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Abstract Locally-rotationally-symmetric Bianchi-I space-
time model is studied with constant Hubble parameter in
f (R,T ) = R + 2λT gravity. Although a single (primary)
matter source is considered, an additional matter source ap-
pears due to the coupling between matter and f (R,T ) grav-
ity. The constraints are obtained for a realistic cosmologi-
cal scenario. The solutions are also extended to the case of
a scalar field (normal or phantom) model, and it is found
that the model is consistent with a phantom scalar field only.
The coupled matter also acts as phantom matter. The study
shows that if one expects an accelerating universe from an
anisotropic model, then the solutions become physically rel-
evant only at late times when the universe enters into an
accelerated phase. Placing some observational bounds on
the present equation of state of dark energy, ω0, the be-
havior of ω(z) is depicted, which shows that the phantom
field starts dominating very recently, somewhere between
0.2 � z � 0.5. The geometrical behavior of the model re-
mains identical to the one in general relativity.
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1 Introduction

Harko et al. (2011) proposed a general non-minimal cou-
pling between matter and geometry in the framework of
an effective gravitational Lagrangian consisting of an ar-
bitrary function of the Ricci scalar R, and the trace T of
the energy-momentum tensor, and introduced f (R,T ) grav-
itational theory. An extra acceleration in f (R,T ) gravity
results not only from a geometrical contribution, but also
from the matter content. This extraordinary phenomena of
f (R,T ) gravity may provide some significant signatures
and effects which could distinguish and discriminate be-
tween various gravitational models. Therefore, this theory
has attracted many researchers to explore different aspects
of cosmology and astrophysics in isotropic and anisotropic
space-times (see for example Jamil et al. (2012), Reddy
et al. (2013), Azizi (2013), Alvarenga et al. (2013b,a), Sharif
et al. (2013), Chakraborty (2013), Houndjo et al. (2013),
Pasqua et al. (2013), Ram and Priyanka (2013), Singh and
Singh (2015), Baffou et al. (2015, 2018), Santos and Ferst
(2015), Noureen et al. (2015), Shamir (2015), Kumar and
Singh (2015), Singh and Singh (2016), Alhamzawi and Al-
hamzawi (2016), Yousaf et al. (2016), Alves et al. (2016),
Zubair et al. (2016), Sofuoglu (2016), Momeni et al. (2016),
Das et al. (2016), Salehi and Aftabi (2016), Sahoo et al.
(2018), Moraes et al. (2018), Singh and Beesham (2018),
Srivastava and Singh (2018), Sharif and Anwar (2018), Ti-
wari and Beesham (2018), Shabani and Ziaie (2018), Rajabi
and Nozari (2017), Moraes et al. (2019), Deb et al. (2018,
2019), Lobato et al. (2019), Tretyakov (2018), Elizalde and
Khurshudyan (2018), Ordines and Carlson (2019), Maurya
and Tello-Ortizb (2019), Esmaeili (2018), Debnath (2019)).

Harko et al. (2011) considered some particular classes of
f (R,T ) gravity models, obtained by explicitly specifying
the functional form of f . Generally, the field equations in
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the case of f (R,T ) gravity, depend on the physical nature
of the matter field. Hence, for each choice of f one may
obtain several theoretical models, corresponding to different
matter sources. In the first example the authors considered
f (R,T ) = R + 2f (T ) and showed that this form is equiv-
alent to a cosmological model with an effective cosmolog-
ical constant � ∝ H 2, where H is Hubble parameter. They
also showed that generally for this choice of f (R,T ) the
gravitational coupling becomes an effective and time depen-
dent coupling, of the form Geff = G ± f ′(T ), where the
symbols have their usual meaning defined therein. Thus the
term 2f (T ) in the gravitational action modifies the gravi-
tational interaction between matter and curvature, replacing
G by a running gravitational coupling parameter. Although
there is no any fundamental principle behind considering a
liner combination of R and T , the authors showed that the
choice f (T ) = λT for the dust matter leads to the power-
law expansion of the universe, a ∝ tα where α depends on
parameter λ.

The choice f (R,T ) = R +2λT also corresponds to gen-
eral relativity (GR) with additional matter content on the
right side of the field equations. This allows for a wider va-
riety of behavior, which reduces to GR when λ = 0. Since
the right side of the equations are similar to GR with an
imperfect fluid, e.g., bulk viscosity, the theory has the po-
tential to solve the entropy problem which occurs in GR.
We will show in Sect. 3 that a variable cosmological pa-
rameter arises naturally in f (R,T ) gravity. A dynamic �

can solve the cosmological constant problem, the coinci-
dence problem as well as the fine tuning problem, whilst
being consistent with cosmological observations (Basilakos
2009). The cosmological constant in the gravitational La-
grangian in f (R,T ) = R + 2λT gravity is a function of
the trace of the stress-energy tensor, and consequently the
model can be denoted “�(T ) gravity” which may be con-
sidered a relativistically covariant model of interacting dark
energy, based on the principle of least action. Finally, the
form f (R,T ) = R +2λT has been criticized in some works
(Saha 2015; Fisher and Carlson 2019), but this criticism has
been adequately answered by Harko and Moraes (2020) re-
cently.

Moreover, in an earlier work one of the present authors
VS with his collaborator (Singh and Singh 2014) when re-
constructed f (R,T ) = R + 2f (T ), found that a de Sitter
universe naturally leads to f (R,T ) = R + λT . A power-
law expansion also gives a similar form of f (R,T ), but that
contains some power of T also. In addition, as we know,
the continuity equation does not hold in f (R,T ) gravity,
in general. But in one of our recent study Singh and Bee-
sham (2018), when we searched a form of type f (R,T ) =
R + 2f (T ) for which the conservation equation may hold,
then for a flat potential of a scalar field we surprisingly found
that such form is nothing but f (R,T ) = R + 2λT . Hence,

it is not just an assumption but it has significant mathemat-
ical and physical basis. Although it is the simplest form, it
has the potential to explore some of the prominent features
of f (R,T ) gravity. Certainly, this is the why in most of the
studies the researchers have preferred this specific form.

The first work on any anisotropic model in f (R,T ) grav-
ity was carried by Adhav (2012) in a locally-rotationally-
symmetric (LRS) Bianchi I space-time. The author consid-
ered f (R,T ) = R + 2λT , and obtained the solutions by as-
suming a constant expansion rate. The constant expansion
rate means the accelerating expansion of the universe. How-
ever, a serious shortcoming in his work is that the solutions
are mathematically and physically invalid due to an incor-
rect field equation. Our purpose in this paper is to address
the correct field equations and explore the geometrical and
physical properties to the paper by Adhav (2012).

If one considers any matter fields in this theory, then due
to the coupling between matter and f (R,T ) gravity, some
extra terms appear on the right hand side of the field equa-
tions. These terms can be treated as matter as well and may
be called coupled matter. It may act either as a perfect fluid
or DE. Therefore, the effective matter in these models is a
sum of primary matter and coupled matter. One may ensure
a physically viable scenario by demanding the weak energy
condition (WEC)1 for the primary matter and coupled mat-
ter. We have followed this criteria in our recent study (Singh
and Beesham 2020). We shall follow the same criteria in the
present work to preserve physical viability of the model.

We extend our solutions to the case of a normal/phantom
scalar field model to examine which one is consistent phys-
ically. We also depict the behavior of the equation of state
(EoS) parameter by using the present values of EoS parame-
ter consistent with observational constraints. We explore the
consequences of the introduction of a scalar field and exam-
ine the role of f (R,T ) gravity in this model.

The work is organized as follows. In Sect. 2 we show
that the geometrical behavior of the model reported by Ad-
hav (2012) is independent of f (R,T ) gravity. In Sect. 3
we present the correct field equations for an LRS Bianchi
I spacetime model in f (R,T ) = R + 2f (T ) gravity, where
f (T ) = λT , and, ensuring the positivity of the energy den-
sity, we find the constraints for a realistic physical scenario.
The scalar field model is considered in Sect. 3.1 followed
by a study of the behavior of the coupled matter through
the energy conditions in Sect. 3.2. The findings are summa-
rized in Sect. 4. Note that the equation numbers in round
brackets throughout our discussion refer to the equations of
our work, whereas the equation numbers in round brackets,
the section numbers and some points in roman mentioned
within inverted commas refer to Adhav (2012).

1ρ ≥ 0, ρ + p ≥ 0.
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2 The solutions in general relativity

In this section we show that the geometrical behavior in
points “(i)–(iv)” addressed by Adhav (2012) in section “4”,
is independent from f (R,T ) gravity, and it remains similar
to that in GR.

A spatially homogenous and anisotropic LRS Bianchi I
space-time metric is given by

ds2 = dt2 − A2(t)dx2 − B2(t)(dy2 + dz2), (1)

where A and B are the scale factors, and are functions of
cosmic time t .

The average scale factor for the metric (1) is defined as

a = (AB2)
1
3 . (2)

The average Hubble parameter (average expansion rate) H ,
which is the generalization of the Hubble parameter in the
isotropic case, is given by

H = 1

3

(
Ȧ

A
+ 2

Ḃ

B

)
, (3)

where a dot denotes the derivative with respect to cosmic
time t .

Consider the energy-momentum tensor

Tμν = (ρ + p)uμuν − pgμν, (4)

where ρ is the energy density and p is the thermodynamical
pressure of the matter. In comoving coordinates uμ = δ

μ
0 ,

where uμ is the four-velocity of the fluid which satisfies the
condition uμuν = 1.

The Einstein field equations read as

Rμν − 1

2
Rgμν = Tμν, (5)

where the system of units 8πG = 1 = c are used.
The above field equations for the metric (1) and energy-

momentum tensor (4), yield

(
Ḃ

B

)2

+ 2
ȦḂ

AB
= ρ, (6)

(
Ḃ

B

)2

+ 2
B̈

B
= −p, (7)

Ä

A
+ B̈

B
+ ȦḂ

AB
= −p. (8)

These are three independent equations with four unknowns,
namely A, B , ρ and p. Therefore, one requires a supple-
mentary constraint to find the exact solutions. Adhav (2012)
considered a constant expansion rate

H = k, (9)

where k > 0 is a constant. Since H = ȧ/a, the average scale
factor evolves as

a(t) = a0e
kt , (10)

where a0 is an integration constant.
The deceleration parameter, q = −aä/ȧ2 = −1 − Ḣ/H 2

takes a constant value

q = −1, (11)

which corresponds to an accelerating expansion of the uni-
verse.

From (7) and (8), one has

Ȧ

A
− Ḃ

B
= β

AB2
, (12)

where β is a constant of integration.
From (3) and (12), by the use of (9), one obtains

A = c1e
kt− 2βe−3kt

9k , (13)

B = c1e
kt+ βe−3kt

9k , (14)

where c1 is a constant of integration and another integra-
tion constant is taken as unity without any loss of generality.
In section “3”, namely, “physical properties”, Adhav (2012)
worked out some geometrical parameters and obtained the
expressions for the energy density and pressure. The author
in his conclusion mentioned that the scale factors are the
solutions of the LRS Bianchi I model in f (R,T ) gravity.
But here one can see that the scale factors (13) and (14) are
obtained in Einstein’s gravity. Hence, the behavior of the
geometrical parameters, namely, the expansion scalar, shear
scalar, and the anisotropy parameter discussed by Adhav is
independent of f (R,T ) gravity and remains the same as in
GR. In our recent work (Singh and Beesham 2019), we have
explored the features of these parameters.

The main issue in Adhav’s paper is that the expressions
for the energy density and pressure are incorrect due to
a wrong field equation, namely, equation number “(2.5)”.
Therefore, the solutions obtained by him are invalid math-
ematically. In the next section, we shall reformulate this
model. We find the constraints for a viable cosmological
scenario and explore the physical behavior of the model. We
shall also extend the solutions to a scalar field model.

3 The solutions in f (R,T ) gravity

In Sect. 2, ρ and p are, respectively, the energy density
and pressure of the effective matter. When one considers the
energy-momentum tensor (4) in f (R,T ) gravity, then ρ and
p no longer correspond to the effective energy density and
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pressure. As aforementioned in the introduction, due to the
coupling between matter and the trace, some extra terms ap-
pear on the right hand side of the field equation in f (R,T )

gravity. These terms may be treated as matter. We can call it
coupled matter. The matter given by the energy-momentum
tensor (4) may be called the primary matter. Therefore, we
replace ρ and p with ρm and pm, respectively, which repre-
sent the energy density and pressure of primary matter. The
notations for coupled matter are defined in Sect. 3.2. In this
way, the old notations ρ = ρm +ρf and p = pm +pf again
represent the effective energy density and pressure, respec-
tively.

The field equations in f (R,T ) = R+2f (T ) gravity with
the system of units 8πG = 1 = c, are obtained as

Rμν − 1

2
Rgμν = Tμν + 2(Tμν + pgμν)f

′(T ) + f (T )gμν.

(15)

Adhav (2012) considered the simplest case f (T ) = λT , i.e.,
f (R,T ) = R + 2λT , where T = gμνTμν = ρm − 3pm, for
which the field Eqs. (15) reduce to

Rμν − 1

2
Rgμν = (1 + 2λ)Tμν + λ(ρm − pm)gμν. (16)

Let us recall Einstein’s equations with cosmological con-
stant (�) on the right side

Rij − 1

2
Rgij = Tij + �gij . (17)

By comparing the above two equations, we see that an ef-
fective cosmological parameter as a function of T may be
defined as

� = �(T ) = −(2pm + T )λ = (ρm − pm)λ. (18)

Hence, we see that a variable cosmological parameter arises
naturally in f (R,T ) = R + 2λT gravity. This can help re-
solve the cosmological constant problem, the coincidence
problem as well as the fine tuning problem, whilst being
consistent with cosmological observations (Basilakos 2009).

The field Eqs. (16) for the metric (1), yield

(
Ḃ

B

)2

+ 2
ȦḂ

AB
= (1 + 3λ)ρm − λpm, (19)

2
B̈

B
+

(
Ḃ

B

)2

= −(1 + 3λ)pm + λρm, (20)

Ä

A
+ B̈

B
+ ȦḂ

AB
= −(1 + 3λ)pm + λρm. (21)

It is to be noted that the last term of equation “(2.5)” in
Ahdav’s paper is “+2pλ”, which is incorrect. Indeed, this
should be “−λp”.

Using (13), (14) in (19) and (20), for λ �= −1/2 and λ �=
−1/4, we obtain

ρm = 3k2

1 + 4λ
− β2e−6kt

3(1 + 2λ)
, (22)

pm = − 3k2

1 + 4λ
− β2e−6kt

3(1 + 2λ)
. (23)

These are the correct expressions for the energy density and
pressure which are different from those obtained by Ad-
hav (2012). In both of these expressions the variable term
decreases with time. Consequently, the energy density and
pressure increase with the cosmic evolution and attain a con-
stant value ρm = 3k2/(1 + 4λ) = −pm as t → ∞, while
both physical quantities are infinite in the infinite past.

The energy density for any physically viable cosmolog-
ical model must be positive. From (22), it is clear that ρm

could be always positive if 1 + 4λ > 0 and 1 + 2λ < 0, but
this is not possible. Similarly, the models with −1/2 < λ <

−1/4 also become physically unrealistic as ρm always re-
mains negative in this case. However, the energy density can
be positive for some restricted periods under the constraints

t ≤ 1

k
ln

[
(1 + 4λ)β2

9(1 + 2λ)k2

] 1
6

if λ < −1

2
, (24)

and

t ≥ 1

k
ln

[
(1 + 4λ)β2

9(1 + 2λ)k2

] 1
6

if λ > −1

4
. (25)

The model describes an accelerating expansion of the uni-
verse (q = −1). However, the acceleration may be an early
inflation or a late time acceleration. Since the model with
λ < −1/2 is physically viable only during early evolution,
the acceleration must be an early inflation in this case,
whereas the model with λ > −1/4 is physically viable only
at late times, hence the acceleration in this case must be the
present accelerating expansion.

Our main objective is now to identify the nature of matter.
The EoS parameter which is defined as ωm = pm/ρm, gives

ωm = −1 + 2

1 + γ e6βt
, (26)

where γ = −9(1 + 2λ)k2/(1 + 4λ)β2. The expression (26)
looks similar to the EoS parameter of the effective matter
in GR (Singh and Beesham 2019). The only difference here
is that γ contains a term λ of f (R,T ) = R + 2λT gravity.
The constraints obtained in (24) and (25) ensure the pos-
itivity of γ . Since ωm → 1 as t → −∞, and ωm → −1
as t → ∞, the matter behaves as stiff matter in the infi-
nite past, while it plays the role of a cosmological con-
stant at late times. We see that ωm diverges at time t =
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k−1 ln
[
(1 + 4λ)β2/(9(1 + 2λ)k2)

]1/6
, so it cannot be used

to depict the behavior of the matter during intermediate evo-
lution.

The early and late behavior of primary matter in our
model matches with the characteristics of a scalar field. Due
to the domination of kinetic energy over the scalar poten-
tial at early times, the scalar field acts like stiff matter. A
scalar field with a self-interacting potential, due to the dom-
ination of the potential term over the kinetic term, gives rise
to a negative pressure for driving super fast expansion dur-
ing inflation. When the field enters into a regime in which
the potential energy once again takes over from the kinetic
energy, it exerts the same stress as a cosmological constant
at late times, which happens however with a different en-
ergy density (in comparison to inflation). Therefore, in what
follows we substitute the primary matter with a scalar field
(quintessence or phantom) for the further investigation.

3.1 Scalar field model

The energy density and pressure of a minimally coupled nor-
mal (ε = 1) or phantom (ε = −1) scalar field, φ with self-
interacting potential, V (φ) are, respectively, given by

ρφ = 1

2
εφ̇2 + V (φ), (27)

pφ = 1

2
εφ̇2 − V (φ). (28)

Replacing ρm with ρφ and pm with pφ , and using (27) and
(28) in (22) and (23), the kinetic energy and scalar potential,
respectively, are obtained as

1

2
εφ̇2 = − β2e−6kt

3(1 + 2λ)
, (29)

V (t) = 3k2

1 + 4λ
. (30)

From (29), for physical reality of the solutions, we must
have λ < −1/2 if ε = 1 and λ > −1/2 if ε = −1. It is
to be noted that the requirement of positive kinetic energy
is equivalent to obeying the null energy condition (NEC).2

Since we have already ensured the positivity of energy den-
sity under the constraints (24) and (25), the WEC is satis-
fied for λ < −1/2 and λ > −1/2. In addition, the scalar po-
tential also must be positive for a physically viable model,
which is possible only for λ > −1/4. Hence, the model is
consistent with a phantom scalar field only. It is to be noted
that having a negative scalar potential is equivalent to vio-
lating the dominant energy condition (DEC).3 Furthermore,
the energy density for λ > −1/4, is positive only after a time

2ρ + p ≥ 0.
3|ρ| ≥ p or ρ ± p ≥ 0.

given in (25), therefore, the model excludes the possibility
of early inflation, and accommodates only late time acceler-
ation.

On integrating (29), we get

φ = φ0 ± β

3k

[
2

3(1 + 2λ)

] 1
2

e−3kt , (31)

where φ0 is a constant of integration. Only the positive sign
is compatible for physical consistency, so we proceed fur-
ther with it only.

The energy density and pressure of the phantom scalar
field are given by (22) and (23), which can be expressed in
terms of red shift, z via the relation a = a0/(1 + z) as

ρφ = 3k2

1 + 4λ
− β2(1 + z)6

3(1 + 2λ)
, (32)

pφ = − 3k2

1 + 4λ
− β2(1 + z)6

3(1 + 2λ)
, (33)

respectively, where we have assumed the present scale factor
to be unity, i.e., a0 = 1.

Similarly, the constraints (24) and (25), respectively, can
be expressed as

z ≥ γ
1
6 − 1 for λ < −1

2
, (34)

z ≤ γ
1
6 − 1 for λ > −1

4
. (35)

The EoS parameter (26), takes the form

ωφ =
[
−1 + 2

1 + γ (1 + z)−6

]−1

. (36)

As aforesaid, though γ contains the parameter λ of f (R,T )

= R +2λT gravity, but being a single parameter expression,
the above EoS is identical to the EoS of the effective mat-
ter of the same model in GR (Singh and Beesham 2019).
Hence, the primary matter in this model behaves similar to
the effective matter in GR as shown in Fig. 1. An interest-
ing fact here is that though Fig. 1 is identical to one in Ref.
Singh and Beesham (2019), it represents a different matter
content. In the present study, it describes a part of the matter,
while it describes the effective matter in GR. This difference
can also be seen in the expression of scalar field (31), which
involves the parameter λ of f (R,T ) = R + 2λT gravity. So
we can examine how f (R,T ) gravity affects the evolution
of the scalar field by analyzing its variation against differ-
ent values of λ. We pursue further with the approach that we
have adopted in our recent study (Singh and Beesham 2019).

The present value of the EoS parameter is

ωφ(z = 0) = 1 + γ

1 − γ
. (37)
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Fig. 1 ωφ versus z for different values of γ

Fig. 2 φ(z) versus z for different values of λ with γ = 5 and φ0 = 1

Combined results from the cosmic microwave background
(CMB) experiments with large scale structure (LSS) data,
the H(z) measurement from the Hubble Space Telescope
(HST) and luminosity measurements of Type Ia Supernovae
(SNe Ia), put the following constraints on the EoS: −2.68 <

ω0 < −0.78 (Melchiorri et al. 2003). These bounds be-
come more tight, i.e., −1.45 < ω0 < −0.74 (Hannestad and
Morstell 2002), when the Wilkinson Microwave Anisotropy
Probe (WMAP) data is included (also see Alam et al. (2004);
Alcaniz (2004)). For these observational limits from (37),
we get γ > 2.19 for the former bounds, and γ > 5.44 for
the latter. Now we can depict the profile of the EoS parame-
ter for some values of γ consistent with these observational
outcomes.

Figure 1 plots the behavior of the EoS parameter against
redshift under the constraint (35) for some values of γ >

2.19. We see that ωφ < −1, which confirms the theoreti-
cal outcome that the primary matter is of phantom type and
mimics the cosmological constant in future evolution.

The phantom scalar field (31) can be given as

φ = φ0 ±
[

2

3γ (1 + 4λ)

] 1
2

(1 + z)3. (38)

The evolution of the scalar field against z for some values of
λ with γ = 5 (this value is consistent with the observational
bounds discussed above) and φ0 = 1 is shown in Fig. 2. The
scalar field decreases from an infinite value with the evolu-
tion of the universe, and attains a finite minimum value at
late times. If φ0 = 0, the scalar field vanishes at late times.

The flat potential (30) can be identified as a cosmological
constant. Moreover, if β = 0 then φ = φ0 and ρφ = 3k2 =
−pφ , which essentially corresponds to a cosmological con-
stant. If λ = 0, the solutions reduces to the model one in
GR (Singh and Beesham 2019). One may also readily verify
that the standard de Sitter solutions for a flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) model of GR are re-
covered when β = 0 and λ = 0.

3.2 The behavior of coupled matter

Separating the energy densities and pressures of primary
matter and coupled matter, the field Eqs. (19)–(21) can be
written as

(
Ḃ

B

)2

+ 2
ȦḂ

AB
= ρm + ρf , (39)

2
B̈

B
+

(
Ḃ

B

)2

= −(pm + pf ), (40)

Ä

A
+ B̈

B
+ ȦḂ

AB
= −(pm + pf ), (41)

where ρf = λ(3ρm − pm) and pf = λ(3pm − ρm), are the
energy density and pressure of coupled matter, which are
obtained as

ρf = 12λk2

1 + 4λ
− 2λβ2e−6kt

3(1 + 2λ)
, (42)

pf = − 12λk2

1 + 4λ
− 2λβ2e−6kt

3(1 + 2λ)
. (43)

Although ρf always remains positive for −1/2 < λ <

−1/4, the energy density of primary matter becomes neg-
ative for these values, and thus we exclude this case. For
λ < −1/2, ρf becomes negative at early times, so we ex-
clude this case too. Similarly, when −1/4 < λ < 0, ρf be-
comes negative at late times. Notwithstanding, ρf is positive
for λ > 0 at late times. Hence, the model in this case pro-
vides a realistic scenario. The EoS parameter, ωf = pf /ρf

diverges at some time, say t = t�, so it is not worthwhile us-
ing it to depict the behavior of coupled matter. Therefore, we
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shall study the nature of coupled matter through the energy
conditions. We require

ρf + pf = −4λβ2e−6kt

3(1 + 2λ)
, (44)

ρf − pf = 24λk2

1 + 4λ
. (45)

The NEC and DEC can be satisfied, respectively, for

− 1

2
< λ < 0, (46)

λ < −1

4
, or λ > 0. (47)

Since ρf is positive only for λ > 0, therefore, the coupled
matter violates the NEC but holds the DEC. Hence, the be-
havior of coupled matter is similar to the primary matter, i.e.,
it also behaves as phantom DE. Thus, the behavior of cou-
pled matter also shows that the model is viable to describe a
late time cosmic acceleration in presence of phantom matter.

4 Conclusion

Adhav (2012) studied an LRS Bianchi I model with constant
expansion rate in f (R,T ) = R + 2λT gravity. Due to an in-
correct field equation, the solutions obtained by the author
are mathematically and physically invalid. Notwithstanding
a wrong field equation, the behavior of the geometrical pa-
rameters is not affected. Moreover, the kinematical param-
eters in such formulation do not depend on f (R,T ) grav-
ity. In the present paper we have reconsidered his work and
also extended the solutions to a scalar field (quintessence or
phantom) model. Firstly, we have shown that the geometri-
cal behavior of the model remains the same as in GR. We
have pointed out that Adhav (2012) misunderstood the time
of origin of the universe. He discussed the evolution from
t = 0 to t → ∞. He probably understood the origin of the
universe at t = 0, whereas the model has an infinite past.
For details, the readers may refer our recent works (Singh
and Beesham 2019, 2020). While Adhav (2012) discussed
only the kinematical behavior of the model, we have also
explored the physical properties in detail, keeping the phys-
ical viability of the solutions at the center. The solutions in
f (R,T ) = R + 2λT gravity model are valid for all values
of λ except λ �= −1/2 and λ �= −1/4. The assumption of
constant expansion rate gives a constant value of the decel-
eration parameter, q = −1. Consequently, the model can de-
scribe only an accelerating universe. However, the acceler-
ation may be early inflation or the present acceleration. To
ensure this we have obtained the constraints for a physically
realistic scenario, and found that the model is viable to de-
scribe only the present accelerating phase.

The evolution of the universe is governed by the effective
matter. It is important to mention here that f (R,T ) gravity
does not alter the behavior of effective matter in the formu-
lations where the kinematical behavior is fixed by some geo-
metrical parameters. Hence the behavior of effective matter
in this study remains the same as the one in GR. The effec-
tive matter in the present study thus also remains identical
to the model in GR. The behavior of the effective matter in
GR has been studied by us elsewhere recently (Singh and
Beesham 2019). In the present study, an extra matter (other
than the primary matter) appears due to the coupling be-
tween matter and f (R,T ) gravity. We term this extra matter
as “coupled matter”. We have explored the characteristics of
primary matter as well as of coupled matter.

The primary matter in this model acts similarly to the ef-
fective matter in GR. When primary matter is replaced with
a scalar field (normal or phantom), the model has been found
consistent only with a phantom scalar field. The phantom
field decreases with the cosmic evolution, while the scalar
potential remains flat throughout. The scalar potential can
be thought of as a cosmological constant. The model can
also be consistent with a normal scalar field, but the scalar
potential becomes negative in that case, which would be un-
realistic. The coupled matter also behaves similarly to pri-
mary matter. The viable models are possible only for λ > 0.

We have also examined the consistency of the behavior
of primary matter with the observational data by borrow-
ing some current values of the EoS parameter from some
observational outcomes. The dynamics of the EoS parame-
ter supports the observational results and suggests that the
phantom field has started dominating over the other en-
ergy contents somewhere between 0.2 � z � 0.5. The scalar
field model also witnesses that if one demands an accel-
erating cosmic expansion from an anisotropic model, then
the model presents a viable cosmological scenario (obeying
NEC and WEC) only after a time when the universe enters
into an accelerating phase.

It is to be noted that Shamir (2014) obtained solutions of
the general Binachi I model with constant expansion rate in
f (R,T ) = R + 2λT gravity. Those solutions are also valid
for late times only as the energy density is negative at early
times. Hence, our results can also be interpreted within the
general Binachi I spacetime formalism. We believe that only
the kinematical behavior would be different, but the physical
behavior will remain the same.
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