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Abstract The size and availability of Sun-Jupiter and Sun-
Neptune saddle regions are determined. Within these regions
the net gravitational field is ≤ 10−10 ms−2. These regions
are therefore suitable for experiments which can provide ev-
idence for the alternative gravitational theories of MOND
and gravitational anti-screening. A particular experiment is
outlined where the relative separation between two masses
is measured. In the case of the Jupiter hosted saddle region,
over the duration of the proposed experiment it is found
that the relative separation of the two masses as determined
by MOND and gravitational anti-screening is approximately
1.24 cm less than that predicted by Newtonian gravitational
theory. In the case of the Neptune hosted saddle region the
difference is much greater, being 29.0 cm for the specific
example provided. This experiment would therefore be a
definitive test of MOND and gravitational anti-screening.

Keywords Gravitational anti-screening · MOND ·
AQUAL · Dark matter · Saddle point · Saddle point region ·
Gravity · MOND experiment

1 Introduction

Physics has been standing at a crossroad since Zwicky
(1933) first pointed out that galaxies were moving too fast
to be bound by their host cluster. Since then, a plethora of
rotation curves have shown that stars in the outer regions of
galaxies are also moving too fast to be bound by their host
galaxy.
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There would seem to be two possibilities. Given that GR
(for a review: Iorio 2015; Debono and Smoot 2016), along
with its non-relativistic approximation Newtonian gravity,
has passed all laboratory and solar system tests the idea that
some undiscovered particle(s) was responsible for the ap-
parent greater gravitational forces seen with the galaxies and
clusters would seem to be the best path to follow. No modifi-
cation of gravitational theory was needed; hence, the theory
of dark matter arose. However, even with the LHC, to date
no such dark matter particles have been found.

The other possibility is that current gravitational theory
needs to be modified. Just as GR modifies Newtonian the-
ory in strong gravitational fields, it is possible that a modifi-
cation is needed in very weak gravitational fields such as
those found in the outer regions of galaxies and clusters.
This possibility gains support from details of galactic ro-
tation curves, for there is found to be a strong correlation
between the rotational curves of spiral galaxies and the ob-
served baryonic mass. This is highlighted by the work of
McGaugh et al. (2016) who considered 153 spiral galaxies,
which extend over a very wide range of physical properties,
to determine the relationship between the radial acceleration
as determined from the observed rotational curves and the
predicted radial acceleration due to the Newtonian gravity
from the determined baryonic mass distribution of the galax-
ies. The following Radial Acceleration Relationship (RAR)
was found to provide a very good fit to the data:

g = gN

1 − e−√
gN/go,obs

(1)

where g is the true acceleration as determined from the ob-
served rotational curve, gN is the Newtonian gravitational
field as determined from the baryonic mass distribution,
and go,obs is a fitted parameter. For their data set, and their
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adopted stellar mass-to-light ratio, the fitted value of this ob-
servational parameter was found to be

go,obs = (1.20 ± 0.02) × 10−10 ms−2. (2)

In the limit where gN << g, (1) simplifies to

g = (
gNgo,obs

)1/2
. (3)

Substituting gN = GMo/r2 and g = v2
c /r into (3) then leads

to

v4
c = GgoMo, (4)

where vc is the constant rotational speed of stars and gas
clouds that is found in the outer regions of a galaxy, i.e.
where gN << go,obs , and Mo is the total baryonic mass of
the galaxy. The relationship as given by (4) is known as the
Baryonic Tully-Fisher Relationship (BTFR). The BTFR is
the cornerstone of alternative theories to galactic dark mat-
ter.

Of course, any alternative gravitational theory must agree
with any experiments or observations that have been car-
ried out within our own solar system. Currently, the lim-
its on any possible deviations from gravitational theory
within our solar system are provided by the analysis of the
ephemerides of solar system bodies. These observations lead
to fairly severe constraints, specifically with regards to the
precession rate of Saturn’s orbit. Using positional observa-
tions of planets and spacecraft, Pitjev and Pitjeva (2013)
have determined that the residual precession rate for Sat-
urn is – (0.32 ± 0.47) mas cy−1 and that any unaccounted-
for mass, �M, within Saturn’s orbit (∼10 AU) must be
< 1.7 × 10−10 M�. Equation (1) leads to a value of �M
<< 10−100 M�, and therefore is in good agreement with
Pitjev & Pitjeva’s value.

This paper will consider two of the alternative theories
to dark matter, Modified Newtonian Dynamics or MOND
(Milgrom 1983a,b,c; Bekenstein and Milgrom 1984;
Famaey and McGaugh 2012; Sanders 2014), and gravi-
tational anti-screening or GRAS (Penner 2016a,b, 2017,
2018). As will be shown, these two theories are fundamen-
tally equivalent and only differ conceptually. Departure from
standard Newtonian gravitational theory for these alternative
theories only becomes significant when gN < 10−9 ms−2,
which is much less than typical accelerations in the Solar
System.

MOND and GRAS are non-linear in nature. This is prob-
lematic for that any gravitational field, gEXT , external to the
gravitational field that is being considered, needs to be in-
cluded. This external field effect (EFE) can greatly compli-
cate the analysis. In the outer regions of galaxies, the grav-
itational field being considered is that due to the particular
galaxy while gEXT is the gravitational field at that location

due to the rest of the cosmos. Typically, in these outer re-
gions of galaxies gEXT << g, and as such gEXT is ignored
and the BTFR holds.

In the case where the gravitational field generated by
a star within the Galaxy is of concern, the external grav-
itational field must include that due to the Galaxy itself.
Within our region of the Galaxy this gravitational field is
∼ 2 × 10−10 ms−2. Given that the impact of the alternative
theories only becomes significant when gN < 10−9 ms−2,
it is seen that the Galactic field cannot be ignored in these
cases. With regards to our own Sun, the EFE has a signif-
icant impact when using MOND or GRAS to investigate
the orbits of comets in the Oort cloud (Penner 2020; Paučo
and Klačka 2016; Iorio 2010a) or when considering its ef-
fect on interstellar spacecraft (Banik and Kroupa 2019). In
proposed testing of MOND using wide binaries (Banik and
Zhao 2018), the external Galactic field also needs to be in-
cluded. Indeed, wide binaries completely rule out versions
of MOND without the EFE (Pittordis and Sutherland 2019).
In all these cases, the EFE is found to significantly reduce
the differences between the results from Newtonian gravita-
tional theory and those from either GRAS or MOND. In the
context of MOND, the EFE was also considered as a pos-
sible explanation for an apparent anomalous perihelion pre-
cession of Saturn (Iorio 2010b). However, with the results
of Pitjev and Pitjeva (2013), this anomaly no longer exists.

In may be surmised that an actual experiment within the
inner regions of the solar system to distinguish between
Newtonian gravitational theory and the two alternative the-
ories would be near impossible. In this case, even far from
any solar system members, the external gravitational field
would need to include the field of the Sun itself which, even
at a distance of 30 AU, is gN = 6.6 × 10−6 ms−2. How-
ever, in the vicinity of the planets there will exist a saddle
point where the gravitational field generated by the planet
will cancel the gravitational field generated by the Sun and
the rest of the cosmos. The possibility of using such saddle
points as locations in which to test MOND has previously
been considered (Bekenstein and Magueijo 2006). Specif-
ically, one could look for anomalous tidal stresses in the
vicinity of the saddle points. It had been further proposed
to extend the LISA Pathfinder mission and have the space-
craft fly near the Sun-Earth saddle point (Bevis et al. 2010;
Magueijo and Mozaffari 2012). The high sensitivity of LISA
Pathfinder would have allowed it to detect any anomalous
tidal stresses. For certain relativistic versions of MOND it
was determined that the spacecraft only needed to fly within
several hundred km of the Sun-Earth saddle point to pick
up any anomaly. However, with the more common formula-
tions of MOND, namely AQUAL (Bekenstein and Milgrom
1984) and QUMOND (Milgrom 2010) the spacecraft would
have needed to pass within a km of the saddle point and even
then, a detection of any anomalous tidal stress would be de-
pendent on the specific interpolating function used (Galianni
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et al. 2012). Given that the add-on to the mission did not oc-
cur, this is in some sense a moot point. It has also been pro-
posed to use Lunar Laser Ranging to search for anomalous
time delays for signals which pass within meters of the sad-
dle points hosted by the Moon or by the Earth (Magueijo and
Mozaffari 2013). However, again any such anomaly only
shows up for certain MOND formulations so that only a pos-
itive result would be conclusive.

In this manuscript, an experiment will be proposed that
will provide a definitive test of MOND and GRAS, irrespec-
tive of the specific formulation. The experiment would take
place in a saddle region, where the external gravitational
field would be ≤ 1.00 × 10−10 ms−2. This would be a suit-
able region in which to carry out any experimental test of
MOND and GRAS. As will be shown, the size of such a
saddle region is fundamentally determined by the mass of
the host planet and the strength of the gravitational field at
the saddle point due to the rest of the cosmos, which in our
case is primarily determined by the Sun. The larger the mass
of the host planet and the weaker the gravitational field due
to the Sun, the larger the saddle region will be. As such,
our focus will be on the outer solar system planets Jupiter
and Neptune. The size of the saddle region hosted by these
planets will be found to be large enough to carry out the
experiment.

2 Alternative gravitational theories

2.1 MOND

MOND is the leading alternative to the theory of dark matter.
In one interpretation, MOND involves the modification of
the law of inertia. The gravitational field itself is Newtonian
but the acceleration of a test particle in this field is as given
by (Milgrom 1983a,b,c)

gN = μ(a/ao)a, (5)

where μ(a/ao) is an interpolating function such that

μ(a/ao) → 1 for a >> ao (6a)

and

μ(a/ao) → a

ao

for a << ao (6b)

where ao is a parameter to be determined by observations.
Condition (6a) is required in order to have consistency with
Newtonian theory and condition (6b) is required in order to
get agreement with the BTFR for ao = go,obs .

In another interpretation of MOND, it is the gravitational
field that is modified. In Newtonian gravitational theory the

gravitational field is given by gN = −∇�N , with the poten-
tial �N determined by Poisson’s equation

∇ ·∇�N = 4πGρb (7)

where ρb is the baryonic mass density. In the AQUAL for-
mulation of MOND (Bekenstein and Milgrom 1984) the
potential is determined by the following modified Poisson
equation

∇ · (μ (g/go)∇�) = 4πGρb, (8)

with the gravitational field given by g = −∇�. In spheri-
cal symmetry, a relation between g and gN can be found by
substituting (7) into (8) which leads to

gN = μ(g/go)g. (9)

Then, as with (6a)–(6b), the conditions

μ(g/go) → 1 for g >> go (10a)

and

μ(g/go) → g

go

for g << go (10b)

are required in order to agree with Newtonian gravitational
theory and the BTFR.

Equation (8) can also be expressed as;

∇ ·∇� = 4πG(ρb + ρPDM) (11)

with

ρPDM = 1

4πG
∇· (1 − μ(g/go))g. (12)

In this form ρPDM is referred to as phantom dark matter.
To be clear though, currently with MOND the only source
of the gravitational field is the baryonic mass and phantom
dark matter is just an aid in computation.

Many functions will of course fit the conditions (10a)–
(10b). Two commonly used functions are the standard inter-
polating function and the simple interpolating function. The
standard interpolating function is given by

μ(g/go) =
(

1 +
(

go

g

)2
)−1/2

(13)

while the simple interpolating function is given by

μ(g/go) =
(

1 + go

g

)−1

. (14)

The relationship between g and gN in the two cases are
therefore, by (9), given by

gN = g

(

1 +
(

go

g

)2
)−1/2

(15)
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and

gN = g

(
1 + go

g

)−1

(16)

respectively. For g << g0, both (15) and (16) simplify to

g = (gNgo)
1/2 (17)

which as before leads to the BTFR. To have agreement with
the BTFR it follows that for both interpolating functions
go = go,obs . For a value of gN = 5.93 × 10−5 ms−2, cor-
responding to the value at 10 AU from the Sun, (13) leads
to a value of �M = 2.0 × 10−12 M�, well within Pitjev &
Pitjeva’s value. However, the simple interpolating function,
(14), leads to a value of �M = 2.0 × 10−6 M�, which is
well outside of Pitjev & Pitjeva’s value.

2.2 GRAS

The theory of gravitational anti-screening asserts that an ad-
ditional non-standard gravitational contribution arises from
a distribution of mass dipoles surrounding a given baryonic
mass. Given this distribution, analogous to the classical elec-
tromagnetic case for a dielectric, the mass density, ρV , due
to these mass dipoles will be determined by

ρV = −∇ ·PG, (18)

where PG is the mass dipole moment density. The resulting
gravitational field gV, due to the mass dipole distribution,
will therefore be given by

gV = G

∫

V

ρV

r2
r̂dV . (19)

Equations (18) and (19) are the gravitational equivalent of
the contribution that electric dipoles in a dielectric make to
the electric field in electromagnetics. The net gravitational
field surrounding a baryonic mass in GRAS will thus be
given by

g = gN + gV. (20)

Expressing the dependence that the mass dipole moment
density PG has on the total gravitational field g by

PG = − 1

4πG
f (g/go)g, (21)

with go being a parameter determined by observations, then
leads in the case of spherical symmetry, by (18), (19) and
(21), to

gV = gf (g/go) . (22)

The required conditions for the function f (g/go) are

f (g/go) → 0 for g >> go (23a)

and

f (g/go) → 1 − g

go

for g << go. (23b)

Condition (23a) is required in order to have consistency with
Newtonian gravitational theory while condition (23b) is re-
quired in order to get agreement with the BTFR.

Many functions will fit the conditions (23a)–(23b). This
manuscript will consider the following two functions which
have been used previously (Penner 2018, 2020);

f (g/go) =
(

1 + g

2go

)−2

(24)

and

f (g/go) = e−g/go (25)

In the case of spherical symmetry, the relationship between
g and gN for the two cases can be expressed, using (20) and
(22), by

g = gN + g

(
1 + g

2go

)−2

(26)

and

g = gN + ge−g/go (27)

respectively. For g << go, both functions reduce to (17) and
hence to the BTFR. At 10 AU from the Sun, the values of
�M are 2.9 × 10−11 M� and << 10−100 M� respectively
for (26) and (27). Both of these values are well within Pitjev
& Pitjeva’s result.

In GRAS, Poisson’s equation becomes

∇ ·∇� = 4πG(ρb + ρV ) (28)

with, by (18) and (21),

ρV = 1

4πG
∇·f (g/go)g. (29)

As can be seen by comparing (11)–(12) and (28)–(29),
GRAS is equivalent to the AQUAL formulation of MOND
in that the interpolating function μ(g/go) used in AQUAL
is equivalent to 1 − f (g/go). The differences are primarily
conceptual. In MOND, it is taken that the only source of the
gravitational field is baryonic mass and the resulting field is
non-Newtonian. In GRAS the resulting field is Newtonian
but the source of the gravitational field must now include
the mass contribution due to the divergence of the mass
dipole distribution. The phantom dark matter distribution in
MOND is equivalent to an actual mass density distribution
caused by the mass dipoles in GRAS.

Figure 1 shows a plot of g/gN versus gN using (13) and
(14) for the two interpolating function from AQUAL and



A proposed experiment to test gravitational anti-screening and MOND using Sun-Gas giant saddle points Page 5 of 16 154

Fig. 1 The dependence that g/gN has on gN for: ◦ ◦ ◦ MOND inter-
polating function (14), ��� MOND interpolating function (13), +++
GRAS function (24), x x x GRAS function (25). gN is in units of ms−2.
The solid line is the observed RAR (1)

(24) and (25) for the two functions from GRAS. Of course,
as μ(g/go) = 1−f (g/go), these functions are not truly spe-
cific to AQUAL or GRAS. In the strong field limit, where
gN >> go, all these functions lead to convergence with
Newtonian gravitational theory, as expected. In the weak
field limit, where gN << go, all these functions lead to the
BTFR, as expected. The functions differ with respect to the
RAR which is included in the figure. Although (14) provides
the best fit out of the four functions to the RAR, especially
for gN < 10−10 ms−2, this function does not agree with the
results of Pitjev & Pitjeva. The function (24) also provides
a good fit to the RAR. As it also agrees with the results of
Pitjev & Pitjeva, it will be the function that is used in the
experiment section of the manuscript, i.e. Sect. 4.

Also, as is seen in Fig. 1, MOND and GRAS start to sig-
nificantly diverge from the Newtonian theory when gN <

10−9 ms−2. As such, any experimental test of the alternative
theories needs to involve the measurement of the gravita-
tional field of a body at a position where its Newtonian grav-
itational field is < 10−9 ms−2. The difficulty, as discussed in
Sect. 1, is the existence of gEXT , the net gravitational field
due to the rest of the cosmos. In order to minimize the effect
of the external gravitational field, it will also be necessary
for any experiment to take place in a region where gEXT is
also < 10−9 ms−2.

GRAS should be looked upon as an explanation to the
MOND phenomenology given the fundamental equivalence
of GRAS and MOND, or at least the AQUAL formulation
of MOND. A major aspect of GRAS is that it relies on

the existence of mass dipoles which do not exist in current
theory. The following discussion of mass dipoles is as pre-
sented in Penner (2020). There have been various models
of mass dipoles presented over the years and theories us-
ing such mass dipoles to explain astronomical observations
currently attributed to dark matter. In general, the cosmos
is taken to be filled with mass dipoles, either real or vir-
tual, which by some mechanism align with the gravitational
field. In these models of mass dipoles, one of the two parti-
cles has its inertial mass, passive gravitational mass, and ac-
tive gravitational mass all positive. The differences between
the models are with respect to the second particle. The sim-
plest case is where the second particle has a positive inertial
mass but negative active and passive gravitational masses
(Blanchet 2007a; Hajdukovic 2011a,b,c, 2012a,b). Such a
mass dipole will align in a gravitational field analogous to an
electric dipole in an electric field. Unfortunately, a particle
that has its inertial and passive gravitational masses of oppo-
site signs violates the equivalence principle. A model which
avoids this is one where the second particle’s inertial and
passive gravitational masses are positive but whose active
gravitational mass is negative (Blanchet 2007b; Blanchet
and LeTiec 2008). Although, such a dipole does not vio-
late the equivalence principle, having a particle or dipole
whose active gravitational mass is not equal to its passive
gravitational mass does violate the law of action and reac-
tion. Additionally, such a dipole will not naturally align in a
gravitational field.

A dipole model presented by Bondi (1957) overcomes
both problems by having all of the masses, including the in-
ertial mass, of the second particle negative. Such a dipole
will have a very strange behavior, in that if the two parti-
cles are bound non-gravitationally the dipole will on its own
accelerate along the axis joining the two particles in the di-
rection of the negative mass. The dipole moment is there-
fore anti-parallel to the particle’s velocity vector. Indeed,
even though it is strange, Bondi has shown that this behav-
ior is allowed in GR as long as the magnitude of the posi-
tive mass exceeds that of the negative mass, if only slightly,
and if such dipoles come in pairs of opposite orientation.
These conditions allow one to define a centre of mass refer-
ence frame for the system. Although, such mass dipoles will
obey the equivalence principle and will free fall in a gravi-
tational field like any particle, by having each of the compo-
nent particles with their passive gravitational mass and iner-
tial masses equal, the mass dipoles will again not naturally
align in a gravitational field.

In GRAS the mass dipoles are taken to be like Bondi’s
dipoles, and as such will obey the equivalence principle.
However, in GRAS, although it is not strictly necessary, it
is proposed that the positive mass component has the same
magnitude as the negative mass component. Therefore, over-
all, the dipole has a net inertial mass, as well as a net ac-
tive and passive gravitational mass, of zero. Such a massless
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dipole will not have a defined centre of mass frame, i.e. like a
photon, and there is no reference frame for which the dipole
will be at rest.

Also, unlike other theories based on mass dipoles, in
GRAS it is not taken that the cosmos is filled with such mass
dipoles which then align in a gravitational field. In GRAS
the source of the mass dipoles, albeit indirectly, is the bary-
onic mass itself. A given mass, via its gravitational interac-
tions with other masses, is surrounded by a field of virtual
gravitons. These virtual gravitons in turn are taken to have
a probability of dissociating into virtual mass dipoles. This
picture of virtual mass dipoles is analogous to QED where
virtual photons, surrounding a given charge, have a probabil-
ity of dissociating into virtual electric dipoles. In QED, these
temporal virtual electric dipoles come into existence with
their electric dipole moment anti-parallel with the electric
field. The result in this case is that the virtual electric dipoles
cause a screening of the electric charge which greatly re-
duces the value of the observed charge. In the case of grav-
itational anti-screening, the virtual mass dipoles come into
existence with their mass dipole moment parallel to the grav-
itational field. The result is an anti-screening effect which
greatly increases the value of the observed mass. In GRAS,
the answer to the question of what the mass of a given star
or galaxy is, is similar to the answer to what is the charge
of an electron in QED. Is it the bare charge or the observed
charge? Is it the baryonic mass or the observed mass? In
the case of the mass of, for example, the Sun the answer is
even more complicated as the observed mass is not constant.
Within the inner solar system, the effect of the mass dipoles
is negligible and to an excellent approximation the mass of
the Sun is equal to its baryonic mass, but at distances greater
than approximately 5 kAU the observed mass of the Sun
rises rapidly. The same of course applies to galaxies which
leads to the RAR and the BTFR.

The relationship between the mass dipole moment den-
sity and the gravitational field as given by (21), along with
the behavior of the function f (g/go) as given by (23a)–
(23b), is a key step in the theory. The primary justification
for this step is that the same relationship between the electric
field and the density of the virtual electric dipole moments
as given by (21) with functions behaving as (23a)–(23b)
leads to a semi-classical model which matches the behavior
found in QED, namely that the observed value of a charge
falls rapidly from its bare value to a constant observed value
(Penner 2016a). Although basing GRAS on a semi-classical
model of QED may seem somewhat speculative, it is the
author’s opinion that a quantum theory of gravity will have
similar features to other quantum field theories, including
virtual dipoles. The screening of electric charge in QED and
the anti-screening of mass in GRAS would then basically be
two sides of the same coin.

Another difference between GRAS and other theories
which have mass dipoles aligning with the gravitational field

in the manner of electric dipoles in classical electrodynam-
ics is that the other theories lead naturally to the mass dipole
moment density saturating in strong fields. This in turn leads
to an anomalous constant gravitational field in the inner so-
lar system (Hajdukovic 2013). However, the predictions that
follow, i.e. perihelion precession rates, are not in agreement
with current observations (Iorio 2019; Banik and Kroupa
2020). In GRAS the mass dipole moment density goes to
zero in a strong gravitational field and predictions within
the solar system that arise in GRAS (Penner 2020) do not
run counter to current observations.

In addition, having the phantom dark matter of MOND
being an actual mass density, as it is in GRAS, means that it
is no longer required to have an alternative relativistic the-
ory to provide a basis for MOND. In general, alternative rel-
ativistic gravitational theories have been found to be prob-
lematic (Debono and Smoot 2016), though a relativistic ver-
sion of MOND has recently been developed in which gravi-
tational waves travel at the speed of light (Skordic and Zlos-
nik 2019). If one considers the source of the additional grav-
itational field to be the mass density as given by (18), and
not due specifically to individual mass dipoles, the energy-
momentum tensor in GR would just need to be altered to

T μυ = (ρb + ρv)u
μuυ (30)

with the Newtonian limit as given by (28). The AQUAL for-
mulation of MOND is then just a way of expressing the grav-
itational field solely in terms of the baryonic mass. This is
analogous to the use of the Displacement vector in classical
electromagnetism. However, the theory of GRAS is far from
complete, and there are still issues with regards to how it fits
in with GR. This it is important to assess the cosmological
implications of GRAS.

2.3 Method of solution

The relationship between g and gN as given by (26) and
(27) in GRAS, or (15) and (16) in MOND, only apply to
problems of spherical symmetry. In general, to determine
the gravitational field for an arbitrary baryonic mass distri-
bution in GRAS requires solving Eqs. (28) and (29). The
technique is to take as the initial guess for �, that due solely
to the baryonic mass, i.e. �N . The resulting distribution for
ρV is then found from (29) and the next guess for � is then
found using (28). This is repeated until the differences in g
from the previous estimate, through the considered region,
are less than a set small amount. This can be quite computa-
tionally intensive as the region of space considered must ex-
tend significantly beyond the baryonic mass distribution so
that the contribution due to the dipoles beyond the consid-
ered volume can be neglected. To reduce the computational
requirements, problems involving GRAS have been limited
to only axisymmetric problems. In these cases, I consider a
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Table 1 The gravitational
parameters and
(xJPL, yJPL, zJPL) and
(x, y, z) positions of the Sun,
Jupiter, and Neptune. Included
are the (xo, yo, zo) and yop

location of the saddle points and
the �wsp and �dsp sizes of the
corresponding saddle regions as
well as �tsp , the maximum time
that a passive body could remain
in the saddle region. The
bracketed numbers represent the
uncertainties

01-01-2020 00:00.0000 Sun Jupiter Neptune

GM (km3 s−2) 132712440041.93938 126686534.911(1.5) 6835099.5(10)

xJPL (AU) −0.003798619468 0.522348438935 29.239014044311

yJPL (AU) 0.007439926519 −5.193582583066 −6.359750396991

zJPL (AU) 0.000023030118 0.009853537302 −0.0542875652942

x (AU) 0.003035031537 0

−0.006462585862 0

y (AU) −0.007782654272 5.219793581262

−0.005292655619 29.927597320367

z (AU) 0.000037721700 0

-0.000072988725 0

xo (AU) 0.00009096150 −0.00004605

yo (AU) 5.06312037980(90) 29.71431265(16)

uncertainty = ± 135 m uncertainty = ± 23.2 km

zo (AU) 0.00000113050 −0.00000052

yop (AU) 0.15667322787(90) 0.21328467(16)

uncertainty = ± 135 m uncertainty = ± 23.2 km

�wsp 10.2 km 475 km

�dsp 20.3 km 950 km

�tsp 1.88 × 104 s = 5.22 h 7.53 × 105 s = 209 h

spherical region of space centred on the baryonic mass cen-
ter. This region is divided into rings whose axes of symmetry
lie along the axis of symmetry of the problem.

3 Laboratory

3.1 Location

Consider first the simple case of an isolated Sun-planet sys-
tem consisting of a planet of mass Mp in orbit at a distance
R from the Sun. Treating the planet and the Sun as point
masses, and taking that the gravitational field is to an excel-
lent approximation Newtonian, the saddle point of the sys-
tem will be located at a distance yop from the planet along
the axis joining the two as given by

g� = gp = GMp

y2
0p

(31)

where g� is the magnitude of the solar gravitational field at
the saddle point while gp is the magnitude of the planetary
gravitational field there. With no other bodies in the cos-
mos, for any experiment carried out at this point the grav-
itational field g = g� + gp will be equal to zero. For ex-
ample, consider the Sun-Jupiter, and Sun-Neptune systems.
The values of the gravitational parameter GM for the Sun,
Jupiter, and Neptune as well as their (xJPL, yJPL, zJPL)

coordinates with respect to the solar system baryonic cen-
tre (SSB) as on Jan 01-2020-00.00.0000, as taken from

https://ssd.jpl.nasa.gov/?horizons, are shown in Table 1.

Transforming this coordinate system to one where the y-

axis lies respectively along either the SSB-Jupiter or the

SSB-Neptune axis, leads to the (x, y, z) positions that are

also listed in Table 1. The x and z coordinate values for the

Sun are not exactly zero for these cases as the solar system

baryonic centre does not lie on either the Sun-Jupiter axis or

the Sun-Neptune axis. The resulting position, (xo, yo, zo), of

the saddle point for both the Sun-Jupiter pair and the Sun-

Neptune pair, plus the resulting values of yop , are included

in the Table. As is seen by the values of yop , the position of

the saddle point hosted by both Jupiter and Neptune is in the

outer regions of their satellite systems.

A major source of uncertainty in the location of the sad-

dle point for both the Sun-Jupiter and the Sun-Neptune sys-

tems arises from the uncertainty in the gravitational param-

eter for the given planets. The uncertainty of ±1.5 km3 s−2

for the gravitational parameter of Jupiter leads to an uncer-

tainty of ±135 m for its corresponding yo and yop values,

while the uncertainty of ±10 km3 s−2 for the gravitational

parameter of Neptune leads to a corresponding uncertainty

of ±23.2 km for its corresponding yo and yop values. These

uncertainties give an estimate of how accurately the saddle

point position could be determined for these two-body sys-

tems. There are also uncertainties from massive satellites,

which we discuss later in Sect. 3.4.

https://ssd.jpl.nasa.gov/?horizons


154 Page 8 of 16 A. Raymond Penner

3.2 Size

Of course, the size of the saddle region where g < δg , is of
great importance given that an experiment is to be carried
out within that region. With respect to a coordinate system
(x′, y′, z′), where the origin is at the saddle point and the y′
axis lies along the Sun-planet axis, the net gravitational field
magnitude about the saddle point is given by

g = ∣
∣g� + gp

∣
∣ (32a)

= GMp

⎡

⎢
⎣

x′2 + z′2

(
x′2 + z′2 + (

yop − y′)2
)3

+
⎛

⎜
⎝

yop − y′
(
x′2 + z′2 + (

yop − y′)2
)3/2

− 1

y2
op

⎞

⎟
⎠

2⎤

⎥
⎦

1/2

(32b)

where the substitution for g� from (31) has been used. Us-
ing the values as given in Table 1, the net gravitational
field within the saddle region, using (32b), was determined
for both the Sun-Jupiter and Sun-Neptune systems. The re-
sulting gravitational field profiles for both these system are
shown in Fig. 2. To first order, with x′, y′ and z′ << yop ,
(32b) reduces to

g ∼= GMp

y3
op

(
x′2 + z′2 + (

2y′)2
)1/2

, (33)

the equation for an ellipsoid.
Setting g = δg in (33), the width, �wsp , of the saddle

region along the y′ axis and the diameter, �dsp , of the saddle
region perpendicular to y′ are, to first order, given by

�wsp
∼= y3

op

GMp

δg (34)

and

�dsp
∼= 2y3

op

GMp

δg (35)

respectively. For this manuscript, δg will be taken to be
1.00 × 10−10 ms−2, i.e. within the saddle region the magni-
tude of the gravitational field is < 1.00×10−10 ms−2, which
is about the same as go, the fundamental acceleration scale
in MOND and GRAS. For this value of δg the first order val-
ues of �wsp and �dsp , from (34) and (35), are 10.2 km and
20.3 km for the saddle region hosted by Jupiter and 475 km
and 950 km for the saddle region hosted by Neptune, in good
agreement with Fig. 2. The sizes of these saddle regions are
therefore of reasonable extent in which to carry out an ex-
periment.

To gain a better understanding of the factors that deter-
mine the size of a saddle region, the approximation that for
yop << R

g� ∼= GM�
R2

(36a)

will be used, and, therefore, by (31)

yop
∼=

(
Mp

M�

) 1
2

R. (36b)

By (34) and (36b), along with a value of δg = 1.00 ×
10−10 ms−2, the size of a saddle region can be expressed
as

�wsp
∼= δg

GM
3/2
�

(
M

1/2
p R3

)
(37a)

∼= 4.37m
(
M

′1/2
p R′3

)
(37b)

and

�dsp
∼= 2δg

GM
3/2
�

(
M

1/2
p R3

)
(38a)

∼= 8.74m
(
M

′1/2
p R′3

)
(38b)

where M ′
p is in units of M⊕ and R′ is in AU. As (37b) and

(38b) show, the greater the mass of the host planet and the
weaker the gravitational field due to the Sun, i.e. the greater
R, the larger the saddle region. Hence the necessity of using
saddle regions hosted by the larger outer solar system plan-
ets. For example, in the case of Earth, (37b) leads to a value
of 4.37 m for �wsp . Only the saddle regions that are hosted
by the larger outer solar system planets are large enough to
be viable locations for the proposed experiment.

3.3 Availability

A given saddle region will travel through space in sync
with its host planet in orbit about the centre of mass of the
two-body system, in our case taken to be the solar system
barycentre. In the case of the planet being in circular orbit,
the speed of the saddle point about the mass centre will be
given by

vsp = yo

R

(
GM�

yo

) 1
2

. (39)

Within a given saddle region the gravitational field is ≤
1.00 × 10−10 m s−2. Therefore, any passive body within
a saddle region will travel, for all intents and purposes, at
constant velocity with respect to an inertial reference frame.
Figure 3 shows the resulting path of a passive body traveling
through a saddle region.
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Fig. 2 The gravitational field
profile of the saddle region
hosted by (a) Jupiter and (b)
Neptune. The solid line
corresponds to a value of
1.00 × 10−10 ms−2 and dashed
line corresponds to a value of
5.00 × 10−11 ms−2. The arrows
indicate the direction of the
gravitational field

Fig. 3 The path of a passive
body through a saddle region
(not to scale). The arrows
indicate the gravitational field
acting on the passive body at the
different locations

For circular orbits, and using (39), it can be shown that
the maximum time that a coasting body could remain in a
saddle region, corresponding to the path shown in Fig. 3, is
given, to first order, by

�tsp ∼= 1

GMp

(
8δgy

5
op

)1/2
. (40)

For a value of 1.00×10−10 ms−2 for δg , the resulting values
of �tsp for Jupiter and Neptune are 1.88×104 s (5.22 hours)
and 7.53 × 105 s (209 hours) respectively. These are reason-
able times over which to carry out an experiment. Given that
the orbits of planets are elliptical, (40) should be taken to be
the average over an orbit. However, as both Jupiter and Nep-

tune have rather low orbital eccentricities of 0.048 and 0.009
respectively, the variation in times will be relatively small.
With the approximation as given by (36b), it follows from
(40) that

�tsp ∼= (77 s)M ′1/4
p R′5/2 (41)

Eq. (41) shows again the necessity of using the saddle re-
gions hosted by the larger outer solar system planets. For
the Earth (41) leads to �tsp = 77 s. For a typical accelera-
tion scale of a = 10−10 ms−2 this would lead to a displace-
ment on the order of only several hundred nm, shorter than
the wavelength of a visible photon. Therefore, a more mas-
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Table 2 The contributors to gEXT , for both the Jupiter and Nep-
tune hosted saddle points, whose gravitational field magnitude is
greater than 1.0 × 10−12 ms−2 at the reference time of Jan 01-2020-
00.00.0000. The bracketed numbers represent the uncertainties

Body gBODY at Jupiter
s.p. ×10−12 ms2

gBODY at Neptune
s.p. ×10−12 ms2

Galaxy 217 217

Sun 326144695 9494801

Mercury 65 2

Venus 785 24

Earth 688 28

-Moon 8

Mars 128 3

Jupiter 326011748 9757

-Ganymede 24639 (17)

-Io 14961 (25)

-Europa 8243 (26)

-Calisto 16602 (15)

Saturn 77140 3611

-Titan 18

Uranus 597 676

Neptune 373 9506590 (14)

-Triton 2027 (14)

-Proteus 5

-Nereid 3

sive and/or distant planet is required for the proposed exper-
iment.

3.4 Effect of other solar system bodies and the
Galaxy

The size of a saddle region is determined primarily by the
gradient of the host planet’s gravitational field. In the case
of the other solar system bodies, as well as for the Galaxy,
their gravitational fields at a given time can, to a good ap-
proximation, be taken to be constant over the extent of a
given saddle region. Therefore, these other bodies will not
have a significant effect on the size of the saddle region.

However, these other bodies will have a very significant
effect on the location of the saddle point. Taking that the
system is now comprised of all the solar system bodies plus
the Galaxy, the net gravitational field at the new saddle point
location will be given by

g = g� + gp + gGalaxy + �gss (42)

where gGalaxy is the gravitational contribution of the Galaxy,
and �gss is the contribution of all the other solar system
bodies, i.e. besides the Sun and Jupiter or the Sun and Nep-
tune. Table 2 lists the primary contributors to g at the sad-
dle point hosted by both Jupiter and Neptune at the refer-
ence time of Jan 01-2020-00.00.0000. These contributors

include the Galaxy and those solar system bodies whose
gravitational field magnitude is greater than 10−12 ms−2 at
the given saddle point location and time. In the case of
g� + gp + �gss, the positional values of the solar system
bodies listed in Table 2 on Jan 01-2020-00.00.0000, as taken
from https://ssd.jpl.nasa.gov/?horizons, were used to deter-
mine each of their individual contributions.

To provide an estimate for gGalaxy, it will be approxi-
mated that the solar system is in circular orbit about the
Galactic centre in a fixed plane. Taking the Sun to be
8.122 kpc from the galactic centre and orbiting at a speed
of 233.3 km s−1 (McGaugh 2018) the resulting estimate for
gGalaxy is therefore 2.17 × 10−10 ms−2. Given that Banik
and Zhao (2018) estimated the impact of the disc on the
galactic gravitational field at the Sun’s location to be only
1.9 per cent, neglecting the effect of the disc is reasonable.
As the angle between the galactic plane and the planetary or-
bit plane is approximately 600, the z-component of Galaxy’s
contribution will be approximately gGalaxy sin 600. For this
example, it will be taken that the Galaxy’s x and y grav-
itational components are equal in magnitude, which corre-
sponds to their average values over a given planet’s orbit.
Although the value of gGalaxy at the specific reference time
is what is required, this does provide an estimate of the
Galaxy’s contribution to g at the saddle point.

In Table 3 are listed the positions of the saddle points,
(xo+, yo+, zo+), taking into account the contributors listed
in Table 2. The overall effect of the contributors, other than
the Sun and gas planet, is to shift the saddle point hosted
by Jupiter by 5.60 × 103 km and the saddle point hosted by
Neptune by 2.12 × 104 km. In the case of the saddle point
hosted by Jupiter 99.7% of the shift is due to the combined
gravitational fields of Saturn and Jupiter’s four large moons.
In the case of the saddle point hosted by Neptune 99.0%
of the shift is due to the combined gravitational fields of
Jupiter, Saturn, and Triton. Of course, this will be dependent
on the specific reference time.

The accuracy for which a given saddle point can be lo-
cated at a specific time is dependent on the precision to
which g at the saddle point is known. For example, if g is
known to a precision of 10−10 ms−2 the position of the sad-
dle point will be known to the accuracy as shown by the
10−10 ms−2 contours in Fig. 2. The uncertainties in the indi-
vidual contributions shown in Table 2 are due to the uncer-
tainty in the value of GM for Neptune and the uncertainty
in the masses of the Jovian moons and Triton as provided
by https://ssd.jpl.nasa.gov/?horizons. Adding in quadrature
the uncertainties in g, as listed in Table 2, indicates that the
value of g at the saddle point hosted by Jupiter is known
to a precision of ∼ 5.6 × 10−11 ms−2. This corresponds to
knowing the location of the saddle point hosted by Jupiter
to within ±2.8 km along y′ and ±5.7 km along x′ and
z′, i.e. approximately within the 5 × 10−11 ms−2 contour

https://ssd.jpl.nasa.gov/?horizons
https://ssd.jpl.nasa.gov/?horizons
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Table 3 The position and uncertainties of the saddle points hosted
by Jupiter and Neptune considering all the bodies listed in Table 2,
(xo+, yo+, zo+). Included are the �wsp and �dsp sizes of the corre-
sponding saddle regions as well as �tsp , the maximum time that a pas-
sive body could remain in the saddle region

Jupiter s.p. Neptune s.p

xo+ 0.0000700223 AU 0.00001007 AU

(10,475.2 ± 5.7) km (1506 ± 95) km

yo+ 5.0630893475 AU 29.71444274 AU

(757,427,387.1 ± 2.8) km (4,445,217,372 ± 47) km

zo+ 0.0000011650 AU 0.00000643 AU

(174.3 ± 5.7) km (962 ± 95) km

�wsp 10.2 km 475 km

�dsp 20.3 km 950 km

�tsp 1.88 × 104 s = 5.22 h 7.53 × 105 s = 209 h

shown in Fig. 2a. In the case of Neptune, it would appear
that g at that saddle point can be known to a precision of
∼ 2.0 × 10−11 ms−2. This corresponds to knowing the lo-
cation of the saddle point hosted by Neptune to within ±
47 km along y′ and ±95 km along x′ and z′. These val-
ues are included in Table 3. The primary reason for these
relatively small uncertainties in saddle point position is that
the masses of Triton and the Galilean moons of Jupiter are
known to rather high precision due to spacecraft flybys. Al-
though these estimates may be overly optimistic, in both
cases the uncertainty in the position of the saddle points lies
well within the saddle regions being considered for the ex-
periment. It is further hoped that measurements taken prior
to or during the mission itself would significantly reduce
these uncertainties.

One body which has not been included in Table 2, is the
hypothetical Planet 9. There is indirect observational evi-
dence of a planet with a mass between ∼ 5–20M⊕, on an
eccentric and inclined orbit with an approximate perihelion
of ∼250 AU (Batygin and Brown 2016; Bailey et al. 2016).
If it did exist, its contribution to g at the saddle points would
be < 6 × 10−12 ms−2 and therefore would involve a rela-
tively small shift in the saddle point positions.

During the experiment the positions of solar system bod-
ies will change. Although the effect will be relatively small,
the true path of the saddle point over the duration of the
experiment, taking into account this motion, would need to
be determined. Also, the SSB centred coordinate system is
not an inertial reference frame as the origin of this reference
system revolves around the Galactic centre. In the reference
frame where the origin is at the centre of the Galaxy, taken
to be an inertial reference system, a passive body will move
through a saddle region in a straight line. With respect to
the SSB centred coordinate system the motion of a passive
body through a saddle region will not be a straight line but
will appear to accelerate at 2.17 × 10−10 ms−2 away from

the galactic centre. In the case of a passive body coasting
through the saddle region hosted by Jupiter, over the time
�tsp = 1.88×104 s this will result in the body shifting away
from the Galactic centre by approximately 3.8 cm. The im-
pact of the motion of the Galactic centre within the Local
group would be very much smaller. The motion of the saddle
point is thus mainly determined by planetary orbital motion
within the Solar System. The Galaxy does affect the saddle
point location, but its shift due to the Galactic gravity would
be known in advance since we know gGalaxy.

4 Experiment

For the proposed experiment, it will be taken that it is car-
ried out in the saddle region hosted by Jupiter. This experi-
ment will require that a spherically symmetric body of mass
M1 = 100 kg and radius r1 = 30.0 cm be brought to Jupiter
by a spacecraft. For our example, it will be taken that the
true path of the saddle point is as given by Fig. 3. In this
case, the spacecraft would be placed in orbit around Jupiter
such that at its apogee it would be at the position A shown
in Fig. 3, and travelling with a speed matching that of the
saddle region. With respect to Jupiter this speed would be
approximately 397 ms−1 as determined, using (39), by

vsp,J =
(

1 − yo

R

)(
GM�

yo

) 1
2

. (43)

At the instant that the spacecraft’s velocity is in the direction−→
AE as shown in Fig. 3, the 100 kg body would be released
and the spacecraft would then leave the saddle region. After
being released the body would then place, with a telescopic
arm or by some other means, a second spherically symmet-
ric body, parallel to the x′ axis at a distance of 6.00 m from
the centre of M1. This second body will be taken to have a
mass of M2 = 2.00 kg and a radius of r2 = 4.24 cm. The
masses and radii are chosen so that both masses are equally
affected by Solar radiation pressure (45). The relative sepa-
ration of M1 and M2 would then be tracked, either by inter-
ferometry or by the time-of-flight of a reflected laser pulse,
as the two masses coast through the saddle region. The two
masses would remain within the saddle region for a time of
�tsp = 1.88 × 104 s. As will be shown, this experiment will
lead to very definitive results.

At a distance of 6.00 m the Newtonian gravitational field
at M2 due to M1 would be 1.85 × 10−10 ms−2 while that
at M1 due to M2 would be 3.71 × 10−12 ms−2. The New-
tonian relative acceleration between the two masses would
therefore be 1.89 × 10−10 ms−2 = 1.58go, which is slightly
smaller than gGalaxy . According to MOND and GRAS how-
ever the gravitational fields generated by the two masses
would be greater. Treating initially that the two masses are
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independent of each other, and using (26), the gravitational
field at a distance of 6.00 m from M1 and M2 would be
2.45 × 10−10 ms−2 and 2.26 × 10−11 ms−2 respectively.
The relative acceleration between the two masses would
then be 2.68 × 10−10 ms−2, significantly greater than the
Newtonian value. Figure 4 shows the resulting mass dipole
moment density profile surrounding the isolated M1. As is
seen, the mass dipole moment density goes to zero in the
relatively strong gravitational field near M1. Again, GRAS
is different from other mass dipole theories where the mass
dipole moment density saturates in strong fields. Figure 5
shows the resulting mass density distribution, due to the
mass dipoles, and the net gravitational field around the iso-
lated M1. At distances �6 m, the mass density distribu-
tion begins to falls off as r−2 while the gravitational field
falls off as r−1. The BTFR value for the isolated M1 is
2.99 × 10−5 ms−1. In the case of MOND the mass density
distribution shown in Fig. 5a) would correspond to the phan-
tom dark matter density of (12).

According to GRAS, the increased gravitational fields
around both M1 and M2 are due to their surrounding mass
dipole distributions. This distribution depends on the to-
tal gravitational field and as such M1 and M2 cannot be
treated as independent of each other as the surrounding mass
dipole distribution will be altered when the two masses are
placed near each other. Using the method of Sect. 2.3, Fig. 6
shows the resulting surrounding mass density distribution
and the net gravitational field in the case where M1 and
M2 are 6.00 m apart. Due to the large mass difference be-
tween M1 and M2, the effect on the gravitational field at
M2 due to M1 is relatively small, and drops only slightly
from 2.45 × 10−10 ms−2 to 2.43 × 10−10 ms−2. The effect
on the gravitational field at M1 due to M2 is however sig-
nificant as its magnitude drops from 2.26 × 10−11 ms−2, in
the case of no interaction, to 4.87 × 10−12 ms−2, approx-
imately 30% greater than just its baryonic mass contribu-
tion. The relative acceleration between M1 and M2 will now
be 2.48 × 10−10 ms−2, corresponding to approximately a
7.5% drop from the case where there is no interaction. If the
mass difference was not so large the overall impact would be
even greater. For example, when considering binary galax-
ies (Penner 2017), in the case where the masses of the two
galaxies are equal, the distortion of the mass density distri-
bution led to a drop in the gravitational field at each others
location of approximately 25%.

In addition to the changes to the mass dipole distribu-
tion due to the interaction of the two masses, the effect that
the external gravitational field has on the dipole distribu-
tion needs to be considered. The external gravitational field
will be the gravitational field within the saddle region due to
the Sun, Jupiter, other solar system bodies, and the Galaxy,
i.e. the contributors listed in Table 2. As Fig. 3 indicates,
to a good approximation the external gravitational field acts

Fig. 4 The mass dipole moment density, PG, surrounding the mass
M1. The units for PG are kg m−2

along the y′ axis as the two bodies travel from position A
to E. The maximum value of gEXT during the transversal
will be 1.00 × 10−10 ms−2 which will occur at points A, C,
and E, while the minimum value of gEXT will be 0 ms−2

which will occur at points B and D. Over the dimensions of
the experiment, i.e. 6.00 m, the external gravitational field
will to be taken to be constant at any given time during the
transversal.

Ideally, the effects on the mass dipole distribution due to
the interaction of the two masses and those due to the exter-
nal gravitational field would be determined together. How-
ever, as the two masses are moving parallel to the x′ axis
while the external gravitational field is along the y′ axis,
the problem is not axisymmetric. As such, the two effects
were handled separately, on the provision that the individ-
ual impacts of the two effects are relatively small. Using the
method of Sect. 2.3, Fig. 7a shows the effect that a constant
external field of magnitude 1.00 × 10−10 ms−2 acting along
y′ has on the mass density distribution surrounding M1. As
is seen, the effect is dramatic. Beyond 5 m the mass density
due to the mass dipole distribution falls rapidly. The impact
on the gravitational field is shown in Fig. 7b. By compar-
ing the outer contour lines of Fig. 5b and Fig. 7b, it can be
seen that the constant external field ends up reducing the net
gravitational field, although slightly. At a distance of 6.00 m
from M1 along the x’ axis the gravitational field, as a re-
sult of the external field, drops from 2.45 × 10−10 ms−2 to
2.41×410−10 ms−2, a decrease of 1.2%. However, the mag-
nitude of this drop will be the maximum, occurring at points
A, C, and E. At points B and D, as gEXT is equal to zero,
there will be no drop in the gravitational field due to M1. By
approximating that the magnitude of gEXT changes linearly
as the bodies travel from point A to E, the average effect
of gEXT would be to reduce the gravitational field of M1

at 6.00 m by 0.6%. Neglecting the impact of gEXT on the
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Fig. 5 (a) The mass density
distribution surrounding an
isolated M1. The thick solid line
corresponds to 0.05 kg m−3 and
the thin solid line corresponds to
0.02 kg m−3. (b) The
gravitational field surrounding
M1. The thick solid line
corresponds to
5.0 × 10−10 ms−2 and the thin
solid line corresponds to
2.0 × 10−10 ms−2

Fig. 6 (a) The mass density
distribution surrounding M1 and
M2. The thick solid line
corresponds to 0.05 kg m−3 and
the thin solid line corresponds to
0.02 kg m−3. (b) The
gravitational field surrounding
M1 and M2. The thick solid line
corresponds to
5.0 × 10−10 ms−2 and the thin
solid line corresponds to
2.0 × 10−10 ms−2

gravitational field at M1 due to M2, the resulting relative ac-
celeration between the two masses will therefore decrease
from 2.48 × 10−10 ms−2 to 2.44 × 10−10 ms−2.

In addition to the motion along x′, as a result of the ex-
ternal field the two masses will also accelerate along the y′
axis. In the Newtonian case, both masses would experience
the same acceleration along the y′ axis, i.e. at point A both
would experience an acceleration of 1.00 × 10−10 ms−2 (in
Fig. 7b this has been subtracted out). In the case of GRAS
and MOND, which are non-linear theories, the accelerations
along y′ of M1 and M2 will, in general, not be the same. The
difference between the two can be approximated by con-
sidering the additional transverse component of the gravi-
tational field due to M1 at the location of M2. This shows
up in Fig. 7b where it can be seen that the gravitational
field surrounding M1 is no longer spherically symmetric, as
indicated by the shift in the outer contours. For the given
experimental setup, the additional transverse component of
the gravitational field at the location of M2 is found to be

< 10−12 ms−2. Compared to the motion along x′, the effect
is therefore negligible.

With regards to the method of solution, as outlined in
Sect. 2.3, for Figs. 5 through 7, the region of space con-
sidered for the computation was a sphere of radius 11.0 m
centred on M1, divided into rings of width and thickness of
0.100 m. For this ring size the values of g generated through-
out the spherical region for Fig. 5b were within 0.05% of
the values calculated using (26) after only 5 iterations. For
Figs. 6 and 7 convergence was again fairly rapid with vari-
ations in the value of g throughout the region being <0.1%
after 10 iterations.

The relative acceleration between M1 and M2 of 2.44 ×
10−10 ms−2 is based on the function as given by (24). This
function led to a good fit to the RAR and agreed with ob-
servations within the solar system. Ideally an even better
fitting function to the RAR would be found. At a value of
g = 2.44 × 10−10 ms−2, (26) leads to a value of 1.84 ×
10−10 ms−2 for gN . Substituting this value for gN into the
RAR (1), then leads to a value of g = 2.59 × 10−10 ms−2.
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Fig. 7 (a) The mass density distribution surrounding M1 with a con-
stant external gravitational field of 1.00 × 10−10 ms−2 pointing along
the y′ axis. The thick solid line corresponds to 0.05 kgm−3 and the
thin solid line corresponds to 0.02 kg m−3. The thick dashed line cor-

responds to 0.00 kg m−3. (b) The gravitational field surrounding M1.
The thick solid line corresponds to 5.0×10−10 ms−2 and the thin solid
line corresponds to 2.0 × 10−10 ms−2. The constant external gravita-
tional field of 1.00 × 10−10 ms−2 has been subtracted out

It would therefore be expected that a better fitting function
to the RAR would lead to a relative acceleration between
M1 and M2 of 2.59 × 10−10 ms−2. This is the prediction of
GRAS and MOND.

There is also a nongravitational force that needs to be
considered, and the reason why M2 is placed along the x′
axis. The solar radiation pressure at the location of Jupiter’s
saddle point is given by

Psrp =4.57 × 10−6 Nm−2
(

R⊕
yo

)2

(44a)

=1.78 × 10−7 Nm−2. (44b)

The resulting acceleration, asrp, of a perfect reflector of mass
M and cross-sectional A will therefore be

asrp = 2(1.78 × 10−7 Nm−2)
A

M
. (45)

For the given radii of M1 and M2, i.e. 30.0 cm and 4.24 cm,
the ratio A/M is equal 2.83×10−3 m2 kg−1 for both masses,
so they will therefore have exactly the same asrp = 1.01 ×
10−9 ms−2. The solar radiation pressure will therefore not
affect the relative separation of M1 and M2. Due to the so-
lar radiation pressure both masses will drift a distance of
17.8 cm in a direction away from the Sun over a time of
�tsp = 1.88 × 104 s.

Figure 8a shows the change in the separation of M1

and M2 for the Newtonian relative acceleration of 1.89 ×
10−10 ms−2 and the GRAS and MOND prediction of 2.59×
10−10 ms−2. In a time of 1.88×104 s the relative separation
of M1 and M2 would decrease by 3.34 cm in the Newtonian
case and 4.58 cm in the GRAS and MOND case. The differ-
ence of 1.24 cm would be easily measured.

In the case of the Jupiter hosted saddle region, the RAR
relative acceleration between M1 and M2 corresponds to a
value of gN = 1.84 × 10−10 ms−2, which to a good approx-
imation is equal to the value of gN at the location of M2 due
to M1, i.e. 1.85 × 10−10 ms−2. Taking this result to hold as
the relative separation of M1 and M2 continues to decrease,
one can extrapolate to the case where the experiment is car-
ried out in the saddle region hosted by Neptune, where �tsp
is much greater. The result is shown in Fig. 8b. After 25
hours, the difference between the Newtonian case and the
GRAS and MOND case is 29.0 cm. Overall, the saddle re-
gion hosted by Neptune is superior to that hosted by Jupiter
for any such experiment. Not only does the greater �tsp lead
to greater differences between the Newtonian case and the
GRAS and MOND case, the relative uncertainty in the sad-
dle point location is also less, and the solar radiation pres-
sure would be significantly less. However, Jupiter is signifi-
cantly closer and the difference of over 1 cm between New-
tonian theory and the theories of GRAS and MOND would
be easily detectable, so Jupiter is more than adequate for
the experiment. Which ever gas planet hosted saddle region
is used the results of the experiment would be quite defini-
tive. Ideally the mass M2 could be retrieved and experiment
could be repeated with different initial starting separations
and even different orientations. Also, it would be hoped that
the host spacecraft would track M1 during the experiment, if
only to verify that the experiment is run in a saddle region.

5 Conclusion

Sun-gas planet saddle regions provide the opportunity to test
gravitational theory in the realm of field strengths which cor-
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Fig. 8 The separation of M1
and M2 over the duration of the
experiment carried out in the
saddle region hosted by (a)
Jupiter and (b) Neptune. The
solid line corresponds to the
expected Newtonian result. The
dotted line corresponds to the
prediction of GRAS and MOND

respond to that found in the outer regions of galaxies. As the
manuscript has demonstrated these saddle regions are large
enough and available long enough in order to carry out ex-
periments. The more massive and the further from the Sun
the gas planet, the larger its saddle region and the longer it
is available for any experiment. As such the Neptune hosted
saddle region is the most attractive. However, the relative
closeness of Jupiter, makes its saddle region also attractive.
The experiment outlined in this manuscript would seem to
be the most direct way to test the different gravitational the-
ories, however, there certainly may be better ways that test-
ing could be carried out. The theories of MOND and GRAS
give very definite predictions with regards to the proposed
experiment. When carrying out the experiment in the sad-
dle region hosted by Jupiter the final difference between
the average separation of the two masses corresponding to
Newtonian theory and the theories of GRAS and MOND
will exceed 1 cm. In the case of the saddle region hosted
by Neptune, depending on the length of time the experi-
ment is run, differences will greatly exceed 10 cm. This re-
sult is independent of the specific formulation of MOND
as all formulations must lead to agreement with the RAR
and the BTFR. Indeed, any alternative gravitational theory
which agrees with the RAR and the BTFR will lead to this
result.

A positive result would certainly indicate that the dark
matter explanation for the various astronomical explanations
is incorrect. The current alternative theories, plus the multi-
tude that would arise after a positive result, would all vie for
the being the replacement theory. Ideally a theory of quan-
tum gravity would come forth that would lead to the RAR
and the BTFR. The theory of GRAS may provide a clue as
to how this could happen. Conversely, a null result would
eliminate GRAS and MOND as possibilities and would add
support to the theory of dark matter. The key is that the op-
portunity to know which road to take in order to understand
current astronomical observations does exist!

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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