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Abstract In this paper we deal with the Tsallis holographic
dark energy from a dynamical system approach. Here we
assume the Hubble horizon as an infra red cutoff. We con-
sider the cosmic evolution of the model in noninteracting,
linearly, sign changeable and nonlinearly interacting cases.
The analysis includes an autonomous system of equations
and then we analyze the related phase spaces. We find that
for a consistent picture of cosmic evolution in all cases we
should take δ > 1. However in the linear interaction case
there exists a chance for δ < 1 but the necessity of a decel-
erating matter dominated epoch leads to a restriction on the
coupling constant b. This restriction rejects the chance of the
δ < 1 in the latter case. Then we find that an observationally
consistent description of the cosmic evolution for THDE in
the presence of the discussed interaction terms is possible
for δ > 1. In the linearly interacting case of interaction we
also find the restriction b2 < 1

3 for a consistent picture of
cosmic evolution. Beside we study the squared sound speed
analysis and find chances of stability for suitable choices of
free parameters. We also discuss the impacts of the interac-
tion terms on the age of the universe.

Keywords Dark energy · Cosmology · Dynamical system
analysis

1 Introduction

Dark energy (DE) was presented to explain unexpected
phase of accelerated expansion, (Riess et al. (1998), Perl-
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mutter et al. (1999, 2003), De Bernardis et al. (2000))
in the Einstein’s general relativity framework. First candi-
date for dark energy is the so called cosmological constant
which suffers two problems (Weinberg (1989)). First prob-
lem is the cosmological constant problem and the second
one comes from the fact that its equation of state parame-
ter (EoS), w, is constant while observations reveal a small
variations in that of the DE (Padmanabhan (2003), Sahni
and Starobinsky (2000)). Seeking an explanation for the lat-
ter case, dynamical models of dark energy was proposed in
the literature. In this category, the dark energy candidate is
a live time varying component. Examples of this category
are, quintessence model which is based on a self interacting
scalar field (Wetterich (1988), Ratra and Peebles (1988)) and
K-essence which takes a scalar field with a non-canonical ki-
netic term responsible for cosmic acceleration (Chiba et al.
(2000), Armendarriz-Picon et al. (2000, 2001)). Also one
can take a look at phantom (Caldwell et al. (2003)) and
agegraphic dark energy models (Cai (2007), Wei and Cai
(2008)) which are extensively investigated.

Holographic dark energy (HDE) is also another inter-
esting model of dynamical category. HDE is an attempt
to solve the cosmic acceleration which originates from the
holographic principle (HP). This principle states that all the
information contained in a volume, can be obtained using a
theory on the boundary of that volume. Following the novel
work by Cohen et al. (1999), which presented a key rela-
tion between ultra violet cutoff (UV), infra red cutoff (IR)
and the entropy (S) for an effective quantum field theory,
the HDE was presented in (Hsu (2004), Li (2004)). In this
model, the quantum fields oscillations at the ground state
level can acts as DE. Various features of the HDE is widely
investigated. HDE can successfully explain some aspects
of the cosmic acceleration. In (Lee et al. (2008)), the au-
thors tried to explain the so called “coincidence problem”
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which simply asks that why the dark energy will be dom-
inated at present epoches. Statefinder diagnosis is studied
for the HDE in (Zhang (2005)). They found that in many
versions of the HDE the statefinder variables {r, s} never
catches {1,0}. In some cases however acceptable values can
be obtained. In addition the timeline of a flat background can
not be discussed correctly through the HDE (Hsu (2004), Li
(2004)). Interested reader can find a detailed review on HDE
in, (Wang et al. (2017)), and references therein.

One way in curing the HDE problems is to generalize
the underlying entropy relation to the non-extensive domain.
One choice of the non-extensive category is the so called
Tsallis entropy. Cosmological implication of the Tsallis en-
tropy was first detailed in (Moradpour (2016)). In this paper
the author considered impacts of Tsallis entropy in the DE
problem. Following this paper a new version of the HDE
presented in (Tavayef et al. (2018)). The authors replaced
the previous entropy relation by general Tsallis entropy
(S = γAδ) and called the new model as Tsallis holographic
dark energy (THDE). It can be seen that the THDE contains
a new free parameter with respect to the standard HDE. Dif-
ferent choices of IR cutoff can be used to study cosmic dy-
namics in the framework of THDE. THDE with the Hubble
cutoff was discussed in (Tavayef et al. (2018)). The future
event horizon and Granda-Oliveros (GO) as IR cutoffs were
performed in (Saridakis et al. (2018), Abdollahzadeh et al.
(2018)). In (Sadri (2019)), the author examined the consis-
tency of the THDE with several observational data sets. He
claimed that there exist an inconsistency between the THDE
and the studied data sets. Statefinder diagnosis of the model
is performed in (Varshney et al. (2019)). Tsallis HDE is also
studied in modified theories of gravity (Ghaffari et al. (2018,
2019), Jawad et al. (2019), Sharif and Saba (2019)). In an-
other approach Sheykhi considered impacts of Tsallis en-
tropy relation in emergent gravity paradigm and obtained
the modified Friedmann equations (Sheykhi (2018)). The
mission is done by means of the first law of thermodynam-
ics and he showed that the resulting modified equations can
solve the age problem. In the standard cosmology the dark
sectors namely, DE (�) and dark matter (DM) are taken as
independent components. However, since the nature of both
DE and DM is unknown yet, it is possible to leave a chance
of interaction between these dark sectors. It is worth to note
that there is not any known symmetry avoiding such an in-
teraction in dark sectors (Wetterich (1988)). It is shown in
the literature that taking an interaction between dark com-
ponents can alleviate the coincidence problem. There also
exists evidences which show that introducing an interac-
tion term leads to a better consistency between theory and
cosmic observations (Bertolami et al. (2007), Olivares et al.
(2005)).

In this paper we mainly follow two points in THDE. At
first we take a look at the cosmic dynamics through dynam-
ical system approach. Next we try to find the impacts of

adding an interaction term between dark components on the
cosmic dynamics. To this end we consider different choices
of interaction terms and discuss about the cosmic dynamic
in every case.

The plan of this paper is as follows. Basic equations of
standard cosmology are presented in Sect. 2. In the next sec-
tion, we brief the Tsallis holographic dark energy model in
a flat universe. In Sect. 4, we present an introduction to dy-
namical system approach in cosmological context and dis-
cuss about the THDE in presence of different interaction
terms from a dynamical system approach. Next we consider
the impacts of the interaction terms on the age of the uni-
verse. We summarize our results in Sect. 6.

2 Basic equations

In this paper our aim is to discuss the cosmic dynamics
using a dynamical system method which is widely inves-
tigated in cosmology and astrophysical framework (Wain-
wright and Ellis (1997), Copeland et al. (2013), Amendola
(2000), Xu et al. (2012), Capozziello and Roshan (2013),
Landim (2015, 2016)). This technique can clarify the time
line evolution of the underlying system versus evolution of
different energy components of the universe. In this way we
first review the basic equations governing the system. Here
we assume a flat FRW background favored by cosmic ob-
servations. The first Friedmann equation takes the form

H 2 = 1

3M2
p

∑

i=r,D,m

ρi, (1)

where “r” stands for radiation, “D” for dark energy and “m”
stands for matter component which includes baryonic and
dark matter. In above equation MP = 1√

8πG
.

Taking into account a chance of interaction between dark
matter and DE components, the continuity equations can be
written as

ρ̇i + 3Hρi(1 + wi) = Qi, (2)

where Qi denotes the chance of interaction between dif-
ferent components. Since the total content of the universe
should satisfy the energy conservation, we expect

∑
i Qi =

0. Expanding this equation separately for different compo-
nents one can obtain

ρ̇D + 3HρD(1 + wD) = −Q, (3)

ρ̇m + 3Hρm = Q, (4)

ρ̇r + 4Hρr = 0, (5)

where Q represent the interaction between dark components
and we used wm = 0 and wr = 1

3 . Fractional density of dif-
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ferent components can be defined as

�i = ρi

ρcr

, (6)

where the critical energy density is ρcr = 3M2
P H 2. Thus,

the first Friedmann equation becomes
∑

i

�i = 1. (7)

In order to obtain the dark energy EoS parameter we
solve the respective conservation equation (2) for wD .

wD = −1 − Q

3HρD

− ρ̇D

ρD

(8)

Taking time derivative of the first Friedmann equation (1)
and using (2), we reach

Ḣ = −3

2

∑

i

ρi

3M2
p

(1 + wi) (9)

Dividing both sides by H 2 and mixing with (7), one finds

Ḣ

H 2
= −3

2

∑

i

�i(1 + wi) (10)

After a little algebra the deceleration parameter read

q = −1 − Ḣ

H 2
= 1

2

∑

i

�i(1 + 3wi) (11)

Since we are going to discuss about the dynamical system
analysis through next sections it is worth to mention evolu-
tion equation of fractional density for different components.
Starting from

�i = ρi

3M2
P H 2

, (12)

and taking time derivative of above equation and after sev-
eral steps we get

�̇i = �i

[
Qi

ρi

− 3H(1 + wi) − 2H
Ḣ

H 2

]
. (13)

Replacing from (10), we obtain

�′
i = 1

H
�̇i

= fiQ + �i

[
2 − 3(1 + wi) +

∑

�

��(1 + 3w�)

]
(14)

where fiQ = Qi

3M2
P H 3 and � runs over different components

of the universe. The prime sign denotes derivative with re-
spect to x = ln a

a0
(a0 = 1).

3 Tsallis holographic dark energy in a flat
FRW background

Avoiding divergencies in effective field theories, UV and IR
cutoffs are presented. In a subtle paper by, Cohen et al., they
found that the UV and IR cutoffs are not independent (Co-
hen et al. (1999)). For an effective field theory with UV cut-
off � in a finite universe with a size of order L (which plays
the role of IR cutoff), there exist a relation between the en-
tropy, UV and IR cutoffs as, (Cohen et al. (1999))

L3�3 ∼ S. (15)

On the other hand the entire number of degrees of freedom
in a spacetime (which according to holographic principle are
living on the boundary of the region) does not exceed the
Bekenstein-Hawking bound (Bousso (1999)). Then one ob-
tains

L3�3 ≤ SBH = πM2
P L2. (16)

Taking to account in above inequality that Smax
∼= S

3
4
BH and

ρ� ∝ �4 Cohen et al. (1999), one gets

ρ� ∝ M2
P L−2, (17)

where ρ� in above relation is energy density of the stan-
dard HDE. Next step in Standard HDE is to choose a suit-
able IR cutoff (L). The simplest choice is the hubble scale
(L = H−1) which results a energy density consistent with
the observed present value of the dark energy. However it
was shown that this model does not yield a correct equation
of state parameter (EoS) (Hsu (2004)). Curing this problem
the HDE is modified through the IR cutoff parameter (L).
One example is the future event horizon which was pro-
posed in (Li (2004)). Other choices of IR cutoffs can be seen
in (Wang et al. (2017)). Although modifying the IR cutoffs
leads better description of the cosmic dynamic in standard
HDE but still there exist problems such as stability against
small perturbations. Then it seems interesting to modify the
standard HDE avoiding these failures. The other chance to
modify the HDE is to replace the Bekenstein-Hawking en-
tropy relation with other forms of non-extensive entropy
relations. Recently Tavayef et al. presented a new version
of the HDE which is based on the Tsallis entropy relation
(Tavayef et al. (2018)). The Tsallis entropy read

S = γAδ, (18)

where δ is non-additivity parameter and γ is a constant. In-
serting above relation in Eq. (16), one can find

ρT HDE = BL2δ−4, (19)

where B is an undefined parameter. It is obvious that the
standard HDE is retrieved in the case δ = 1.
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Taking the hubble radius (L = H−1) as IR cutoff the
THDE energy density reads

ρD = BH−2δ+4. (20)

Now, we would like to obtain the governing evolution
equations of a universe filled with the THDE, a pressureless
cold dark matter (CDM) and a radiation component. Then
the first Friedmann equation read

H 2 = 1

3M2
p

(ρD + ρm + ρr). (21)

The fractional density for the THDE is

�D = BH 2−2δ

3M2
P

, (22)

and the Eq. (21) in terms of the fractional densities will be

�D + �m + �r = 1. (23)

Taking time derivative of Eq. (20) and replacing in (8) get

wD = −1 − Q
3HρD

− (δ − 2)(1 + 1
3�r)

1 + (δ − 2)�D

. (24)

One can easily check that above relation reduced to the re-
spective one in (Tavayef et al. (2018)) for non interacting
case and in the absence of radiation component. For the
limiting case δ = 1 and in the absence of interaction we
find wD = 0 which is expected (Hsu (2004)). Expanding
Eq. (11) for different component of the universe we ob-
tain

q = 1

2
+ 1

2
�r + 3

2
�D

⎡

⎣
−1 + (2 − δ)

[
1 + �r

3

]
− Q

3HρD

1 − (2 − δ)�D

⎤

⎦

(25)

Another interesting feature of DE models is stability
against perturbations in the cosmic fluid. Here we follow
a semi-Newtonian analysis which can reveals impacts of in-
stability in the cosmic background. To this end we start with
definition of the adiabatic squared sound speed

C2
s = dP

dρ
= Ṗ

ρ̇
= ρ

ρ̇
ẇ + w, (26)

where P = wρ and w is the effective EoS parameter of the
cosmic fluid. Since the content of the universe include DE,
pressureless dark matter and radiation, one easily find

w = Pr + Pm + PD

ρr + ρm + ρD

= 1

3
�r + wD�D (27)

Combining (26), (27) and (2) one get

C2
s = −w′

3(1 + �DwD + 1
3�r)

+ w. (28)

It is worth mentioning that C2
s shows the stability of total

cosmic fluid and not only that of the THDE component and
hence its results are a little bit different from those presented
in Tavayef et al. (2018) and Abdollahzadeh et al. (2018).

Above relations at hand and the relations presented in
Sect. 2 we are ready to consider the main task of this work.

4 Cosmic evolution through a dynamical
system analysis

Here, we would like to consider the competitive behavior
of the cosmic components. Our aim is to see whether the
system evolution corresponds to observations. Running the
evolution equations we expect a non-stable radiation domi-
nated phase at beginning epoches. Next the universe should
enter a long period of non-stable matter dominated era and
finally the universe goes through a DE dominated epoch.

In this section we will discuss the THDE model in pres-
ence of different interaction terms. Interaction between DM
and DE has long history in the literature. At first an inter-
action between dark components proposed to explain the
large inconsistency between the observed and theoretical
value the cosmological constant (Wetterich (1988, 1995)).
A supporting idea of interaction between dark sector com-
ponent comes from the fact that an interacting dark energy
model can be equivalent to a modified gravity (De Felice and
Tsujikawa (2010), He et al. (2011), Zumalacarregui et al.
(2013)). Many models of DE take a linear interaction be-
tween dark component of the universe. However, there ex-
ist no reason to leave non-linear or other forms of inter-
action term between dark matter and energy but simplic-
ity. An example of non-linearly interacting models is a pro-
ductive relation between DM and DE densities in coupling
term which seems to be consistent observationally (He and
Wang (2008)). Interested reader can see a comprehensive
details on interacting models of dark energy in (Bolotin et al.
(2014), Wang et al. (2016)). So, in this section we consider
several cases of THDE including linearly, sign changeable
and non-linearly interacting models. It is worth to mention
that there exist also some implications against interacting
models from the stability issues (D’Amico et al. (2016)).

Now we are ready to start the main task of this note. To
this end at first we bring the evolution equations of the com-
ponents. Expanding Eq. (14) for DE and DM components
we have

�′
D = fQD + 3�D

[
(�D − 1)

(
1 − δ − Q

3HρD

1 − (2 − δ)�D

)
+ �r

3

]
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Table 1 The admitted fixed points of THDE in the non-interacting case
are listed

Fixed point �D �m q Nature

P1 0 0 1 saddle for δ < 1

unstable for δ > 1

P2 0 1 1
2 saddle for δ > 1

stable for δ < 1

P3 1 0 −1 stable

�′
m = fQm + 3�m

[
�D

(
1 − δ − Q

3HρD

1 − (2 − δ)�D

)
+ �r

3

]

1 = �D + �m + �r (29)

For a complete description of the model we introduce dif-
ferent versions of interaction terms and discuss the resulting
dynamical systems.

4.1 Non-interacting THDE

At first we consider the THDE in the absence of interaction.
Governing equations in this case are

�′
D = 3�D

[
(�D − 1)

(
1 − δ

1 − (2 − δ)�D

)

+ 1 − �D − �m

3

]

�′
m = 3�m

[
�D

(
1 − δ

1 − (2 − δ)�D

)

+ 1 − �D − �m

3

]
(30)

As we mentioned above system of equations contains three
fixed points as given in Table 1.

The physical phase space is compact (i.e. 0 ≤ �i ≤ 1).
The first point denotes a radiation dominated phase at the
beginning of the cosmic evolution. One interesting feature
about the fixed points is their stability which can be deter-
mined through their respective eigenvalues of the stability
matrix. For the first point the corresponding eigenvalues are
λ1 = 1 and λ2 = 4(δ − 1). So this fixed point shows an un-
stable character for δ > 1 and a saddle nature for δ < 1. One
can easily find that in this epoch q > 0 which shows a de-
celerative behavior as we expect.

Second fixed point (�m = 1,�D = 0), corresponds to a
matter dominated phase of evolution which starts after radi-
ation dominated one. The eigenvalues of the stability matrix
are (λ1 = −1, λ2 = 3(δ − 1)). This epoches could show a
transient character if we take δ > 1. Taking a look at Fig. 1,
one easily find the decelerative nature of this era.

Last fixed point is a late time attractor (a dark energy
dominated) corresponds to �m = 0,�D = 1. Interesting

Fig. 1 In the upper panel phase space diagram of the non-interacting
THDE is depicted. The solid line corresponds the evolution line for
�D0 = 0.69,�m0 = 0.30995. In the down panel the deceleration pa-
rameter and �i ’s are plotted against x = lna for δ = 1.4

point about this phase is its stability irrespective of the free
parameters (λ1 = −3, λ2 = −4). It is worth to mention fate
of the universe at this point. Since �D = 1, then we have

BH 2−2δ

3M2
P

= 1 ⇒ H = (
3M2

P

B
)

1
2(1−δ) .

Hence, due to the constancy of the Hubble parameter, the
universe undergoes a phase of de Sitter expansion at this
fixed point.

Noting to deceleration parameter one finds accelerative
behavior of the universe through this phase of expansion.

As a result we find that obtaining a correct ordering of
expansion phases, we should set δ > 1. It is worth to men-
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Fig. 2 In this figure the evolution of C2
s is plotted for non-interacting

THDE case

tion that irrespective of the initial conditions system admits
these three fixed points. Phase space diagram of (�m,�D)
is depicted in left part of Fig. 1.

Stability of the cosmic background could be investigated
through the squared sound speed analysis. Since explicit
form of C2

s is too messy, (due to the presence of three com-
ponents), we do not bring them analytically here. Evolution
of the C2

s is depicted in Fig. 2. One can easily see that for
1 ≤ δ < 2 the model shows an unstable behavior. However
for choices of δ > 2 the model evolves through stable phases
according to the squared sound speed analysis.

4.2 Interacting models

4.2.1 Linearly interacting Q = 3b2H(ρD + ρm)

In this case the system also contains three fixed points. The
fixed points are presented in Table 2. One can easily find
that the first fixed point shows a radiation dominated epoch.
Taking a look at the respective eigenvalues of this case, λ1 =

3b2 + 1 and λ2 = 4(δ − 1) reveals that the point has saddle
nature for δ < 1 and is unstable for δ > 1. The universe is
decelerating around this fixed point q = 1.

Second fixed point shows a matter dominated decelerat-
ing phase of expansion. We need an unstable nature of this
point for a consistent picture. The stability matrix exhibits
λ1 = −(3b2 + 1) < 0 and λ2 = 3(δ − 1)(−b2 + 1). The na-
ture of the fixed point is presented in Table 2. The decel-

eration parameter in this point read q = −3b2+1
2 . Necessity

of a decelerative matter dominated epoch restrict coupling
constant value to b2 < 1

3 .
In the last fixed point (the dark energy dominated case),

the first eigenvalue is λ1 = −4. Second eigenvalue is λ2 =
3(δ−1)(−b2+1)

b2(δ−2)−(δ−1)
. An example is plotted in the left part of Fig. 3.

Near this fix point for δ > 1 the universe undergoes a phase
of accelerated expansion. Then in this model the universe
starts from a radiation dominated phase and exits toward a
dark matter era. The dark matter era will be a transient at-
tractor for the values in Table 2. Since more observational
constraint are consistent with b2 < 1 (Sadri (2019)) and also
from the necessity of the transient matter dominated epoch
then we find that the case δ > 1 is of cosmic interest. So
in this case for a consistent history of cosmic evolution we
should set b2 < 1

3 and δ > 1. The fate of the universe is al-
most the same as the previous case and the universe enters
a phase of de Sitter like expansion at the third fixed point.
In this case the fate of the universe is called de Sitter like
because the universe is not a matter free universe at the last
fixed point.

Squared sound speed analysis if Fig. 4 reveals that the
cosmic fluid could be stable against perturbations for desired
values in (Sadri (2019)) (b = 0.048, δ = 2.161). This point
is interesting because in (Sadri (2019)), the author found that
the THDE component is unstable even for best fitted val-
ues of b and δ parameters. However for some ranges of the
parameters b and δ the system shows impacts of instabil-
ity.

4.2.2 Sign changeable interaction term
Q = 3b2H(ρD − ρm)

The first point (�D = �m = 0) with eigenvalues (λ1 =
−3b2 + 1, λ2 = 4(δ − 1)) shows an unstable nature pro-

Table 2 Fixed points of the THDE in the presence of the linear interaction term

Fixed point �D �m q Nature

P1 0 0 1 unstable for δ > 1

saddle for δ < 1

P2 0 1 −3b2+1
2 stable for δ < 1, b2 < 1 and δ > 1, b2 > 1

saddle for δ < 1, b2 > 1 and δ > 1, b2 < 1

P3 1 − b2 b2 − 3b2+2(δ−1)
2(δ−1)

depending on the value of δ and b could be stable or saddle
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Fig. 3 Upper part shows phase space diagram of the THDE in presence
of a linear interaction term. The lower part includes the deceleration pa-
rameter and �is. Figures are plotted for �D0 = 0.69, �m0 = 0.30995,
b = 0.2 and δ = 1.4

vided, δ > 1 and b2 < 1
3 . For δ > 1 and b2 > 1

3 the fixed
point will be saddle. In the case δ < 1, taking b2 < 1

3 the
system provides a saddle point. If evolution of the uni-
verse starts from these possibilities in a radiation dominated
epoch. It will finally approaches toward a matter dominated
era. The system in this epoch experiences a decelerating evo-
lution.

The second fixed point, (�m = 1,�D = 0) could be a
transient attractor. One can see from Fig. 5 that in this era
the expansion of the universe is decelerative. One should
note that the model provide a decelerative behavior at this

Fig. 4 In this figure the evolution of C2
s is plotted for linearly interact-

ing THDE case (b = 0.048)

fixed point irrespective of the values of δ and b due to

q(�m = 1,�D = 0) = 3b2+1
2 . The stability nature of this

fixed point can be seen using the corresponding eigenvalues
(λ1 = 3b2 − 1, λ2 = (δ − 1)(3b2 + 3)). In this case the uni-
verse will exit the matter dominated phase for b2 > 1

3 and
δ > 1. This fixed point will be a saddle point taking δ > 1
and b2 < 1

3 . One can note that although the nature of this
fixed point will also be saddle for the choice b2 > 1

3 , δ < 1,
but these values are not consistent with the radiation domi-
nated epoch. Since the parameters δ and b are constants and
they should be determined at first evolution steps. If we set
them to b2 < 1

3 , δ < 1, then the system will exit from ra-
diation dominated era but the matter dominated fixed point
will be a stable attractor in this case. So we find that in this
form of interaction term the choice δ < 1 can not provide a
consistent picture.

Next the universe goes toward the third fixed point in Ta-
ble 3. The future of the universe is once again a de Sitter like
phase of expansion. In this case the eigenvalues of stability

matrix read λ1 = −4, λ2 = −3

[
2b4+3b2+1

1+b2 δ
δ−1

]
. It is obvious

that for δ > 1, this fixed point will be late time stable at-

tractor. Using the deceleration parameter q = − 3b2+2(δ−1)
2(δ−1)

,

it is easily seen that for δ > 1 this fixed point shows an ac-
celerative nature independent of b. The history of cosmic
evolution is plotted in phase portrait diagram in Fig. 5 for
an example choice of free parameters. Since the universe is
stable at this fixed point it is interesting to discuss about the
stability against small perturbations in the cosmic fluid. Fig-
ure 6 shows that for suitable choices of the free parameters
the model could be stable against perturbations.
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Table 3 Fixed points of the THDE in the presence of the sign changeable interaction term

Fixed point �D �m q Nature

P1 0 0 1 if δ > 1, saddle for b2 > 1
3 and unstable for b2 < 1

3

if (δ < 1), saddle for b2 < 1
3

P2 0 1 3b2+1
2 if δ > 1, for b2 > 1

3 , unstable and for b2 < 1
3 , saddle

if (δ < 1) for b2 > 1
3 saddle

P3
b2+1

2b2+1
b2

2b2+1
− 3b2+1+2(δ−1)

2(δ−1)
for δ > 1 and arbitrary b, stable

Fig. 5 Upper panel shows phase space diagram of the sign changeable
interacting THDE of the form Q = 3b2H(ρD −ρm). In the down panel
the deceleration parameter and �is is plotted versus lna. In above fig-
ures we used �D0 = 0.69,�m0 = 0.30995, b = 0.2 and δ = 1.4 as
initial conditions

Fig. 6 In this figure the evolution of C2
s is plotted for linearly

sign-changeable interacting THDE case (b = 0.2)

4.2.3 Nonlinear interaction term Q = 3b2H
ρ3

D

ρ2
tot

For a nonlinear interaction term the dynamical system equa-
tions read

�′
D = −�D(3b2�3

D + 4�D + �m − 4)(δ − 1)

1 + (δ − 2)�D

�′
m = 1

1 + (δ − 2)�D

[
3b2(δ − 2)�4

D − 3b2(�m − 1)�3
D

+ (−3δ + 2)�D�m + �m(1 − �m)
]

(31)

In this case also the universe contains three fixed points
correspond to radiation, matter and DE dominated epoches.
Setting suitable initial conditions the universe starts its evo-
lution from radiation dominated phase (�r = 1). In this
phase the universe is decelerating according to Fig. 8. The
decelerativity of this epoch is independent of the free pa-
rameter δ and b. This phase of expansion will end toward a
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Fig. 7 In this figure the λ2 is plotted for allowed region of interest in
the non-linear interaction term

matter dominated epoch due to the nature of this fixed point.
The stability matrix eigenvalues in this case are λ1 = 1 and
λ2 = 4(δ − 1).

The second fixed point is a transient attractor for δ > 1.
The reason behind this choice comes from λ1 = −1 and
λ2 = 3(δ − 1). The universe experiences a phase of slow-
ing expansion according to Fig. 8. Once again since q = 1

2
the slowing nature of the expansion is valid for all values of
the free parameter.

The third fixed point is a DE dominated phase of expan-
sion. The explicit form of this fixed point and its stability
matrix eigenvalues are a little bit messy to be presented here.
Its nature is a late time stable attractor for δ > 1. One should
note that in this case the first eigenvalue of the stability ma-
trix is λ1 = −4. The second eigenvalue is also negative for
ranges of our interest according to Fig. 7. So this fixed point
will be stable which corresponds to an accelerated expan-
sion phase for ever. However one should note that this for
ever accelerated expansion leads to a de Sitter like expan-
sion irrespective of the model parameters as mentioned be-
fore.

So it is obvious that for a consistent picture of cosmic
evolution we need δ > 1. Interesting fact about this form
of interaction term is that the cosmic evolution will be con-
sistent with what we need independent the choice of b for
δ > 1.

Evolution of the squared sound speed is depicted in
Fig. 9. The figure reveals that a correct choice of the free
parameters leave a chance of stability against perturbations.
However an observational constraint on the free parameters
is left and could be investigated.

Fig. 8 In top part phase space diagram of the nonlinearly interacting
THDE is plotted. In the down part the deceleration parameter and �is
is plotted against lna. Initial condition is �D0 = 0.69, �m0 = 0.30995,
b = 0.2 and δ = 1.4

5 Age of the universe in THDE model

According to standard cosmology the age of the universe
can be obtained from

t0 = 1

H0

∫ ∞

0

dz

(1 + z)h(z)
= −1

H0

∫ 0

−∞
dx

h(x)
, (32)

where h(z) = H(z)
H0

and x = lna = − ln (1 + z). One can
easily check that age of the universe in the absence of the
DE component is 2

3H0
. In (Tavayef et al. (2018)), the author

found that THDE can alleviate the age problem. Here we
would like to see the impacts of different choices of interac-
tion terms on the age of the present universe. To this end we
use



92 Page 10 of 11 E. Ebrahimi

Table 4 Age of the present
universe is obtained for different
values of δ (b = 0.2). In this
table we used the notation

(H0t0)
upper bound of age
lower bound of age according

to H0 = 67.77 ± 1.30 in
Macaulay (2019)

Interaction term H0t0(δ = 1.2) H0t0(δ = 1.4) H0t0(δ = 1.6) H0t0(δ = 2.2)

3b2H(ρD + ρm) 0.9013.43 Gyrs
13.04 Gyrs 0.9514.18 Gyrs

13.79Gyrs 0.9914.78 Gyrs
14.35Gyrs 1.014.93 Gyrs

14.50 Gyrs

3b2H(ρD − ρm) 0.8212.02 Gyrs
11.88 Gyrs 0.8813.13 Gyrs

12.75 Gyrs 0.9113.58 Gyrs
13.19 Gyrs 0.9514.18 Gyrs

13.77 Gyrs

3b2H
ρ3

D

ρ2
tot

0.8312.38 Gyrs
12.03 Gyrs 0.8913.28 Gyrs

12.90 Gyrs 0.9213.73 Gyrs
13.33 Gyrs 0.9714.48 Gyrs

14.06 Gyrs

Table 5 Age of the present
universe is obtained for different
values of b (δ = 2.4). In this
table we used the notation

(H0t0)
upper bound of age
lower bound of age according

to H0 = 67.77 ± 1.30 in
Macaulay (2019)

Interaction term H0t0(b = 0.05) H0t0(b = 0.1) H0t0(b = 0.15) H0t0(b = 0.2)

3b2H(ρD + ρm) 0.9814.63 Gyrs
14.20 Gyrs 0.9914.78 Gyrs

14.35 Gyrs 1.014.92 Gyrs
14.50 Gyrs 1.014.92 Gyrs

14.50 Gyrs

3b2H(ρD − ρm) 0.9814.63 Gyrs
14.20 Gyrs 0.9714.48 Gyrs

14.06 Gyrs 0.9714.48 Gyrs
14.06 Gyrs 0.9614.33 Gyrs

13.91 Gyrs

3b2H
ρ3

D

ρ2
tot

0.9814.63 Gyrs
14.20 Gyrs 0.9814.63 Gyrs

14.20 Gyrs 0.9814.63 Gyrs
14.20 Gyrs 0.9914.78 Gyrs

14.35 Gyrs

Fig. 9 This figure shows evolution of C2
s for non-linearly interacting

THDE case (b = 0.2)

Ḣ

H
= H ′ = −3

2
H

∑

i

�i(1 + wi), (33)

and solve above equation simultaneously with (14). As a re-
sult we obtain h(x). Next, replacing h(x) in (32), we can
reach an evaluation of the age of the present universe. The
results are summarized in Table 4 and Table 5. In obtain-
ing the results we used the present value of the Hubble pa-
rameter (H0 = 67.77 ± 1.30 km s−1 Mpc−1) presented in
(Macaulay (2019)).

6 Summary

Our goal in this paper is to discuss the THDE in the pres-
ence of interaction terms with the Hubble horizon as IR cut-
off. Here, we assume a universe filled with radiation, matter

and THDE. Evolution of the universe in standard cosmology
starts with an unstable radiation dominated universe which
is followed by another unstable matter dominated epoch. Fi-
nally a DE dominated era is favored by observations. Here
we would like to see whether the interacting THDE provide
such an evolution history. This issue is examined through the
dynamical system analysis by means of obtaining the fixed
points and a discussion about their stability. We found that
in all forms of interaction terms, three expected epoches are
available. Using the timeline of the fixed points, we could re-
strict the free parameters. In noninteracting, sign changeable
and nonlinear interacting THDE cases, for δ > 1, we found
a consistent picture of fixed points with observations (in
agreement with observational constraint presented in (Sadri
(2019)) and in (Saridakis et al. (2018)) with a different IR
cutoff) while the choice of δ < 1 is not of cosmic interest.
However in a linear interacting case apparently the model
leaves home for both choices δ > 1 and δ < 1. However not-
ing the necessity of a slowing phase of matter dominated
epoch we reach a restriction (b2 < 1

3 ) in the linearly inter-
acting case. Taking this point the chance of δ < 1 will also
be rejected in this case.

As a result the THDE with a Hubble horizon in presence
of the discussed interaction terms is just consistent with the
standard cosmology for δ > 1 and the case δ < 1 is not cos-
mologically dependable. Stability of the THDE model is in-
vestigated through a squared sound speed analysis in pres-
ence of an interaction between dark sector components. The
results are interesting and we find that for all choices of in-
teraction terms there exist rooms for stability of the total
cosmic fluid. However, an observational constraint on the
model could be enlightening.

Next we consider the age problem in the THDE and
found that the form of interaction terms can affect the age
of the universe significantly.
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