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Abstract A methodology is proposed to design optimal
time-fixed impulsive transfers in the vicinity of the L2 li-
bration point of the Earth-Moon system, taking the con-
struction of a space station around the collinear libration
points as the background. The approximate analytical ex-
pression of motions around the L2 point in the CRTBP is
given, and the expression in the ERTBP is derived by lin-
earizing the dynamical equations for the purpose of expand-
ing the methodology from the CRTBP to the ERTBP. Thus,
the approximate analytical solution of the transfer between
two points is obtained by substituting the position vectors of
the two points into the expression, which solves the Lambert
problem in the three-body system. Furthermore, the transfer
between different orbits is constructed by parameterization
of the position vectors with the amplitudes and phases of
the initial orbit and the final orbit. The transfers are opti-
mized such that the total velocity increment required to im-
plement the transfer exhibits a global minimum. The val-
ues of variables involved in the optimal transfers are de-
termined by the unconstrained minimization of a function
of one or nine variables using a multivariable search tech-
nique. To numerically ensure that the transfers are accu-
rate and to eliminate the linearization bias, the differential
correction and SQP method are employed. The optimality
of the transfers is determined lastly by the primer vector
theory. Simulations of point-to-point transfers, Lissajous-to-
Lissajous transfers, halo-to-halo transfers and Lissajous-to-
halo transfers are made. The results of this study indicate
that the approximate analytical solutions, as well as the dif-
ferential correction and SQP method, are valid in the design
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of the optimal transfers around the libration points of the
restricted three-body problem.
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1 Introduction

Deep space exploration has attracted increasing attention
from scientists and engineers in recent years with the rapid
development of aerospace technology. Different from the
traditional near-Earth aerospace activities based on the two-
body problem, deep space exploration is primarily based on
the three-body problem, for which the most commonly used
models of motion are the circular restricted three-body prob-
lem (CRTBP) and the elliptic restricted three-body prob-
lem (ERTBP). Due to the special positions of the libra-
tion points of the restricted three-body problem, the peri-
odic or quasi-periodic orbits around these points can pro-
vide ideal sites to locate a space station, place astronomy
telescopes, or perform other applications such that the Sun-
Earth/Moon barycentre system and the Earth-Moon system
have become the gateway of the Interplanetary Superhigh-
way (IPS). Meanwhile, the construction of a space station on
the periodic orbits in the vicinity of collinear libration points
of the Earth-Moon system appears increasingly likely, for
which the orbit rendezvous (or orbit transfer) technique is
clearly necessary. With increasing interest in such trajecto-
ries, efficient transfers in the restricted three-body problem
may offer more options and flexibility in trajectory design.
Therefore, the study of orbit transfers in the three-body sys-
tem is of great value, both in theory and for engineering ap-
plications.
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Due to the dynamical properties of the three-body prob-
lem, orbit transfers around the libration points might be
considerably more complex and significantly different from
transfers between low Earth orbits. In comparison to a low
Earth orbit, the libration point orbit is not centred by a heavy
celestial body but by an equilibrium point; therefore, the
gravitational field is notably shallow, and its periodic motion
takes a considerably longer time than a low Earth orbit. Ad-
ditionally, because of the non-dominant gravitational field,
the position relation of the Sun or other planets with respect
to the Earth and the Moon might affect the motion of the
spacecraft.

However, considering the promising applications of li-
bration points, some previous literature entries have in-
volved transfer problems of libration point orbits. In general,
there are two types of transfers, namely, impulsive transfers
and low-thrust transfers.

With respect to impulsive transfers, Pernicka (1990)
briefly examined superior transfers between two nearly pe-
riodic halo orbits about a collinear libration point in the
ERTBP. The research utilizes a trial-and-error method to de-
termine a path that approximately connects the specified de-
parture and arrival locations. Gómez et al. (1991) used man-
ifold theory to study an inferior transfer between halo orbits
about a collinear libration point in the CRTBP. Sato et al.
(2015) proposed a chaser’s rendezvous strategy by making a
chaser phase along the reference halo orbit, similar to a ren-
dezvous in a low Earth orbit. Hiday-Johnston and Howell
(1996) developed a transfer methodology that uses a por-
tion of a Lissajous orbit to connect the initial halo orbit and
the final halo orbit. Gómez et al. (1991), Sato et al. (2015),
and Davis (2009) used manifold theory to study the transfer
between halo orbits about a collinear libration point in the
CRTBP. Sukhanov and Prado (2004) solved the three-body
Lambert problem by correcting the position vectors of the
starting point and ending point simultaneously. Sun et al.
(2017) utilized a genetic algorithm to improve the poor con-
vergence of the current three-body Lambert algorithm. Zeng
and Zhang (2016) applied the techniques associated with
stable manifold and lunar flyby to the construction of opti-
mal transfers to Earth-Moon L1/L2 libration point orbits.

With respect to low-thrust transfers, Peng et al. (2014)
presented the nonlinear closed-loop feedback control strat-
egy for the spacecraft rendezvous between libration point
orbits in the Sun-Earth barycentre system with finite low
thrust. Peng et al. (2011) transformed the nonlinear opti-
mal control problem of rendezvous into a nonlinear two-
point boundary value problem and solved it by symplec-
tic adaptive algorithm. Lian and Tang (2013a, 2013b) and
Lian et al. (2012) studied the problem of libration point
orbit rendezvous using terminal sliding mode control. Qu
et al. (2017) investigated a gradient-based design method-
ology for low-thrust trajectories with the help of invariant
manifolds and halo orbit of LL1 point.

In addition, Zhang et al. (2013) studied the low-energy
and low-thrust transfer between halo orbits associated with
two coupled three-body systems through the invariant man-
ifolds. Ulybyshev (2016) applied the pseudo-impulse set
method to obtain the low-thrust rendezvous trajectories in
the vicinity of the Earth-Moon L2 (EML2) libration point.
Cao et al. (2017) presented a convenient procedure for de-
signing the direct transfer trajectory from LL2 halo orbit to
a low lunar orbit.

To summarize, although the study of orbit transfers in the
three-body system still remains relatively unexplored, the
literature regarding transfers in the three-body system has
yielded some achievements through numerical methods or
by transforming the transfer problem into a kind of control
problem. Nevertheless, as is well-known, analytical methods
play an important role in space missions, especially in orbit
design. Hence, this research is directed towards developing a
new, analytical and generalized methodology to design opti-
mal impulsive time-fixed transfers in the vicinity of collinear
libration points of the restricted three-body problem.

This paper is organized as follows. In Sect. 1, the back-
ground of the transfer problem in the restricted three-body
problem and some previous literature entries are introduced.
Section 2 illustrates the restricted three-body problem, in-
cluding the CRTBP model, the ERTBP model, and the de-
rived analytical expression of motion around the collinear
libration points in both the CRTBP and ERTBP. In Sect. 3,
the formulations of the impulsive time-fixed transfers be-
tween two points and between two orbits are respectively
given, and the solutions for optimal transfers are then ob-
tained theoretically. Four types of transfers, namely, point-
to-point transfers, Lissajous-to-Lissajous transfers, halo-to-
halo transfers and Lissajous-to-halo transfers, are simulated
to verify the validity and generality of the methodology in
Sect. 4. Finally, the conclusions of this study, as well as
a brief discussion regarding future efforts, are presented in
Sect. 5.

2 Restricted three-body problem

The restricted three-body problem (RTBP) describes the
motion of an infinitesimal particle or spacecraft (called the
third body), which is governed in the gravitational field gen-
erated by two massive primaries. Because the mass of the
third body is too small, its gravitational attraction to the pri-
maries can be ignored. Then, the motions of the primaries
around their barycentre can be approximated as Keplerian
orbits. The most commonly used models are the CRTBP
and ERTBP. When the orbit of the primaries around their
barycentre is circular, the problem is called the CRTBP.
When the orbit of the primaries is elliptic, the problem is
called the ERTBP. The Earth-Moon system is chosen to be
the three-body system in this study.
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Fig. 1 Barycentric synodic coordinate system O − XYZ and
L2-centred synodic coordinate system L2 − xyz

2.1 Approximate analytical solutions in the CRTBP

The basic and most used model in the restricted three-body
problem is the CRTBP, which is usually used to study the dy-
namic characteristic and the basic motions in the three-body
problem; therefore, the model representing the actual forces
acting on the spacecraft is first chosen to be the CRTBP
model for the Earth-Moon system.

From the viewpoint of computation accuracy and sim-
plification of equations of motion, the normalization is per-
formed first by taking the total mass of the primaries, their
distance, and reciprocal of the mean motion as unity, as
shown in Eq. (1), such that the gravitational constant and
the period of the motion of the primaries are 1 and 2π , re-
spectively.
⎧
⎪⎨

⎪⎩

M∗ = m1 + m2

L∗ = L12 = a

T ∗ =
√

a3

G(m1+m2)
= 1

n

(1)

where M∗, L∗, and T ∗ represent the unit of mass, length,
and time, respectively. m1 and m2 denote the masses of the
two primaries, L12 denotes the distance between them, a

denotes the semi-major axis of the orbit of the primaries,
G denotes the gravitational constant, n denotes the mean
motion of the primaries.

The dynamics of the CRTBP are usually studied in
the barycentric synodic coordinate system O − XYZ (see
Fig. 1). In this coordinate system, the origin is located at the
barycentre of the primaries, the X-axis joins the primaries
and directs from the massive primary m1 towards the sec-
ondary m2, the Z-axis is parallel to the angular momentum
vector of the primaries, and the Y -axis completes the right-
handed triad.

In the barycentric synodic coordinate system O − XYZ,
X = [X,Y,Z]T represents the position vector of a space-
craft, Ẋ = [Ẋ, Ẏ , Ż]T represents the velocity vector, and
the differential equations of motion of a spacecraft in the
CRTBP take the form
⎧
⎨

⎩

Ẍ − 2Ẏ = ∂�
∂X

Ÿ + 2Ẋ = ∂�
∂Y

Z̈ = ∂�
∂Z

(2)

where � denotes the pseudo-potential function, which is

shown in Eq. (7).

To further study the motion of a spacecraft around the L2

point, another coordinate system is defined as the L2-centred

synodic reference system L2 − xyz (see Fig. 1), which is

analogous to the synodic coordinate system O − XYZ but

centred at L2. Let x = [x, y, z]T and ẋ = [ẋ, ẏ, ż]T repre-

sent the position vector and velocity vector of a spacecraft

in the L2-centred synodic reference system. The transfor-

mation between the two vectors x = [x, y, z]T and X =
[X,Y,Z]T is shown below

⎧
⎨

⎩

x = (X − X2)

y = Y

z = Z

(3)

where X2 denotes the distance between the L2 and the

barycentre O of the system.

According to Gómez (2001), the approximate analytical

expressions, obtained by linearizing the dynamical equa-

tions, for the motions around the collinear libration point

can be written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(t) = A1eλ1t + A2e−λ1t

+A3 cos(Im(λ3)t) + A4 sin(Im(λ3)t)

y(t) = k1A1eλ1t − k1A2e−λ1t

−k2A3 sin(Im(λ3)t) + k2A4 cos(Im(λ3)t)

z(t) = A5 cos(Im(λ5)t) + A6 sin(Im(λ5)t)

(4)

where Ai(i = 1, . . .6) are integration constants determined

by the initial state of the spacecraft and represent the pa-

rameters of a Lissajous orbit in the following sections, and

λ1, λ3, λ5 are the eigenvalues of the linearized system.

Equation (4) will be used hereinafter to design the opti-

mal impulsive time-fixed transfers when the model of mo-

tion is chosen to be the CRTBP.

2.2 Approximate analytical solutions in the ERTBP

The eccentricity of the motions of the primaries is taken into

account in the ERTBP; therefore, the ERTBP is more ac-

curate than the CRTBP. To expand the methodology from

the CRTBP to the ERTBP, the model representing the actual

forces acting on the spacecraft is subsequently chosen to be

the ERTBP for the Earth-Moon system.
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Similarly, the normalization is also performed first by
taking the total mass of the primaries, their instantaneous
distance, and reciprocal of the mean motion as unity, as
shown in Eq. (5), such that the period of the motion of the
primaries is 2π .
⎧
⎪⎪⎨

⎪⎪⎩

M∗ = m1 + m2

L∗ = L12 = a(1−e2)
1+e cosf

T ∗ =
√

a3

G(m1+m2)
= 1

n

(5)

where L12 denotes the instantaneous distance between the
primaries, a denotes the semi-major axis of the orbit of
the primaries, e denotes the eccentricity, f denotes the true
anomaly and is taken as the time-like independent variable,
n denotes the mean motion of the primaries.

Obviously, the normalization is pulsating and beneficial
to study basic characteristics of the motions in the ERTBP.

To successfully expand the methodology from the
CRTBP to the ERTBP, the approximate analytical expres-
sions for motions around the collinear libration point in the
ERTBP must be obtained.

The dynamics of the ERTBP are usually studied in the
barycentric pulsating synodic coordinate system (Szebehely
1967), which is defined in the same way as the barycen-
tric synodic coordinate system in the CRTBP, so O-XYZ also
represents the barycentric pulsating synodic coordinate sys-
tem in the ERTBP. The differential equations of motion of a
spacecraft in the ERTBP (Szebehely 1967) take the form
⎧
⎪⎨

⎪⎩

Ẍ − 2Ẏ = 1
1+e cosf

�X

Ÿ + 2Ẋ = 1
1+e cosf

�Y

Z̈ + Z = 1
1+e cosf

�Z

(6)

where � is also the pseudo-potential function and is defined
as

� = 1

2
[X2 + Y 2 + Z2 + μ(1 − μ)] + 1 − μ

r1
+ μ

r2
(7)

The pulsating normalization and the barycentric pulsat-
ing synodic coordinate system are two common techniques
for the ERTBP when the eccentricity is relatively small, just
like the Earth-Moon system.

More details about the equations of dynamics can be
found in Szebehely (1967). According to Szebehely (1967),
the positions of the five libration points in the pulsating syn-
odic coordinate system in the ERTBP are the same as the
positions of the five libration points in the synodic coordi-
nate system in the CRTBP, so the next step is to linearize
the dynamical model (6) at the collinear libration points
Li(i = 1,2,3) in the L2-centred pulsating synodic reference
system, which is defined in the same way as the L2-centred
synodic reference system and also denoted as L2 − xyz.

ẋ = ∂f (X)

∂X
|X=XLi

x = DLi
x + H.O.T (8)

where H.O.T denotes High-Order-Terms and can be ig-
nored; therefore, Eq. (8) can be expanded as

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�X,X �X,Y �X,Z 0 2 0
�X,Y �Y,Y �Y,Z −2 0 0
�X,Z �Y,Z �Z,Z 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x (9)

where �i,j (i, j = X,Y,Z) denote the second partial deriva-
tives of the pseudo-potential � with respect to three axes X,
Y and Z.

With regard to collinear libration points, substituting Y =
Z = 0 into Eq. (9), yields

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

g(1 + 2μ̄) 0 0 0 2 0
0 g(1 − μ̄) 0 −2 0 0
0 0 g(−μ̄) + k 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x

(10)

where
{

g = 1
1+e cosf

, k = −e cosf
1+e cosf

μ̄ = 1−μ

|X+μ|3 + μ

|X+μ−1|3 > 1
(11)

The eigenvalues (λ1, λ2, λ3, λ4, λ5, λ6) of the linearized
system are obtained through the ordinary differential equa-
tion theory, as shown in Eq. (12).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ1 = −λ2 =
√

2g+gμ̄−4+
√

9g2ū2−8gū−16g+16
2

λ3 = −λ4 = i

√

−2g−gμ̄+4+
√

9g2ū2−8gū−16g+16
2

λ5 = −λ6 = i
√

gū − k

(12)

The corresponding eigenvectors take the form shown in
Eq. (13).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = [
1 η1 0 λ1 η2 0

]T

v2 = [
1 −η1 0 −λ1 η2 0

]T

v3 = [
1 η3 0 λ3 η4 0

]T

v4 = [
1 −η3 0 −λ3 η4 0

]T

v5 = [
0 0 1 0 0 λ5

]T

v6 = [
0 0 1 0 0 −λ5

]T

(13)

where η1, η2, η3, η4 can be obtained when calculating the
corresponding eigenvectors.

Finally, the approximate analytical expressions for the
motions around the collinear libration point in the ERTBP
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are obtained as shown in Eq. (14).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(f ) = A1eλ1f + A2e−λ1f +
A3 cos(Im(λ3)f ) + A4 sin(Im(λ3)f )

y(f ) = k1A1eλ1f − k1A2e−λ1f −
k2A3 sin(Im(λ3)f ) + k2A4 cos(Im(λ3)f )

z(f ) = A5 cos(Im(λ5)f ) + A6 sin(Im(λ5)f )

(14)

As can be seen from Eq. (14) and Eq. (4), the expres-
sions for motions around the collinear libration points in the
ERTBP have the same forms as those in the CRTBP, with
differences being that the independent variables are differ-
ent and relevant parameters have different values. So, it can
be assured that the method of constructing optimal impul-
sive time-fixed transfers in the CRTBP can also be applied
into the ERTBP; therefore, in this instance, the CRTBP is
taken as the research object to save space.

3 Formulation of the optimal impulsive
time-fixed transfer

The essence of the impulsive orbit transfer problem is es-
sentially the Lambert problem. Although it has been proved
that there is no precise analytical solution for the three-body
Lambert problem due to the strong-linearity and instability
of the three-body problem, an approximate solution is de-
rived here through the expression for motions around the
collinear libration point in the restricted three-body prob-
lem. Considering that the basic case of the Lambert problem
is transfer between two points, so point-to-point transfer is
studied first.

3.1 Point-to-point transfer

Suppose that there are two points A and B around a collinear
libration point and that the epochs are set to be t1 and t2,
respectively; their states in the L2-centred synodic frame are
denoted as xA and xB .
{

xA = [
xA yA zA VAx VAy VAz

]T

xB = [
xB yB zB VBx VBy VBz

]T (15)

The transfer trajectory connecting A and B can be ex-
pressed by the expression for motions mentioned above,
Eq. (4) for the CRTBP and Eq. (14) for the ERTBP. Both
Eq. (4) and Eq. (14) contain six parameters [A1,A2,A3,A4,

A5,A6], and after substituting the positions of A and B into
Eq. (4), the formulation of the relation can be written as
Eq. (16). And (λ3, λ4, λ5, λ6) denote their imaginary part in

Sect. 3.1 for simplification.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xA = A1eλ1t1 + A2e−λ1t1 + A3 cosλ3t1 + A4 sinλ3t1
yA = k1A1eλ1t1 − k1A2e−λ1t1

−k2A3 sinλ3t1 + k2A4 cosλ3t1
zA = A5 cosλ5t1 + A6 sinλ5t1
xB = A1eλ1t2 + A2e−λ1t2 + A3 cosλ3t2 + A4 sinλ3t2
yB = k1A1eλ1t2 − k1A2e−λ1t2

−k2A3 sinλ3t2 + k2A4 cosλ3t2
zB = A5 cosλ5t2 + A6 sinλ5t2

(16)

The six parameters [A1,A2,A3,A4,A5,A6] can be cal-
culated by solving Eq. (16), and the result is shown in
Eq. (17).

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

A2

A3

A4

A5

A6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

eλ1t1 e−λ1t1 cosλ3t1 sinλ3t1 0 0
k1eλ1t1 −k1e−λ1t1 −k2 sinλ3t1 k2 cosλ3t1 0 0

0 0 0 0 cosλ5t1 sinλ5t1
eλ1t2 e−λ1t2 cosλ3t2 sinλ3t2 0 0

k1eλ1t2 −k1e−λ1t2 −k2 sinλ3t2 k2 cosλ3t2 0 0
0 0 0 0 cosλ5t2 sinλ5t2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

−1
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xA

yA

zA

xB

yB

zB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17)

Differentiating Eq. (4) and substituting them with
Eq. (17), the required velocities of A and B on the transfer

trajectory are denoted as [VxA,VyA,VzA]T and [VxB,VyB,

VzB ]T , respectively, and can then be obtained by Eq. (18).

⎡

⎢
⎢
⎢
⎢
⎣

VxA

VyA

VzA

VxB

VyB

VzB

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

λ1eλ1t1 −λ1e−λ1t1 −λ3 sinλ3t1 λ3 cosλ3t1 0 0
k1λ1eλ1t1 k1λ1e−λ1t1 −k2λ3 cosλ3t1 −k2λ3 sinλ3t1 0 0

0 0 0 0 −λ5 sinλ5t1 λ5 cosλ5t1
λ1eλ1t2 −λ1e−λ1t2 −λ3 sinλ3t2 λ3 cosλ3t2 0 0

k1λ1eλ1t2 k1λ1e−λ1t2 −k2λ3 cosλ3t2 −k2λ3 sinλ3t2 0 0
0 0 0 0 −λ5 sinλ5t2 λ5 cosλ5t2

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

A1
A2
A3
A4
A5
A6

⎤

⎥
⎥
⎥
⎥
⎦

(18)
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Equation (18) is exactly the derived approximate analyt-
ical solution for the three-body Lambert problem. Although
this approximate solution is not the precise analytical solu-
tion, it can be used to design the precise transfer in combina-
tion with the differential correction and sequential quadratic
programming (SQP) method in the next sections.

Just like the two-body Lambert problem, the three-body
Lambert problem is also only determined by the positions

of A and B , which are [xA,yA, zA]T and [xB, yB, zB ]T , re-
spectively, and the time of flight (TOF) �t = t2 − t1.

Substituting Eq. (17) into Eq. (18), the more detailed ex-
pression for the velocities of A and B on the transfer trajec-
tory, denoted as [VxA,VyA,VzA]T and [VxB,VyB,VzB ]T ,
respectively, are shown in Eq. (19).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

VxA = {[2k2
2λ1 cosh(�tλ1) sin(�tλ3) − 2k2

1λ3 cos(�tλ3) sinh(�tλ1) + 2k1k2λ1 cos(�tλ3) sinh(�tλ1)−
2k1k2λ3 cosh(�tλ1) sin(�tλ3)]xA + [2k2λ1 + 2k1λ3 − 2k2λ1 cos(�tλ3) cosh(�tλ1)−
2k1λ3 cos(�tλ3) cosh(�tλ1) + 2k1λ1 sin(�tλ3) sinh(�tλ1) − 2k2λ3 sin(�tλ3) sinh(�tλ1)]yA+
[2k2

1λ3 sinh(�tλ1) − 2k2
2λ1 sin(�tλ3) + 2k1k2λ3 sin(�tλ3) − 2k1k2λ1 sinh(�tλ1)]xB+

[2k1λ3 cos(�tλ3) − 2k2λ1 cos(�tλ3) + 2k2λ1 cosh(�tλ1) − 2k1λ3 cosh(�tλ1)]yB}/
[4k1k2 + 2k2

1 sin(�tλ3) sinh(�tλ1) − 2k2
2 sin(�tλ3) sinh(�tλ1) − 4k1k2 cos(�tλ3) cosh(�tλ1)]

VyA = −{[2k1k
2
2λ3 − 2k2

1k2λ1 + 2k2
1k2λ1 cos(�tλ3) cosh(�tλ1) − 2k1k

2
2λ3 cos(�tλ3) cosh(�tλ1)+

2k1k
2
2λ1 sin(�tλ3) sinh(�tλ1) + 2k2

1k2λ3 sin(�tλ3) sinh(�tλ1)]xA + [2k2
1λ1 cosh(�tλ1) sin(�tλ3)−

2k2
2λ3 cos(�tλ3) sinh(�tλ1) − 2k1k2λ1 cos(�tλ3) sinh(�tλ1) + 2k1k2λ3 cosh(�tλ1) sin(�tλ3)]yA+

[2k2
1k2λ1 cos(�tλ3) + 2k1k

2
2λ3 cos(�tλ3) − 2k2

1k2λ1 cosh(�tλ1) − 2k1k
2
2λ3 cosh(�tλ1)]xB+

[2k2
2λ3 sinh(�tλ1) − 2k2

1λ1 sin(�tλ3) − 2k1k2λ3 sin(�tλ3) + 2k1k2λ1 sinh(�tλ1)]yB}/
[4k1k2 + 2k2

1 sin(�tλ3) sinh(�tλ1) − 2k2
2 sin(�tλ3) sinh(�tλ1) − 4k1k2 cos(�tλ3) cosh(�tλ1)]

VzA = {λ5[zB − cos(�tλ5)zA]}/ sin(�tλ5)

VxB = {[2k1k2λ1 sinh(�tλ1) − 2k1k2λ3 sin(�tλ3) + 2k2
2λ1 sin(�tλ3) − 2k2

1λ3 sinh(�tλ1)]xA+
[2k1λ3 cos(�tλ3) − 2k2λ1 cos(�tλ3) + 2k2λ1 cosh(�tλ1) − 2k1λ3 cosh(�tλ1)]yA+
[2k2

1λ3 cos(�tλ3) sinh(�tλ1) − 2k2
2λ1 cosh(�tλ1) sin(�tλ3) − 2k1k2λ1 cos(�tλ3) sinh(�tλ1)+

2k1k2λ3 cosh(�tλ1) sin(�tλ3)]xB + [2k2λ1 + 2k1λ3 − 2k2λ1 cos(�tλ3) cosh(�tλ1)−
2k1λ3 cos(�tλ3) cosh(�tλ1) + 2k1λ1 sin(�tλ3) sinh(�tλ1) − 2k2λ3 sin(�tλ3) sinh(�tλ1)]yB}/
[4k1k2 + 2k2

1 sin(�tλ3) sinh(�tλ1) − 2k2
2 sin(�tλ3) sinh(�tλ1) − 4k1k2 cos(�tλ3) cosh(�tλ1)]

VyB = −{[2k2
1k2λ1 cos(�tλ3) + 2k1k

2
2λ3 cos(�tλ3) − 2k2

1k2λ1 cosh(�tλ1) − 2k1k
2
2λ3 cosh(�tλ1)]xA+

[2k2
1λ1 sin(�tλ3) − 2k2

2λ3 sinh(�tλ1) + 2k1k2λ3 sin(�tλ3) − 2k1k2λ1 sinh(�tλ1)]yA+
[2k1k

2
2λ3 − 2k2

1k2λ1 + 2k2
1k2λ1 cos(�tλ3) cosh(�tλ1) − 2k1k

2
2λ3 cos(�tλ3) cosh(�tλ1)+

2k1k
2
2λ1 sin(�tλ3) sinh(�tλ1) + 2k2

1k2λ3 sin(�tλ3) sinh(�tλ1)]xB + [2k2
2λ3 cos(�tλ3) sinh(�tλ1)−

2k2
1λ1 cosh(�tλ1) sin(�tλ3) + 2k1k2λ1 cos(�tλ3) sinh(�tλ1) − 2k1k2λ3 cosh(�tλ1) sin(�tλ3)]yB}/

[4k1k2 + 2k2
1 sin(�tλ3) sinh(�tλ1) − 2k2

2 sin(�tλ3) sinh(�tλ1) − 4k1k2 cos(�tλ3) cosh(�tλ1)]
VzB = −{λ5[zA − cos(�tλ5)zB ]}/ sin(�tλ5)

(19)

Suppose that A is the starting point (or departure point)
and B is the ending point (or arrival point) on the transfer
trajectory. The sketch map of the transfer trajectory is shown
in Fig. 2.

Let V A0 = [VAx,VAy,VAz]T and V B0 = [VBx,VBy,

VBz]T represent the initial velocities (before transfer) of A

and B , respectively. The transfer trajectory is then patched
between the two points A and B such that the entire result-
ing trajectory (starting point A, transfer path, ending point
B) is continuous in position but contains two velocity dis-
continuities at the patch points. The two velocity differences
of A and B are denoted as �V A and �V B , representing the
two velocity impulses required to implement the transfer,

namely,
{

�V A = [
VxA VyA VzA

]T − [
VAx VAy VAz

]T

�V B = [
VBx VBy VBz

]T − [
VxB VyB VzB

]T (20)

The total velocity increment �V is the sum of two veloc-
ity impulses �V A and �V B .

�V =
√

(VxA − VAx)2 + (VyA − VAy)2 + (VzA − VAz)2+
√

(VBx − VxB)2 + (VBy − VyB)2 + (VBz − VzB)2

(21)

In practical engineering applications, the total velocity
increment �V and TOF �t , both required for a transfer tra-
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Fig. 2 Sketch map of the transfer trajectory

jectory, are two important mission parameters, especially in
deep space exploration; therefore, a transfer accomplished
with the greatest economy of fuel and the shortest TOF is
always desirable. Hence, the optimality criterion is selected
to be the sum of the velocity increment �V and the TOF
�t .

J = p�V + q�t = F(�t) (22)

where J denotes the cost function, p and q denote the
weights of the total velocity increment �V and the TOF �t ,
respectively.

In the problem of point-to-point transfer, although the po-
sitions of A and B are fixed, the TOF is variable, which
means that different TOFs will result in different transfers;
therefore, it is highly significant to obtain the optimal trans-
fer trajectory by optimizing the TOF.

3.2 Orbit-to-orbit transfer

Practical orbit transfers in real space missions are transfer-
ring a spacecraft from one orbit to another, rather than the
simple point-to-point transfer. Thus, it is necessary to study
transfers between different orbits, and many more factors
will be taken into account than point-to-point transfer, in
which the only variable is the TOF.

In the restricted three-body problem, there are a total of
three types of periodic and pseudo-periodic orbits around
the collinear libration points, i.e., Lissajous orbits, halo or-
bits and Lyapunov orbits. From the view of the essence of
the dynamics, halo orbits and Lyapunov orbits are bifurca-
tions of Lissajous orbits, which means that halo orbits and
Lyapunov orbits are actually two subsets of Lissajous or-
bits; therefore, the method used in Lissajous-to-Lissajous
transfer is representative and must also be suitable for halo-
to-halo transfer, Lyapunov-to-Lyapunov transfer, and even
transfers between these three types of orbits. Therefore, to
save space but without loss of generality, the orbit-to-orbit
transfer takes the Lissajous-to-Lissajous transfer as an ex-
ample to show the process of optimizing orbit-to-orbit trans-
fer.

According to Gómez (2001) and Eq. (4), to construct pe-
riodic orbits, Eq. (23) must be satisfied.

A1 = 0,A2 = 0 (23)

Thus, the approximate analytical expressions for periodic
orbits around the collinear libration points take the simpler
form
⎧
⎨

⎩

x(t) = A3 cos(Im(λ3)t) + A4 sin(Im(λ3)t)

y(t) = −k2A3 sin(Im(λ3)t) + k2A4 cos(Im(λ3)t)

z(t) = A5 cos(Im(λ5)t) + A6 sin(Im(λ5)t)

(24)

Transforming Eq. (24) into the form of amplitudes and
phases yields
⎧
⎨

⎩

x(t) = Ax cos(Im(λ3)t + ϕ0) = Ax cosϕ

y(t) = −k2Ax sin(Im(λ3)t + ϕ0) = −k2Ax sinϕ

z(t) = Az cos(Im(λ5)t + ψ0) = Az cosψ

(25)

where Ax denotes the x-amplitude, Az denotes the z-
amplitude, ϕ0 denotes the initial phase in the xy-plane, ϕ

denotes the real-time phase in the xy-plane, ψ0 denotes the
initial phase in the z-axis, and ψ denotes the real-time phase
in the z-axis.
{

ϕ = Im(λ3)t + ϕ0

ψ = Im(λ5)t + ψ0
(26)

Equation (25) is the approximate analytical expression of
periodic and pseudo-periodic orbits, i.e., the Lissajous or-
bits, halo orbits, and Lyapunov orbits, in the form of ampli-
tudes and phases. On this basis, when it comes to Lissajous-
to-Lissajous transfer, we can see that the variables that need
to be optimized are the amplitudes and phases of the ini-
tial orbit and final orbit, in the xy-plane and z-axis, and the
TOF. Thanks to Eq. (25) and Eq. (26), the starting point A

and the ending point B can be parameterized when calculat-
ing the optimal Lissajous-to-Lissajous transfer, that is, any
point on the initial orbit and the final orbit can be described
as a function of the amplitudes Ax,Az and the phases ϕ,ψ .

Thus, the position vector of the starting point A takes the
form
⎧
⎨

⎩

xA(t) = Ax1 cosϕ1

yA(t) = −k2Ax1 sinϕ1

zA(t) = Az1 cosψ1

(27)

where Ax1 denotes the x-amplitude of the initial orbit, Az1

denotes the z-amplitude of the initial orbit, ϕ1 denotes the
phase of the starting pointAin the xy-plane, and ψ1 denotes
the phase of the starting pointAin the z-axis.

Then, the velocity vector of the starting point A takes the
form
⎧
⎨

⎩

VAx(t) = − Im(λ3)Ax1 sinϕ1

VAy(t) = − Im(λ3)k2Ax1 cosϕ1

VAz(t) = − Im(λ5)Az1 sinψ1

(28)



79 Page 8 of 18 J. Zhou et al.

The position vector of the ending point B takes the form

⎧
⎨

⎩

xB(t) = Ax2 cosϕ2

yB(t) = −k2Ax2 sinϕ2

zB(t) = Az2 cosψ2

(29)

where Ax2 denotes the x-amplitude of the final orbit, Az2

denotes the z-amplitude of the final orbit, ϕ2 denotes the
phase of the ending point B in the xy-plane, and ψ2 denotes
the phase of the ending point B in the z-axis.

Then, the velocity vector of the ending point B takes the
form
⎧
⎨

⎩

VBx(t) = − Im(λ3)Ax2 sinϕ2

VBy(t) = − Im(λ3)k2Ax2 cosϕ2

VBz(t) = − Im(λ5)Az2 sinψ2

(30)

Substituting Eqs. (27)–(30) into Eq. (19), the total veloc-
ity increment �V of Lissajous-to-Lissajous transfer can be
described as a function of [Ax1, ϕ1,Az1,ψ1,Ax2, ϕ2,Az2,

ψ2,�t]; thus,

�V = f (Ax1, ϕ1,Az1,ψ1,Ax2, ϕ2,Az2,ψ2,�t) (31)

Therefore, the cost function J of Lissajous-to-Lissajous
transfer takes the new form

J =p�V + q�t

=F(Ax1, ϕ1,Az1,ψ1,Ax2, ϕ2,Az2,ψ2,�t) (32)

3.3 Optimization of transfer

Now that the approximate analytical solution for transfer has
been constructed, the approximate analytical transfer can
then be automatically optimized by the unconstrained mini-
mization of a function of one or nine variables using a mul-
tivariable search technique. Considering that Lissajous-to-
Lissajous transfer is representative and much more complex,
the Lissajous-to-Lissajous transfers are similarly taken here
as an example to show how to obtain the theoretical opti-
mal transfer, and the method is undoubtedly also suitable for
point-to-point transfer, halo-to-halo transfer and Lissajous-
to-halo transfer.

In the Lissajous-to-Lissajous transfer, the variables in the
multivariate function are denoted as χ and can be defined as

χ = [x1, x2, x3, x4, x5, x6, x7, x8, x9] =
[Ax1, ϕ1,Az1,ψ1,Ax2, ϕ2,Az2,ψ2,�t] (33)

Thus, the necessary condition for optimal transfer is that
the Jacobian matrix of F must be equal to zero.

Jacobian(F ) = [ ∂F

∂x1
,

∂F

∂x2
, . . . ,

∂F

∂x9
] = 0 (34)

The sufficient condition is that the Hessian matrix of F

must be positive definite.

Hessian(F ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2F

∂x2
1

∂2F
∂x1∂x2

. . . ∂2F
∂x1∂x9

∂2F
∂x1∂x2

∂2F

∂x2
2

. . . ∂2F
∂x2∂x9

...
...

. . .
...

∂2F
∂x1∂x9

∂2F
∂x2∂x9

. . . ∂2F

∂x2
9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

> 0 (35)

According to the necessary condition and the sufficient
condition, the approximate analytical optimal Lissajous-to-
Lissajous transfer can be obtained theoretically.

As can be seen from the above, there are a total of nine
parameters [Ax1, ϕ1,Az1,ψ1,Ax2, ϕ2,Az2,ψ2,�t] that de-
termine the optimal Lissajous-to-Lissajous transfer. Consid-
ering the complexity of the expression of the solution, i.e.,
Eq. (34) and Eq. (35), it is usually very difficult to calculate
the solution directly and analytically; therefore, a numerical
method, such as the shooting method or Newton-Raphson
method, is employed as a tool to calculate the optimal solu-
tion.

Although the approximate analytical optimal transfer can
be obtained through the method mentioned above, the trans-
fer trajectory unfortunately usually cannot arrive at the end-
ing point B accurately due to the linearization bias and the
strong-nonlinearity. Thus, the differential correction is em-
ployed to slightly correct the velocity vector of the starting
point A step by step until the transfer trajectory arrives at the
ending point B . Meanwhile, the correction of the velocity
vector may destroy the optimality of the solution; therefore,
the SQP method is utilized to guarantee the optimality and
get rid of the linearization bias. Therefore, the differential
correction and SQP method are employed to get rid of the
linearization bias and further optimize the transfer numeri-
cally after the approximate analytical solution. The overall
process of obtaining the optimal transfer is shown in Fig. 3.

4 Numerical results and discussion

Considering that the Earth-Moon L2 point is located beyond
the far side of the Moon and has become a candidate location
for the construction of a space station for lunar missions, the
Earth-Moon L2 point is taken as the object of this study. If
not otherwise stated, the optimum is defined to be the min-
imum velocity increments in this study, which means that
p = 1, q = 0, in accordance with most of the previous liter-
ature. Other optimums can also certainly be defined as long
as p,q are assigned to other values.

To verify the validity of this method and obtain the char-
acteristics of the optimal transfers around the collinear libra-
tion points of the restricted three-body problem, considering
that Lissajous orbits and halo orbits are the basic and most
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Fig. 3 Flow chart of the proposed methodology for the optimal impul-
sive time-fixed transfers

used orbits around the collinear libration points, this section
successively involves four types of optimal transfer trajecto-
ries, namely, point-to-point transfers, Lissajous-to-Lissajous
transfers, halo-to-halo transfers, and Lissajous-to-halo trans-
fers.

4.1 Point-to-point transfers

Among the four types of transfers, the point-to-point transfer
is the basic and simplest case. To determine what effect the
position of the starting point A has on the optimal transfers,
transfers from different starting points A to the same ending
point B are examined.

To increase the persuasiveness of this section, three dif-
ferent starting points A and one ending point B are taken
from the reference (Sun et al. 2017). These starting points
are located on three different halo orbits, with z-amplitudes
of 7000 km, 9000 km, and 11000 km, respectively, and
phases in the xy-plane and z-axis are both zero, i.e., ϕA =

0◦, ψA = 0◦. The ending point B is also located on a
halo orbit characterized by a z-amplitude of 5000 km, and
with a state of [1.1533,0.0819,−0.0084,0.0655,−0.0599,

−0.0205] in the barycentric synodic coordinate system O −
XYZ, in dimensionless units (DU).

The analytical solution is obtained according to Sects. 3.1
and 3.3, and the results of the differential correction and
SQP method are obtained according to Fig. 3.

As can be seen from Table 1, the optimal transfers ob-
tained by the analytical solutions are not accurate enough,
especially in the velocity increment �V , but the results be-
come very accurate after differential correction and SQP.
This means that the differential correction is necessary to
make the transfers accurate numerically and that SQP is nec-
essary to get rid of the linearization bias and perform fur-
ther optimization. Thus, the differential correction and SQP
method are indispensable in obtaining the optimal transfers
under the requirement that the precision and optimality must
be guaranteed.

Compared to the reference (Sun et al. 2017), when the
z-amplitudes of the initial orbits are 7000 km, 9000 km,
and 11000 km, although the TOFs of transfers increase
by 5.84%, 4.53%, and 3.82%, respectively, the correspond-
ing velocity increments decrease by 44.87%, 14.25%, and
2.71%, which proves the validity of the methodology that
the TOF can be optimized to decrease the velocity increment
�V and obtain the optimal transfer.

Figure 4 presents one of the three optimal transfer trajec-
tories when the starting point A is located on a halo orbit
with a z-amplitude of 11000 km.

To further verify whether the transfers are optimal or not,
Lawden (1963) proposed the primer vector theory for the
impulsive transfer problems, and Chen (2016a, 2016b) de-
rived the necessary condition and second-order optimality
conditions for optimal control problems. For simplicity, the
primer vector theory is employed, and the result is shown in
Fig. 5. The magnitude of the primer vector is equal to one at
the starting point and the ending point and less than one dur-
ing the coast period, which means that the transfer is indeed
optimal; thus, the optimality of the transfers is determined.

4.2 Lissajous-to-Lissajous transfers

Orbit-to-orbit transfers are much more complex than point-
to-point transfers. Unlike point-to-point transfers, in which
the only parameter is the TOF �t , there are a total of nine
parameters that determine the global optimal orbit-to-orbit
transfer, which are the x-amplitude of the initial orbit Ax1,
the phase in the xy-plane of the starting point ϕ1, the z-
amplitude of the initial orbit Az1, the phase in the z-axis
of the starting point ψ1, the x-amplitude of the final orbit
Ax2, the phase in the xy-plane of the ending point ϕ2, the
z-amplitude of the final orbit Az2, the phase in the z-axis of
the ending point ψ2, and finally, the TOF�t .
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Table 1 Results of optimal transfers between two points with different starting points

Az/(km) TOF �t /(days) Velocity increment �V /(m•s−1)

Reference Analytical solution Differential Correction SQP Reference Analytical solution Differential Correction SQP

7000 4.322 4.532 4.5549 4.531 34.7223 74.485 19.3966 19.144

9000 4.322 4.5184 4.5332 4.518 44.0449 78.204 37.8704 37.767

11000 4.322 4.4897 4.5114 4.487 57.4008 84.327 56.3550 55.844

Fig. 4 Optimal transfer trajectory between two points

Obviously, if optimizing the orbit-to-orbit transfer as a
whole, that is, considering the coupling between all of the
parameters, the most general, complicated and comprehen-
sive case is that all of the nine parameters [Ax1, ϕ1,Az1,ψ1,

Ax2, ϕ2,Az2,ψ2,�t] are variables that need to be optimized
in orbit-to-orbit transfers. The most general, complicated
and comprehensive optimal orbit-to-orbit transfer can be ob-
tained with Eqs. (27)–(35) in Sect. 3.2. According to theo-
retical analysis and common sense, it can be assured that the

Fig. 5 Primer magnitude history of the transfer between two points
when Az=11000 km

optimal transfer is not unique and will occur when the start-
ing point and the ending point are on the same orbit, i.e.,
Ax1 = Ax2, Az1 = Az2, such that the spacecraft can coast
from the starting point to the ending point along the orbit
without any velocity impulses, that is, the velocity increment
�V equals zero.

Nevertheless, it is difficult to present the simulation of the
nine-variable optimal orbit-to-orbit transfers, and there will
be some constraints on the variables in real space missions.
Thus, to show the process of optimizing the orbit-to-orbit
transfers as a whole, clearly and without loss of generality,
a simpler but representative and practical case, i.e., three-
variable orbit-to-orbit transfers, is given below because, no
matter how many variables there are, the solving process is
the same.

According to most real cases of orbit transfers, the ini-
tial orbit and the final orbit are actually pre-determined
before transfer, which means that the amplitudes Ax , Az

of the initial orbit and the final orbit are fixed. Moreover,
the phase in the xy-plane ϕ and the phase in the z-axis
ψ are synchronous when varying over time according to
Eq. (26); thus, ψ can be replaced with ϕ. Supposing that
the initial phases ϕ0 and ψ0 are zero, i.e., ϕ0 = 0◦,ψ0 = 0◦,
both for the initial orbit and the final orbit, one can get
ψ = ϕ(Im(λ5)/ Im(λ3)). Therefore, the variables that need
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Table 2 Parameters and result of the theoretical global optimal
Lissajous-to-Lissajous transfer

Parameters Values

[Ax1,Az1] [0.020, 0.0060]

[Ax2,Az2] [0.028, 0.0084]

ϕ∗
1 10.6719°

ϕ∗
2 181.4225°

�t∗ 6.9574 days

�Vmin 40.9263 m/s

Table 3 Parameters and result of the numerical global optimal
Lissajous-to-Lissajous transfer

Parameters Values

ϕ1 [10°: 20°: 350°]

ϕ2 [20°: 20°: 360°]

ϕ∗
1 10°

ϕ∗
2 160°

�t∗ 5.8036 days

�Vmin 43.9958 m/s

to be taken into account in this simulation are just three pa-
rameters, i.e., the phase of the starting point on the initial
orbit ϕ1, the phase of the ending point on the final orbit ϕ2,
and the TOF �t . The values of the x-amplitudes Ax1,Ax2

and z-amplitudes Az1, Az2 in dimensionless units (DU) are
shown in Table 2.

First, the theoretical global optimal Lissajous-to-Lis-
sajous transfer can be obtained by Eqs. (34)–(35) with the
Newton-Raphson method. The result of the global optimal
transfer is shown in Table 2, and the global optimal solution
is marked as a cyan pentalpha in Fig. 6 (ii, iv).

Second, to further study the characteristics of Lissajous-
to-Lissajous transfers numerically and verify the validity of
the theoretical optimal transfer, simulations under various
circumstances are made.

The phase of the starting point ϕ1 is varied from 10° to
350° at intervals of 20° and the phase of the ending point
ϕ2 is varied from 20° to 360° at intervals of 20° such that
the optimal TOF can be optimized for every pair of (ϕ1, ϕ2)
according to Fig. 3. The result of the global optimal transfer
is shown in Table 3. The simulation results of the TOF and
�V are shown in Fig. 6, and the global optimal solution is
marked as a magenta pentalpha in Fig. 6 (ii, iv).

According to the simulation results, the following con-
clusions can be summarized.

(i) As can be seen from Fig. 6(i, ii), the contour lines of
the TOF are parallel to the diagonal of the diagram and also
symmetric about the diagonal, which means that the opti-
mal TOF, for every pair of (ϕ1,ϕ2), mainly depends on the
absolute value of the difference between the phases of the

starting point and ending point, i.e., ‖ϕ1 − ϕ2‖. Specifically,
when the phases of the starting point ϕ1 and ending point ϕ2

are approximately equal, i.e., ‖ϕ1 − ϕ2‖ ≈ 0◦, the TOF gets
the approximate minimum, approximately 1.67 days, as the
blue areas show in Fig. 6(ii). When the absolute value of the
difference of the phases ‖ϕ1 − ϕ2‖ increases, the TOF first
increases and then decreases, and when the absolute value is
approximately 200°, as the red areas show in Fig. 6(ii), the
TOF gets the approximate maximum, 6.17 days.

(ii) As can be seen from Fig. 6(iii, iv), the total velocity
increment �V also mainly depends on the absolute value of
the difference between the phases ‖ϕ1 − ϕ2‖. Specifically,
when the phases are approximately equal, i.e., ‖ϕ1 − ϕ2‖ ≈
0◦, as the red area shows in Fig. 6(iv), �V gets the approx-
imate maximum, 210 m/s; therefore, it is the most costly
transfer in this situation. When the absolute value of the
difference of the phases ‖ϕ1 − ϕ2‖ increases, �V first de-
creases, then increases, and finally decreases, and when the
absolute value is approximately 200° or 300°, as the blue ar-
eas show in Fig. 6(iv), �V gets the approximate minimum
of 40 m/s; therefore, it is the least costly transfer in this sit-
uation.

(iii) The TOF and �V represent a pair of contradictions,
as can be concluded from above. When the TOF increases,
�V will decrease, and vice versa under the same transfer
conditions. This is consistent with common sense.

(iv) As can be seen in Table 2 and Table 3, the global opti-
mal Lissajous-to-Lissajous transfer occurs when the phases
of the starting point ϕ1 and ending point ϕ2 are approxi-
mately 10° and 170°, respectively, and the minimum of �V

is approximately 40 m/s. On the whole, the solution of the
theoretical global optimal Lissajous-to-Lissajous transfer is
consistent with the solution of the numerical global optimal
transfer, in spite of a small difference between the two solu-
tions. This can also be confirmed by the cyan pentalpha and
magenta pentalpha in Fig. 6 (ii, iv), which are very close
to each other. Moreover, Fig. 7 shows that the theoretical
global optimal transfer trajectory and the numerical global
optimal transfer trajectory have similar variation trends. The
inconsistencies of the two transfers only indicate that the
theoretical solution is not accurate enough and can be im-
proved by a numerical process. Thus, in a word, the global
optimal Lissajous-to-Lissajous transfer can be obtained by
the theoretical method with a small error tolerance, and the
precise global optimal transfer can be obtained by improv-
ing the theoretical solution with a numerical method.

4.3 Halo-to-halo transfers

Similar to Lissajous-to-Lissajous transfers, the fixed param-
eters in optimizing halo-to-halo transfers are also the x-
amplitudes Ax1,Ax2 and z-amplitudes Az1,Az2 of the ini-
tial orbit and the final orbit, and the phases of the two orbits
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Fig. 6 Simulation results of Lissajous-to-Lissajous transfers

in the z-axis are also determined with the relation ψ1,2 =
ϕ1,2(Im(λ5)/ Im(λ3)). The values of the x-amplitudes Ax1,
Ax2 and z-amplitudes Az1, Az2 in dimensionless units (DU)
are shown in Table 4.

First, the theoretical global optimal halo-to-halo transfer
can be obtained by Eqs. (34)–(35) with the Newton-Raphson
method. The result of the global optimal transfer is shown in
Table 4, and the global optimal solution is marked as a cyan
pentalpha in Fig. 8 (ii, iv).

Second, to further study the characteristics of halo-to-
halo transfers numerically and verify the validity of the the-
oretical optimal transfer, simulations under various circum-
stances are performed.

The phase of the starting point ϕ1 is varied from 10° to
350° at intervals of 20° and the phase of the ending point
ϕ2 is varied from 20° to 360° at intervals of 20° such that

Table 4 The parameters and result of the theoretical global optimal
halo-to-halo transfer

Parameters Values

[Ax1,Az1] [0.0297,0.0132]
[Ax2,Az2] [0.0030,0.0184]
ϕ∗

1 64.4581°

ϕ∗
2 328.7803°

�t∗ 3.4678 days

�Vmin 15.5950 m/s

the optimal TOF can be optimized for every pair of (ϕ1, ϕ2)
according to Fig. 3. The result of the global optimal transfer
is shown in Table 5. The simulation results of the TOF and
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Fig. 7 Global optimal Lissajous-to-Lissajous transfers obtained theoretically and numerically

Table 5 The parameters and result of the numerical global optimal
halo-to-halo transfer

Parameters Values

ϕ1 [10°: 20°: 350°]

ϕ2 [20°: 20°: 360°]

ϕ∗
1 70°

ϕ∗
2 340°

�t∗ 3.4461 days

�Vmin 11.9709 m/s

�V are shown in Fig. 8, and the global optimal solution is
marked as a magenta pentalpha in Fig. 8 (ii, iv).

According to the simulation results, the following con-
clusions can be summarized.

(i) As can be seen from Fig. 8(i, ii), the contour lines of
the TOF are very parallel to the diagonal of the diagram and
also very symmetric about the diagonal, which means that
the optimal TOF, for every pair of (ϕ1, ϕ2), mainly depends
on the absolute value of the difference between the phases
of the starting point and ending point ‖ϕ1 − ϕ2‖. When the
phases of the starting point ϕ1 and ending point ϕ2 are ap-
proximately equal, i.e., ‖ϕ1 − ϕ2‖ ≈ 0◦, the TOF gets the
approximate minimum of approximately 1.5 days, as the
blue area shows in Fig. 8(ii). When the absolute value of the
difference of the phases ‖ϕ1 − ϕ2‖ increases, the TOF first
increases and then decreases, and when the absolute value is
approximately 200°, as the red areas show in Fig. 8(ii), the
TOF gets the approximate maximum of 7.2 days.

(ii) As can be seen from Fig. 8(iii, iv), the total velocity
increment�V also mainly depends on the absolute value of
the difference between the phases ‖ϕ1 − ϕ2‖. Leaving out
the special case of ϕ1 = 10◦, ϕ2 = 360◦, when the absolute
value of the difference between the phases equals zero or
200°, i.e., ‖ϕ1 − ϕ2‖ ≈ 0◦ or 120◦, as the red areas show in

Fig. 8(iv), �V obtains the approximate maximum of 140
m/s; therefore, it is the most costly transfer in this situa-
tion. When the absolute value of the difference of the phase
‖ϕ1 − ϕ2‖ increases, �V first decreases, then increases, and
finally decreases, and when the absolute value is approxi-
mately 100° or 280°, as the blue areas show in Fig. 8(iv),
�V gets the approximate minimum of 15 m/s; thus, it is the
least costly transfer in this situation.

(iii) The TOF and �V are a pair of contradictions, as can
be concluded from above. When the TOF increases, �V will
decrease, and vice versa under the same transfer conditions.
This is consistent with common sense.

(iv) As can be seen in Table 4 and Table 5, the global
optimal halo-to-halo transfer occurs when the phases of the
starting point ϕ1 and ending point ϕ2 are approximately 70°
and 340°, respectively, and the minimum of �V is approxi-
mately 12 m/s. On the whole, the solution of the theoretical
global optimal halo-to-halo transfer is consistent with the
solution of the numerical global optimal transfer, in spite of
a small difference between the solutions. This can also be
confirmed by the cyan pentalpha and magenta pentalpha in
Fig. 8(ii, iv), which are very close to each other. Moreover,
Fig. 9 shows that the theoretical global optimal transfer and
the numerical global optimal transfer have very similar vari-
ation trends. The inconsistencies of the two transfers only
indicate that the theoretical solution is not accurate enough
and can be improved by a numerical process. Thus, in a
word, the global optimal halo-to-halo transfer can be ob-
tained by the theoretical method with a small error tolerance,
and the precise global optimal transfer can be obtained by
improving the theoretical solution with a numerical method.

4.4 Lissajous-to-halo transfers

Similar to Lissajous-to-Lissajous transfers and halo-to-halo
transfers, the fixed parameters in optimizing the Lissajous-
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Fig. 8 Simulation results of halo-to-halo transfers

to-halo transfers are also the x-amplitudes Ax1,Ax2 and
z-amplitudes Az1,Az2 of the initial orbit and the final or-
bit, and the phases of the two orbits in the z-axis are also
determined with the relation ψ1,2 = ϕ1,2(Im(λ5)/ Im(λ3)).
The values of the x-amplitudes Ax1,Ax2 and z-amplitudes
Az1,Az2 in dimensionless units (DU) are shown in Table 6.

First, the theoretical global optimal Lissajous-to-halo
transfer can be obtained by Eqs. (34)–(35) with the Newton-
Raphson method. The result of the global optimal transfer is
shown in Table 6, and the global optimal solution is marked
as a cyan pentalpha in Fig. 10 (ii, iv).

Second, to further study the characteristics of Lissajous-
to-halo transfers numerically and verify the validity of the
theoretical optimal transfer, simulations under various cir-
cumstances are performed.

Table 6 Parameters and result of the theoretical global optimal
Lissajous-to-halo transfer

Parameters Values

[Ax1,Az1] [−0.020,0.0060]
[Ax2,Az2] [0.0297,0.0132]
ϕ∗

1 200.3871°

ϕ∗
2 268.6418°

�t∗ 3.5994 days

�Vmin 67.5329 m/s

The phase of the starting point ϕ1 is varied from 10° to
350° at intervals of 20° and the phase of the ending point
ϕ2 is varied from 20° to 360° at intervals of 20° such that
the optimal TOF can be optimized for every pair of (ϕ1, ϕ2)
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Fig. 9 Global optimal halo-to-halo transfers obtained theoretically and numerically

Table 7 Parameters and result of the numerical global optimal
Lissajous-to-halo transfer

Parameters Values

[10°: 20°: 350°]

ϕ1

ϕ2 [20°: 20°:360°]

ϕ∗
1 190°

ϕ∗
2 260°

�t∗ 3.2504 days

�Vmin 64.0079 m/s

according to Fig. 3. The result of the global optimal transfer
is shown in Table 7. The simulation results of the TOF and
�V are shown in Fig. 10, and the global optimal solution is
marked as a magenta pentalpha in Fig. 10 (ii, iv).

According to the simulation results, the following con-
clusions can be summarized.

(i) As can be seen from Fig. 10(i, ii), the contour lines of
the TOF are approximately parallel to the diagonal of the di-
agram and also symmetric about the diagonal, which means
that the optimal TOF, for every pair of (ϕ1, ϕ2), mainly de-
pends on the absolute value of the difference between the
phases of the starting point and ending point ‖ϕ1 − ϕ2‖.
Specifically, when the phases of the starting point ϕ1 and
ending point ϕ2 are approximately equal, i.e., ‖ϕ1 − ϕ2‖ ≈
0◦, the TOF gets the approximate minimum of 0.95 days,
as the blue area shows in Fig. 10(ii). When the absolute
value of the difference of the phases ‖ϕ1 − ϕ2‖ increases,
the TOF first increases and then decreases, and when the ab-
solute value is approximately 200°, as the red areas show in
Fig. 10(ii), the TOF gets the approximate maximum of 6.75
days.

(ii) As can be seen from Fig. 10(iii, iv), the total velocity
increment�V also mainly depends on the absolute value of
the difference between the phases ‖ϕ1 − ϕ2‖. Leaving out
the special case of ϕ1 = 10◦, ϕ2 = 360◦, when the phases
are approximately equal, i.e., ‖ϕ1 − ϕ2‖ ≈ 0◦, as the red ar-
eas show in Fig. 10(iv), �V obtains the approximate maxi-
mum of 200 m/s; therefore, it is the most costly transfer in
this situation. When the absolute value of the difference of
the phases ‖ϕ1 − ϕ2‖ increases, �V first decreases, then in-
creases, and finally decreases, and when the absolute value
is approximately 150° and 260°, as the blue areas show in
Fig. 10(iv), �V gets the approximate minimum of 70 m/s;
thus, it is the least costly transfer in this situation.

(iii) The TOF and �V represent a pair of contradictions,
as can be concluded from above. When the TOF increases,
�V will decrease, and vice versa under the same transfer
conditions. This is consistent with common sense.

(iv) As can be seen in Table 6 and Table 7, the global
optimal Lissajous-to-halo transfer occurs when the phase of
the starting point ϕ1 and ending point ϕ2 are approximately
190° and 260°, respectively, and the minimum of �V is ap-
proximately 64 m/s. On the whole, the solution of the theo-
retical global optimal Lissajous-to-halo transfer is consistent
with the solution of the numerical global optimal transfer, in
spite of a small difference between the solutions. This can
also be confirmed by the cyan pentalpha and magenta pen-
talpha in Fig. 10(ii, iv), which are very close to each other.
Moreover, Fig. 11 shows that the theoretical global opti-
mal transfer and the numerical global optimal transfer have
very similar variation trends. The inconsistencies of the two
transfers only indicate that the theoretical solution is not ac-
curate enough and can be improved by a numerical process.
Thus, in a word, the global optimal Lissajous-to-halo trans-
fer can be obtained by the theoretical method with a small
error tolerance, and the precise global optimal transfer can
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Fig. 10 Simulation results of Lissajous-to-halo transfers

be obtained by improving the theoretical solution with a nu-
merical method.

As can be seen from above, the simulation results of
Lissajous-to-Lissajous transfers, halo-to-halo transfers and
Lissajous-to-halo transfers are similar from the perspective
of the three-dimensional curved surface of the TOF and �V .
This finding is not surprising because the halo orbit is a bi-
furcation of the Lissajous orbit from the view of dynam-
ics, as mentioned in Sect. 3.2; therefore, halo-to-halo and
Lissajous-to-halo transfers are essentially two types of spe-
cific Lissajous-to-Lissajous transfers. Moreover, consider-
ing that the Lyapunov orbit is also a bifurcation of the Lis-
sajous orbit, the transfers related to the Lyapunov orbit can
also be obtained with the same method. Therefore, the prob-
lem of optimal impulsive time-fixed transfers between the
three types of orbits around the collinear libration point of

the restricted three-body problem is solved with the method
proposed in this study.

5 Conclusions

This study involves the development of a methodology for
the design of optimal time-fixed impulsive transfers in the
vicinity of the L2 libration point of the Earth-Moon sys-
tem. The approximate analytical solution of optimal trans-
fers, along with the differential correction and SQP method,
has been verified as valid through simulations of point-
to-point transfers, Lissajous-to-Lissajous transfers, halo-to-
halo transfers and Lissajous-to-halo transfers. The point-to-
point transfers obtained in this study required the fewest ve-
locity increments by optimizing the TOF. The Lissajous-to-
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Fig. 11 Global optimal Lissajous-to-halo transfers obtained theoretically and numerically

Lissajous transfers, halo-to-halo transfers and Lissajous-to-
halo transfers obtained a global optimal solution by optimiz-
ing the phases of the initial orbit and final orbit, as well as the
TOF. Moreover, the theoretical global optimal solution has
been verified as consistent with the results of the numerical
simulations. The primer vector theory was also employed
to further verify the optimality of these transfers. Therefore,
the methodology is valid in designing optimal time-fixed im-
pulsive transfers between points and between orbits in the
vicinity of collinear libration points of the restricted three-
body problem.

The solution for optimal transfers derived in this paper is
actually an approximate analytical solution, which is based
on the approximate analytical expression for motions around
the collinear libration points of the CRTBP and ERTBP. Fu-
ture works will further consider and take advantage of the
nonlinearity of the restricted three-body problem and other
numerical optimization techniques to obtain a more precise
analytical solution.
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