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Abstract We explore the dynamics and stability of the two-
body problem by modifying the Newtonian potential with
the Yukawa potential. This model may be considered a the-
ory of modified gravity; where the interaction is not simply
the Kepler solution for large distance. We investigate stabil-
ity by deriving the Jacobian of the linearized matrix equa-
tion and evaluating the eigenvalues of the various equilib-
rium points calculated during the analysis. The subcases of
a purely Yukawa and purely Newtonian potential are also
explored.

Keywords Two body problem · Stability · Yukawa potential

1 Introduction

Many of today’s theories predict corrections to the theory
of Gravitation. The Yukawa Potential has already been stud-
ied by a number of researchers as a model that describes
deviations from Newton’s inverse square law. Theories like
Scalar-Tensor-Vector Gravity Theory (Moffat 2006a) pre-
dict a Yukawa-like fifth force. In Iorio (2007), the author
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finds constraints on the range of the Yukawa interaction
λ by comparing corrections to the Newtonian-Einsteinian
secular rates of the perihelia of Mercury. Brownstein and
Moffat (2006) studied the Yukawa potential as a modifica-
tion to Newton’s constant G, introducing a distance varying
gravitational acceleration corrected by the Yukawa force. In
the paper, (De Laurentis et al. 2018), the authors solve the
geodesic equation of a particle subjected to a Yukawa cor-
rected gravitational field.

In this contribution, we explore the effect of a Yukawa
correction to the gravitational force over large distances (bi-
nary star-like orbits). In particular, we are able to study the
stability of the closed orbit solutions and compare them to
the classical Kepler problem. In particular, we are able to
prove using Bertrand’s theorem that closed orbits exists for
appropriate values of r . This model is interesting as the sim-
plest correction to gravity over large distance that one can
imagine; future astrophysical experiments will ultimately
dictate the validity of the model.

This paper specifically builds on work from Haranas et al.
(2011, 2016) and Haranas and Ragos (2011) in which the
authors calculate various celestial orbital properties under
the correction of a Yukawa term. In particular in the contri-
bution, (Haranas et al. 2011), the authors compute the cor-
rection to the anomalistic period, in Haranas et al. (2016)
the authors calculate the corrected mean motion and in Ha-
ranas and Ragos (2011) the authors study the effects of
the Yukawa correction on the orbits of satellites. The re-
sults from Adelberger et al. (2009) and Borka et al. (2013)
were important for confining the range (or coupling) of the
Yukawa force for short and large range distances respec-
tively. Borka et al. (2013) is of particular importance as the
authors study star-like orbits and show through numerical
simulations that precessing orbits are a possible solution for
a mass in a Yukawa corrected gravitational potential.
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The Yukawa force is particularly valid as a long-range
force, as early estimates of its range λ from the papers
(Brownstein and Moffat 2006) and (Haranas and Ragos
2011) indicate that λ ≥ 1015 m. λ is the Compton wave-
length of the particle mediating the interaction, for gravity
that is the graviton. The Yukawa potential is used to model
the interaction between massive stars; which are separated
on average by a distance of 1012 m. Thus, we are interested
in studying orbits of size relative to the size of the Solar Sys-
tem; one example we study is the orbit of two stars of mass
equal to that of the Sun. The corresponding Newtonian po-
tential is given by:

VN(r) = −GmM

r
, (1)

where r = (rx, ry) and G = 6.67 × 10−11 Nm2

kg2 is Newton’s
constant. The form of the potential studied in this report is:

V (r) = −GmM

r

(
1 + αe− r

λ
) = VN(r) + Vyk(r), (2)

where Vyk(r) is the Yukawa correction to the Newtonian po-

tential, α = kNkyk
GMm

is the coupling constant of the Yukawa
force to the Gravitational force following Haranas et al.
(2011), and λ is the range of the Yukawa force as previ-
ously mentioned. The results from Brownstein and Moffat
(2006) and Haranas and Ragos (2011) indicate that α =
10−8 for Solar System orbits. In this contribution, we study
the Yukawa correction to the Newtonian gravitational force;
we also study the subcases of a purely Yukawa potential and
a purely Newtonian potential α → 0. The dynamics of the
two masses are obtained using the Hamiltonian Formulation
of Classical Mechanics; a review found in Jose and Saletan
(1998). The two-body problem has been extensively studied
in Pollard (1966).

2 Hamiltonian formulation

We can assume the form of the Hamiltonian H = T + V

where T is the kinetic energy of both masses and V is the
Gravitational potential energy.

H = p2
1

2m1
+ p2

2

2m2
− k

|r2 − r1|2
(
1+αe− |r2−r1|

λ
)
(r2 − r1), (3)

where p = mv is the momentum of each mass and k =
m1m2. Note that pi = (pix,piy) and ri = (rix, riy). Chang-
ing to the center of mass frame gives

H = p2

2μ
− k

r

(
1 + αe− r

λ
)
. (4)

Here we have defined μ = m1m2
m1+m2

as the reduced mass of
the system and r = |r|. Next, we must switch to polar coor-
dinates; this procedure yields

H = 1

2μ

(
p2

r + p2
θ

r2

)
− k

r

(
1 + αe− r

λ
)
. (5)

Following Goldstein (1980) given that the Hamiltonian is
cyclic is θ (i.e. the Hamiltonian does not depend explicitly
on θ ) we can write Hamilton’s equations for θ as:

θ̇ = ∂H

∂pθ

= pθ

μr2
(6)

ṗθ = −∂H

∂θ
= 0 (7)

Therefore pθ = l is constant. Given that Hamilton’s equa-
tions takes this form we can write our Hamiltonian in the
following way:

H = 1

2μ

(
p2

r + l2

r2

)
− k

r

(
1 + αe− r

λ
)

(8)

Where l is the angular momentum of the two body-system
and therefore Hamilton’s equations for r become:

ṙ = ∂H

∂pr

= pr

μ
(9)

ṗr = −∂H

∂r
= l2

μr3
− k

r2

(
1 + α

(
1 + r

λ

)
e− r

λ

)
. (10)

It can be shown that H(t) = H(t0) = h is constant during
the motion of the masses; see (Pollard 1966).

Since p2
r ≥ 0 we have that, the total energy of the system

is bounded by:

h ≥ l2

2μr2
− k

r

(
1 + αe− r

λ
)
. (11)

Here we have defined the reduced potential, which is com-
mon to the Kepler problem (with the Yukawa correction)

Vred(r) = l2

2μr2
− k

r

(
1 + αe− r

λ
)

(12)

We can graph the function for fixed h giving us the permis-
sible regions of motion. The graph is shown in Fig. 1. Note
that μ > 0, λ > 0 and α > 0.

In Fig. 1 we plot, the reduced potential for a given fixed
initial energy h measured in joules (J), i.e. Eq. (11). The
dotted line refers to the Kepler problem, the dashed line is
a purely Yukawa potential and the solid line refers to the
Newtonian plus Yukawa correction. Points lying above the
graphs represent possible unbounded motion for a massive
body with given initial energy and distance from the central
body. For small r it is clear that bounded motion can exist.
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Fig. 1 The reduced potential given fixed initial energy

3 The linearization matrix

Following Meiss (2007), to determine the stability of the
equilibrium points of the system, we must form a matrix
differential equation using the equations of motion of the
system (Hamilton’s equations for r); given by (9)–(10). The
linear system has the form:

d

dt

(
r

pr

)
=

[
∂f
∂r

∂f
∂pr

∂g
∂r

∂g
∂pr

](
r

pr

)
(13)

Where f (r,pr) = pr

μ
and g(r,pr) = l2

μr3 − k

r2 (1 + α(1 +
r
λ
)e− r

λ ); i.e. the RHS of (9)–(10). Given that λ = 1015 m
for orbits of size comparable to solar system dimensions
(Brownstein and Moffat 2006; Haranas and Ragos 2011).
Since r

λ
is small number we can Taylor expand the expo-

nential and ignore terms of ( r2

λ2 ). The expansion about the
point r

λ
= 0 gives

e− r
λ ≈ 1 − r

λ
+ O

(
r2

λ2

)
. (14)

Thus g(r,pr) = l2

μr3 − k

r2 (1 + α(1 + r
λ
)(1 − r

λ
)) and so the

Jacobian matrix takes the form:
(

ṙ

ṗr

)
=

[
0 1

μ

− 3
μr4 + 2k

r3 (1 + α) 0

](
r

pr

)
, (15)

where terms of order O( r2

λ2 ) are ignored. The equilibrium
points are points (a, b) such that f (a, b) = 0 and g(a, b) =

0. Thus, we can choose b = pr as one coordinate of our
equilibrium point. For the value of the equilibrium r coordi-
nate (i.e. req = a) using (10) we have that

l2

μr3
− k

r2

(
1 + α

(
1 + r

λ

)(
1 − r

λ

))
= 0 (16)

l2

μr3
− k

r2

(
1 + α

(
1 − r2

λ2

))
= 0 (17)

Again ignoring higher order terms the equilibrium points are
determined by solving the following equation:

l2

μ
− kr(1 + α) = 0 (18)

Solving this equation gives us the equilibrium solution:

req = a = l2

μk(1 + α)
(19)

We can now test for stability by choosing values of μ, α, k,
l and λ and finding the eigenvalues of the Jacobian matrix
(15) after substituting the equilibrium solution found above.
Recall that the eigenvalues β1, β2 are found by solving the
following equation:

det |J − βI2×2| = 0 (20)

Here I2×2 refers to the 2 × 2 identity matrix. The character-
istic equation (the eigenvalue equation) becomes:

β2 − μ2k4(1 + α)4

l6
= 0. (21)

Following Meiss (2007), we say that the stability is given
from the sign of the eigenvalues. For example, if β1 > β2 >

0, then the equilibrium is unstable. If β1 < β2 < 0 then the
equilibrium is stable. Imaginary eigenvalues are also sta-
ble if for β1,2 = a ± ib we have that a < 0 (otherwise the
equilibrium point is unstable). In the case when a = 0; the
equilibrium is called a center (and is stable) (Meiss 2007).
Stability refers to how the solution behaves near the equi-
librium point; unstable solutions grow to infinity, stable so-
lutions tend to zero and the imaginary cases are the ones
which give bound, orbital solutions (specifically the center
case, whereas the stable and unstable imaginary cases are
bound solutions tending towards or away from zero).

4 Stability & Bertrand’s theorem

We first note that we can study the case for a purely New-
tonian Potential by letting α → 0. Similarly, we can study
the purely Yukawa potential by ignoring the term derived
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from the Newtonian potential; the characteristic equations
become

β2 − μ2k4

l6
= 0 (22)

β2 − μ2k4α4

l6
= 0 (23)

These expressions take into account the fact that our new
equilibrium points are

αN = l2

μk
(24)

αN = l2

μkα
(25)

Where (a, pr) are the equilibrium points of the systems un-
der study. We now proceed to evaluate (19), (20) and (21)
with the equilibrium solutions to determine the stability of
the equilibrium points. Evaluating (19) we obtain the fol-
lowing eigenvalues:

β = ±i
(1 + α)2k2μ2

l3
(26)

Similarly, for the Newtonian and purely Yukawa cases:

βN = ±i
k2μ2

l3
(27)

βyk = ±i
α2k2μ2

l3
(28)

Thus, the equilibrium points for the purely Yukawa, New-
tonian and the Newton + Yukawa Potential remain center
solutions. This would imply that motion is restricted to el-
lipses about the equilibrium point; and so, we could have or-
bits near the equilibrium point (further away from the equi-
librium point we would have unbounded solutions, which
can we seen in Fig. 1). This proves that for small r we have
stable, closed orbits. However, Bertrand’s theorem states
that only Newtonian and Harmonic potentials allow closed
and bounded solutions. Thus, we confirm that for small r

our equations obey the conditions of the above theorem. We
also derive the orbit equation for each case.

For the orbit equation, following Goldstein (1980) the or-
bit equation for a Keplerian orbit can be written as follow:

d2u

dθ2
+ u = −μ

l2

d

du
V

(
1

u

)
, (29)

where r = 1
u

. We can also derive this using Hamilton’s equa-
tions and the fact that:

dr

dt
= dr

dθ

dθ

dt
= dr

dθ
θ̇, (30)

where θ̇ is given by (6). After subsequent differentiation
with respect to r , we obtain the orbital equation. For our
modified potential, we have that:

V

(
1

u

)
= −ku

(
1 + αe− 1

λu
)
. (31)

For small r (i.e. using the approximation (14)) we obtain the
following equation:

d2u

dθ2
+ u = −μ

l2

d

du

[−ku − kuαe− 1
λu

]
(32)

= −μ

l2

[
−k − kα

(
1 + 1

λu

)
e− 1

λu

]
(33)

Using the approximation in Eq. (14) and ignoring higher or-
der O(λ2u2) terms we obtain the following orbital equation:

d2u

dθ2
+ u = −kμ

l2
(α + 1), (34)

which has solution of the form:

u = 1

r
= kμ

l2
(α + 1)

[
1 + e cos(θ − θ0)

]
, (35)

where e is the eccentricity of the orbit. The Newtonian and
purely Yukawa cases follow respectively from (34)

u = 1

r
= kμ

l2

[
1 + e cos(θ − θ0)

]
, (36)

u = 1

r
= kμα

l2

[
1 + e cos(θ − θ0)

]
. (37)

Finally, to satisfy Bertrand’s theorem we must satisfy the
condition

d2Vred(r)

dr2
|r = r0 > 0 (38)

where the reduced potential is given by (12). After using the
approximation for small r

λ
(i.e. (14)) and ignoring terms of

order O( r2

λ2 ) this condition becomes

μ3k4(1 + α)4

l6
> 0, (39)

which is true since μ, α, l, k > 0. Similarly, it can be shown
that this is true for the Newtonian (setting α = 0) and purely
Yukawa cases. This shows that the Yukawa + Newtonian
potential satisfies Bertrand’s theorem for small r

λ
term. A

consequence of Bertrand’s theorem is that the ratio ω

θ̇
is a

rational number; where ω = 2π
T

and θ̇ is given by (6). In a
paper to follow we will show that since for the solar system
orbits the theory predicts that λ � req = a; therefore, for any
practical purpose ω

θ̇
= 1. This number being rational implies

that orbits are bounded indeed. This result is physically rea-
sonable even given our approximations, as mentioned earlier
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λ ≥ 1015 m for Solar System orbits. Therefore, for bound

orbits near the equilibrium point req = l2

μk(1+α)
we expect

r
λ

to be small. For example, to explore the dynamics of
two sun-like stars orbiting at a radius similar to the size
of the Solar System; we let m1 = m2 = Msun = 1030 kg.
This would imply α = 10−8, λ = 1015 m, k = Gm1m2 =
1049 kg m3/s2, μ = 1030 kg and 	 = mvr ≈ 1045 kg m2/s.
Therefore, req = 2×1011 m ≈ 1.3 AU; this is comparable to
the orbit of Mars, and thus r

λ
� 1 and so the approximations

we have been using during this contribution are valid.

5 Conclusion

We have demonstrated the dynamics and stability of the two-
body problem with the Yukawa correction to the Newtonian
potential. To calculate the former, we treated the problem as
a modified Kepler problem and derived the equations of mo-
tion and the reduced potential of the system; which led us to
the discussion of unbounded or bounded motion. To demon-
strate the latter, stability, we constructed the Linearization
matrix and tested the stability of the equilibrium points of
the system for a Yukawa correction. We find that the sta-
bility of the equilibrium point is a central solution; which
implies stable solutions near the equilibrium point. We re-
peated the analysis for a purely Yukawa force and find simi-
lar results. We also confirm that our modified potential obeys
Bertrand’s theorem.
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