribution. In this case
(14) can be written as,

dviz

dη
= c2

s

a
(δl1 − Si)

d	

dη
+ δv2

t i

a
l2

d	2

dη
+ δ

2a

dv2
iz

dη

where l1 = (1 + β1Tine0/Teni0) and l2 = [β2ne0/ni0 −
β2

1 (ne0/ni0)
2/2]. Integration of this equation using the

boundary conditions 	, viz → 0 as η → ±∞ yields the
integration constant to be zero. Thus we have,

viz = c2
s

a
(δl1 − Si)	 + δv2

t i

a
l2	

2 + δv2
iz

2a
(16)
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Fig. 1a The Doppler shifted growth rate from Eq. (12) is plotted
against the wave number ky for α variation, with fixed parameters
δd = Zdnd0/ne0 = 11, kz = 10−4 ky , σi = 0.1, δ = 0.12, Si = 0.008

Fig. 1b The Doppler shifted growth rate from Eq. (12) is plotted
against the wave number ky for dust variation δd = Zdnd0/ne0 with
fixed parameters kz = 10−4 ky , δ = 0.12, α = 0.12, Si = 0.008

In the next step, we take advantage of the small ampli-
tude approximation and substitute the dominant first term
on RHS of (16) in the term containing v2

iz and re-write it in
the following form,

viz � R1	 + R2	
2 (17)

where R1 = (δl1 −Si)c
2
s /a, R2 = δl2v

2
T i/a+δR2

1/2a. Since
	 is now a function of only η, therefore using Eqs. (15)
and (17) along with quasi-neutrality, we write an ordinary
differential equation in terms of 	 as,

−d	

dη
+ 1

2
A	

d	

dη
+ Bρ2

s

d3	

dη3 = 0 (18)

where A = 2P2/P1, B = ni0/ne0P1 such that

P1 = (β1 − δni0R1/ane0), P2 =
{

ni0δR2

ne0a
+ β1δR1

a
− β2

}

Fig. 1c The soliton profile for different values of α with fixed parame-
ters δ = 0.12, Si = 0.008, M = 0.55, δd = 11, and v0n = 0.52

Fig. 1d The soliton profile for different values of δd with fixed param-
eters δ = 0.12, Si = 0.008, M = 0.53, α = 0.1, and v0n = 0.52

Note that the β2-term in the expression of P2 is smaller and
hence can be neglected. Let ξ = η/ρs , then (18) becomes,

−d	

dξ
+ A	

d	

dξ
+ B

d3	

dξ3
= 0 (19)

where ξ = η/ρs .
The equation differential equation (19) in ξ -frame admits

soliton solution as,

	 = 	0 sech2(ξ/W) (20)

where 	0 = 3/A is the maximum amplitude and W = √
4B

is the width of the electrostatic solitons. Similar procedure
is adopted to deal with kappa distribution of electrons to in-
vestigate the nonlinear solitary structures of DIAW as has
been used for the case of Cairns distribution function. For
the case of Kappa distribution, we substitute the Eq. (7) in
quasi-neutrality which yields the same nonlinear differential
equation (18) with modified nonlinear and dispersive coeffi-
cients A and B , which become,

A = 2Q2/Q1, B = (ni0/ne0)Q1 (21)
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In this case, the quantities l1 and l2 will be modified as l′1 =
(1+K1Tine0/Teni0) and l′2 = [K2ne0/ni0 −K2

1 (ne0/ni0)
2/

2] for Kappa distributed electrons case, while the factors P1

and P2 have been changed to Q1 and Q2 as Q1 = (K1 −
δni0R1/ane0), and Q2 = {ni0δR2/ne0a + K1δR1/a − K2}.
However in this case, the expressions R1 and R2will change
into R′

1 (with l′1) and R′
2 (with l′2). The κ- distribution case

reduces to Maxwell distribution case for κ → ∞, and in this
case we find the factor K1→ 1 while K2 → 1/2 and hence
electrons will be behaving as Maxwellian in this limit. The
factors l′1 and l′2 will be modified as,

l′′1 = (1 + Tine0/Teni0) and l′′2 = [
ne0/2ni0 − (ne0/ni0)

2/2
]

Also the factors appearing as Q1 and Q2 will be modified
as follows,

Q1 = (1 − δni0R1/ane0), Q2 =
{

ni0δR2

ne0a
+ δR1

a
− 1/2

}

with R′′
1 = (δl′′1 − Si)c

2
s /a, R′′

2 = δl′′2v2
T i/a + δ(R′′

1 )2/2a.
With these Q1 and Q2, the coefficients Aand B are mod-
ified for the case of Maxwellian electrons.

The impact of larger values of κ (approaching Max-
wellian case) is shown in Fig. 2e. It shows that larger value
of Mach number i.e. M = 0.46 is needed to form solitary
structures. All these Figs. 2a-2e are indicative of the fact
that linear wave and solitary structures are modified signifi-
cantly under the impact of superthermal electrons and shear
flow.

5 Results and discussion

Now we apply our theoretical results to the dusty plasma of
Saturn’s F -ring considering the region where electrons and
ions have inhomogeneous flows parallel to field lines. The
plasma parameters of this region are chosen (Shukla and
Mamun 2002) as B0 = 0.1 G, Te = 100 eV, Ti = 10 eV,
zd = 103, nd0 = 10 cm−3 and ne0 = 103 cm−3. Corre-
sponding to these parameters we find, �i = 957.9 rad/S,
vti = 3.09 × 106 cm/S, cs = 9.7 × 106 cm/S, ρs = 1.02 ×
104, ρi = 3.23 × 103, v0n = v0/cs , (n for normalized),
v0 = 5 × 106 cm/S, ωs = cskz, �Ds = ni0

ne0
ωs = 1.07 × 104,

ω0 = kzv0 = 0.1. Thus the conditions ωs << ωDs << kzvte

and ωDs << �i hold for this low-frequency wave. Since
ni0/ne0 = 11, therefore, the growth rate of this instability is
large. If shear in flow is along negative x-direction then the
frequency of the DIAW increases and it becomes modified
dust ion acoustic wave (mDIAW) (Saleem 2006).

When mDIAW is excited by a physical mechanism, then
the nonlinear interactions may give rise to solitary pulses.
Presence of non-thermal and superthermal electrons has ef-
fect on both linear shear flow instability and the size of the
structures.

Fig. 2a The Doppler shifted growth rate from Eq. (12) is plotted
against the wave number ky for κ variation, with fixed parameters
δd = 11, kz = 10−4 ky , δ = 0.1, Si = 0.008

Fig. 2b The Doppler shifted growth rate from Eq. (12) is plotted
against the wave number ky for dust variation δd = Zdnd0/ne0 with
fixed parameters kz = 10−4 ky , κ = 5, Si = 0.008

Using Cairns distribution, we have found that the growth
rate Im(�0) of the instability increases for the larger values
of α, but this increase is small as shown in Fig. 1a. Fig-
ure 1b illustrates the increase in growth rate corresponding
to an increase in dust concentration. Amplitude of the soli-
ton decreases when α increases (Fig. 1c) or if the dust con-
centration rises (Fig. 1d).

Assuming that the electrons follow kappa distribution,
we plot Doppler shifted frequency Im(�0) vs ky in Fig. 2a
choosing v′

0 = 8 × 10−3 �i and fixed kz = 10−3 ky . The ef-
fect of nonthermal electrons on the linear instability is small,
but the rise in dust concentration causes notable increase in
the growth rate which is obvious in Fig. 2b. We ignore K2

(being smaller term) in R2 and plot solitary nonlinear pulses.
Figure 2c shows that the increase in number density of the
dust also decreases the amplitude of the soliton. The larger
number of hot electrons (i.e. increase in κ-values) signifi-
cantly modify the size of the nonlinear structure as shown in
Fig. 2d.
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Fig. 2c The soliton profile for different values of δd with fixed param-
eters δ = 0.12, Si = 0.008, M = 0.41, κ = 5, and v0n = 0.52

Fig. 2d The soliton profile for different values of κ with fixed param-
eters δ = 0.12, Si = 0.008, M = 0.43, δd = 11, and v0n = 0.52

Fig. 2e The soliton profile for different values of κ with fixed parame-
ters δ = 0.12, Si = 0.008, M = 0.46, δd = 11, and v0n = 0.52

6 Summary

The effects of non-Maxwellian electrons on purely growing
shear flow driven instability and the solitary pulses of mod-
ified dust ion acoustic wave (mDIAW) have been investi-

gated. Cairns and Kappa distribution functions for electrons
have been used. It is found that the non-thermal electrons
contribute to the increase in the growth rate of shear flow
instability. But this effect is small. However, the increase in
concentration of dust particles has significant effect on this
growth rate.

Increase in non-thermality of electrons (i.e. increase in α

for the case of Cairns distributed electrons) reduces the am-
plitude of the electrostatic solitary pulses. However, increase
in superthermality of electrons (i.e. decrease in values of κ

for the case of Kappa distributed electrons) increases the
amplitude of the electrostatic solitary pulses The increase
in number density of dust also increases the growth rate of
linear instability and reduces the size of the structure. Thus
number density of non-thermal electrons and stationary dust
play similar role in increasing the growth rate of shear flow
instability and destroying the solitary pulses. As an illustra-
tion, the results of analytical calculations have been applied
to the plasma of Saturn’s F-ring. However, the theoretical re-
sults are general and are applicable to dusty plasmas in the
inter-stellar clouds, magnetospheres of planets and cometary
tails.
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