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Abstract This paper focuses on the extension of isotropic
spherically symmetric solutions to anisotropic domain by
means of minimal geometric deformations in the context
of self-interacting Brans-Dicke theory. These deformations
decouple the system of field equations into two sets, one
describing the isotropic matter field and the other gov-
erned by anisotropic source. The former array is evalu-
ated by assuming the metric potentials of isotropic solu-
tion (Durgapal-Fuloria/Krori-Barua spacetimes) while addi-
tional constraints are applied to solve the later. The junc-
tion conditions at the hypersurface of the compact object
are employed to determine the unknown constants. The ef-
fect of scalar field on physical behavior and viability of all
anisotropic solutions is analyzed through regularity and en-
ergy conditions. It is observed that anisotropic Krori-Barua
solution is viable only for small values of the decoupling pa-
rameter whereas the extended Durgapal-Fuloria solution is
viable under all constraints.

Keywords Brans-Dicke theory · Gravitational decoupling ·
Self-gravitating systems

1 Introduction

The study of astrophysical structures (such as stars, galaxies,
etc.) contributes significantly to the discovery and compre-
hension of various relativistic phenomena. In order to ex-
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plore the intricate nature of self-gravitating systems, ana-
lytical solutions of relativistic field equations are required.
However, the non-linear differential equations are not only
difficult to solve but may yield physically irrelevant so-
lutions as well. Hence, the task of constructing exact as
well as viable solutions which adequately describe cos-
mic objects has attracted the attention of many researchers.
Schwarzschild (1916) found the first exact solution of Ein-
stein field equations representing a model with constant
density. Since cosmic objects seldom exhibit same density
throughout their interior, the quest for improved solutions
continued by adopting different techniques.

Ruderman (1972) proposed that anisotropy is a vital
property of highly dense systems containing interacting nu-
clear matter. As observational evidence reveals that nu-
clear matter exists within stellar structures, anisotropic flu-
ids (with unequal radial (pr ) and tangential (pt ) pressures)
are a more suitable representation of cosmic objects as com-
pared to isotropic sources. Existence of pion condensation
(Sawyer 1972), phase transition (Sokolov 1980) and su-
per fluid (Kippenhahn and Weigert 1990) are also respon-
sible for introducing anisotropy in an object. The effects of
anisotropy on mass, radius, redshift of stars have been ex-
plored by considering transverse and radial components of
pressure. Herrera and Santos (1997) discussed the causes
and effects of anisotropy on massive celestial objects. Harko
and Mak (2002) formulated a class of anisotropic solu-
tions by assuming anisotropic factor. According to Mak and
Harko (2003), anisotropy is induced in a system due to the
presence of a solid core. Hossein et al. (2012) checked via-
bility of anisotropic compact star with a varying cosmologi-
cal constant.

Ovalle (2008) developed a technique that not only simpli-
fies the extraction of solutions from non-linear field equa-
tions but also generates anisotropic solutions. He adopted
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the method of gravitational decoupling by a minimal geo-
metric deformation (MGD) approach which was originally
proposed to deform Schwarzschild metric in the background
of Randall-Sundrum brane-world. This approach starts by
integrating complex sources, one at a time, with a simple
spherical source (also known as seed source) thereby ex-
tending the simplest sources to more complex forms. The
field equations incorporating the extra source are decoupled
by deforming the radial metric component. The decoupled
equations consist of two separate sets: one corresponding
to the seed source and the other corresponding to the addi-
tional source. A complete solution of the whole system is
obtained by combining the respective solutions of both sets.
Although gravitational decoupling via MGD approach is a
breakthrough in the analysis of self-gravitating systems, it is
limited to static spherical systems only.

Ovalle and Linares (2013) formulated the counterpart of
Tolman IV solution in braneworld by applying MGD ap-
proach to the interior of isotropic sphere. This approach was
also employed to evaluate new exterior solutions with singu-
lar behavior at Schwarzschild radius (Casadio et al. 2015).
Ovalle (2017, Ovalle et al. 2018) extended perfect fluid solu-
tion to its anisotropic version by decoupling the gravitational
sources through MGD approach and examined the behav-
ior of anisotropy and gravitational redshift. Gabbanelli et al.
(2018) discussed the physical attributes of anisotropic so-
lutions obtained from isotropic Durgapal-Fuloria (DF) stel-
lar system. Estrada and Tello-Ortiz (2018) obtained well-
behaved anisotropic solutions by applying MGD scheme
to Heintzmann solution. The MGD approach has also been
utilized to extend charged solutions to anisotropic domain.
Sharif and Sadiq (2018) investigated the effect of elec-
tromagnetic field on viability and stability of anisotropic
charged system by considering Krori-Barua (KB) solution
as a charged isotropic solution.

The astonishing discovery of an expanding cosmos led
astrophysicists to believe in the existence of a hidden anti-
gravitational force termed as dark energy. In order to ex-
plain the effects and mysterious character of this invisible
force, researchers have suggested modifications to general
relativity (GR). In 1961, Brans-Dicke (BD) theory (Brans
and Dicke 1961), a scalar-tensor generalization of GR, was
presented by including a dynamical gravitational constant.
Consistent with Mach principle, BD theory effectively rea-
sons the expansion of the universe through a massless scalar
field ϕ = 1

G(t)
which includes the effects of varying grav-

itational constant. The scalar field is coupled to matter via
a coupling parameter ωBD which can be adjusted to get the
required results. Larger values of ωBD minimize the modi-
fication introduced by the scalar field. Consequently, infla-
tionary era is explained for lower values of ωBD (Weinberg
1989) whereas BD theory complies with weak field tests for
ωBD > 40,000 (Will 2001). The restrictions on the value of

ωBD are removed by incorporating a massive scalar field
Φ as well as a potential function V (Φ) resulting in self-
interacting BD (SBD) theory (Khoury and Weltman 2004).
In the context of SBD gravity, all values of ωBD greater than
−3/2 are admissible.

Brans and Dicke (1961) presented the first solution of the
BD field equations for a static sphere about a point mass.
Sneddon and McIntosh (1974) employed the method given
by Geroch (1971) to generate new vacuum BD solutions
from vacuum solutions of GR and evaluated the BD solution
consistent with NUT solution. Bruckman and Kazes (1977)
constructed an exact solution for a perfect fluid model by
assuming a linear equation of state. Goswami (1978) con-
verted the BD field equations to Einstein like field equations
to derive static as well as non-static solutions. Riazi and
Askari (1993) obtained approximate solutions representing
static spherical symmetry for the Brans-Dicke field equa-
tions in vacuum. Sharif and Manzoor (2015) studied the dy-
namics of self-gravitating fluids in BD theory with non-zero
potential and concluded that models for regular distribution
of scalar field are consistent with GR.

Recently, viability and stability of anisotropic solutions,
obtained via MGD approach, have also been explored
in modified theories (Sharif and Saba 2018; Sharif and
Waseem 2019a, 2019b). In this paper, we derive anisotropic
solutions for a static sphere by extending known isotropic
solutions through gravitational decoupling in SBD theory.
The paper is organized as follows. In Sect. 2, we con-
struct field equations with an extra source describing the
anisotropic matter distribution. Section 3 gives an overview
of the gravitationally decoupled equations obtained via
MGD approach. The anisotropic solutions are calculated
and checked for viability by imposing two constraints in
Sect. 4. In the last section, we summarize our results.

2 Self-interacting Brans-Dicke theory and
matter variables

The action of BD theory with a self-interacting potential
(Brans and Dicke 1961) in relativistic units (8πG0 = 1) is
given by

S =
∫ √−g

(
RΦ− ωBD

Φ
∇γ ∇γ Φ−V (Φ)+Lm+βLΘ

)
d4x,

(1)

where g, R, Lm and LΘ represent determinant of the met-
ric tensor, Ricci scalar, matter Lagrangian and Lagrangian
density of a new source, respectively. The new source (Θγδ)
incorporates physical features of an additional field (scalar,
vector or tensor) which introduces anisotropy in the self-
gravitating system and can be interpreted as a component
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of the effective energy-momentum tensor. Variation of the
above action with respect to metric tensor and scalar field
yields the SBD field equations and evolution equation, re-
spectively, given as

Gγδ = T
(eff)
γ δ = 1

Φ

(
T

(m)
γ δ + βΘγδ + T Φ

γ δ

)
, (2)

�Φ = T̃

3 + 2ωBD
+ 1

3 + 2ωBD

(
Φ

dV (Φ)

dΦ
− 2V (Φ)

)
. (3)

Here the matter distribution of a perfect fluid in terms of
energy density (ρ), pressure (p) and four velocity (uγ ) is

represented by the energy-momentum tensor T
(m)
γ δ as

T
(m)
γ δ = (ρ + p)uγ uδ − pgγ δ. (4)

Moreover, T̃ = T (m) +Θ , (T (m) = gγ δT
(m)
γ δ , Θ = gγ δΘγδ),

β is the decoupling parameter and T Φ
γ δ expresses the modi-

fied terms arising due to scalar field in the following form

T Φ
γ δ = Φ,γ ;δ − gγ δ�Φ + ωBD

Φ

(
Φ,γ Φ,δ − gγ δΦ,αΦ,α

2

)

− V (Φ)gγ δ

2
, (5)

where �Φ = Φ
,γ

;γ = (−g)− 1
2 [(−g)

1
2 Φ,γ ],γ .

We discuss the internal distribution of the celestial object
by considering the line element describing a static sphere
defined by

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2). (6)

Using Eqs. (2)–(6), the field equations involving the extra
source are obtained as

1

r2
− e−λ

(
1

r2
− λ′

r

)
= 1

Φ

(
ρ̃ + T 0Φ

0

)
, (7)

− 1

r2
+ e−λ

(
1

r2
+ ν′

r

)
= 1

Φ

(
p̃r − T 1Φ

1

)
, (8)

e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
= 1

Φ

(
p̃⊥ − T 2Φ

2

)
, (9)

where

ρ̃ = ρ + βΘ0
0 , p̃r = p − βΘ1

1 , p̃⊥ = p − βΘ2
2 ,

and

T 0Φ
0 = e−λ

[
Φ ′′ +

(
2

r
− λ′

2

)
Φ ′ + ωBD

2Φ
Φ ′2 − eλ V (Φ)

2

]
,

T 1Φ
1 = e−λ

[(
2

r
+ ν′

2

)
Φ ′ − ωBD

2Φ
Φ ′2 − eλ V (Φ)

2
)

]
,

T 2Φ
2 = e−λ

[
Φ ′′ +

(
1

r
− λ′

2
+ ν′

2

)
Φ ′

+ ωBD

2Φ
Φ ′2 − eλ V (Φ)

2

]
.

The wave equation (3) for the considered scenario is ex-
pressed as

�Φ = −e−λ

[(
2

r
− λ′

2
+ ν′

2

)
Φ ′ + Φ ′′

]
(10)

= 1

3 + 2ωBD

[
T̃ +

(
Φ

dV (Φ)

dΦ
− 2V (Φ)

)]
, (11)

where differentiation with respect to the radial coordinate
(r) is denoted by prime. The role of the source Θγδ as a gen-
erator of anisotropy can be clearly observed from Eqs. (7)–
(9) for Θ1

1 �= Θ2
2 . The anisotropy is defined as � = T

2(eff)
2 −

T
1(eff)
1 . For the present study, we take V (Φ) = 1

2m2
ΦΦ2 with

mΦ being the mass of the scalar field.

3 Gravitational decoupling via MGD
approach

The field equations (7)–(9) contain eight unknowns (ν, λ, ρ,
p, Θ0

0 , Θ1
1 , Θ2

2 , Φ) leading to an underdetermined system
of non-linear differential equations. In order to determine
the unknowns, we apply gravitational decoupling using the
MGD technique proposed by Ovalle (2008). This scheme
highlights the influence of source Θγδ on the isotropic
model by geometrically deforming the metric potentials
(ν(r) and λ(r)) through the linear mapping

eν(r) �→ eν(r) + βh(r), (12)

e−λ(r) �→ ξ(r) + βf (r), (13)

where h(r) and f (r) are the deformations induced in tem-
poral and radial metric functions, respectively. These ge-
ometric deformations, being functions of r only, do not
disturb spherical symmetry of the solution. The MGD ap-
proach complies with the deformation h �→ 0, i.e., the defor-
mation leaves the temporal component unchanged. Hence,
the anisotropic factor is integrated in the radial deformation
given in Eq. (13). Employing Eq. (13) in Eqs. (7)–(9) yields
two decoupled sets. The first set (corresponding to β = 0)
describes the perfect fluid configuration and is given as

ρ = − 1

2r2Φ(r)

[
r2ωξ(r)Φ ′2(r) − r2Φ(r)V (Φ)

+ rΦ(r)
(
rξ ′(r)Φ ′(r)2rξ(r)Φ ′′(r) + 4ξ(r)Φ ′(r)

)

+ 2Φ2(r)
(
rξ ′(r) + ξ(r) − 1

)]
, (14)

p = 1

r2

[
Φ(r)

(
rξ(r)ν′(r) + ξ(r) − 1

)] + 1

2rΦ(r)

× [
ξ(r)Φ ′(r)

(
Φ(r)

(
rν′(r) + 4

) − rωBDΦ ′(r)
)]
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− V (Φ)

2
, (15)

p = 1

4rΦ(r)

[
Φ(r)ξ ′(r)

(
Φ(r)

(
rν′(r) + 2

) + 2rΦ ′(r)
)

+ ξ(r)
(
2Φ(r)Φ ′(r)

((
rν′(r) + 2

) + 2rΦ ′′(r)
)

+ Φ2(r)
(
2rν′′(r) + rν′(r)2 + 2ν′(r)

)

+ 2rωBDΦ ′2(r)
) − 2rΦ(r)V (Φ)

]
. (16)

The conservation of energy and momentum for the isotropic
system (β = 0) is represented by the equation

T
1′(eff)
1 − ν′(r)

2

(
T

0(eff)
0 − T

1(eff)
1

) = 0.

The effects of source Θγδ are encompassed in the second set
expressed as

Θ0
0 = −1

2r2Φ(r)

[
rΦ(r)f ′(r)

(
rΦ ′(r) + 2Φ(r)

)

+ f (r)
(
r2ωBDΦ ′2(r) + 2rΦ(r)

× (
rΦ ′′(r) + 2Φ ′(r)

) + 2Φ2(r)
)]

, (17)

Θ1
1 = −1

2r2Φ(r)

[
f (r)

(−r2ωBDΦ ′(r)2 + rΦ(r)
(
rν′(r)

+ 4
)
Φ ′(r) + 2Φ2(r)

(
rν′(r) + 1

))]
, (18)

Θ3
3 = −1

4Φ(r)

[
2Φ(r)

(
rf ′(r)Φ ′(r) + f (r)

((
rν′(r) + 2

)
Φ ′(r)

+ 2rΦ ′′(r)
)) + Φ2(r)

(
f ′(r)

(
rν′(r) + 2

)

+ f (r)
(
2rν′′(r) + rν′2(r) + 2ν′(r)

))

+ 2rωBDf (r)Φ ′2(r)
]
, (19)

with the following conservation equation

Θ
1′(eff)
1 − ν′(r)

2

(
Θ

0(eff)
0 −Θ

1(eff)
1

)− 2

r

(
Θ

2(eff)
2 −Θ

1(eff)
1

) = 0,

where

Θ
0(eff)
0 = 1

Φ

(
Θ0

0 + 1

2
f ′(r)Φ ′(r) + f (r)Φ ′′(r)

+ ωBDf (r)Φ ′2(r)

2Φ(r)
+ 2f (r)Φ ′(r)

r

)
,

Θ
1(eff)
1 = 1

Φ

(
Θ1

1 + 1

2
f (r)ν′(r)Φ ′(r)

− ωBDf (r)Φ ′2(r)

2Φ(r)
+ 2f (r)Φ ′(r)

r

)
,

Θ
2(eff)
2 = 1

Φ

(
Θ2

2 + 1

2
f ′(r)Φ ′(r) + 1

2
f (r)ν′(r)Φ ′(r)

+ f (r)Φ ′′(r) + ωBDf (r)Φ ′2(r)

2Φ(r)
+ f (r)Φ ′(r)

r

)
.

Since both sources (isotropic as well as anisotropic) are
individually conserved, no exchange of matter or energy be-
tween the two setups is possible. Hence, interactions be-
tween the systems are purely gravitational. The MGD ap-
proach has converted the system (7)–(9) into a system repre-
senting perfect fluid in terms of the variables ν(r), λ(r), ρ, p
as well as a simpler set of equations representing anisotropy
with four unknowns (f (r), Θ0

0 , Θ1
1 , Θ2

2 ). The field equa-
tions corresponding to anisotropic interior of the sphere can
be solved if an isotropic solution for Eqs. (14)–(16) is known
in SBD theory. In order to consider the efficiency of this
technique in SBD theory, we consider two isotropic solu-
tions: DF (Durgapal and Fuloria 1985) and KB (Krori and
Barua 1975). The physical validity of the anisotropic solu-
tions generated via two ansatz is examined in the next sec-
tion.

4 Anisotropic solutions

Durgapal and Fuloria obtained a viable perfect fluid solu-
tion to describe superdense stellar structures such as neu-
tron stars. The regularity of energy density as well as stabil-
ity against radial perturbations strengthen the choice of this
solution. The singularity-free metric potentials are defined
as

eν(r) = A
(
1 + Br2)4

, (20)

e−λ(r) = ξ(r) = 7 − B2r4 − 10Br2

7(Br2 + 1)2
, (21)

where A and B are constants. In the past, anisotropic and
charged configurations have been constructed using the
above metric functions. To determine the unknown con-
stants, we match the interior and exterior geometries on
the hypersurface Σ . The vacuum exterior is described by
Schwarzschild line element as

ds2 =
(

1 − 2M

r

)
dt2 − 1

(1 − 2M
r

)
dr2

− r2(dθ2 + sin2 θdφ2), (22)

where M is the total mass of the celestial body. The follow-
ing conditions must be fulfilled at the boundary (r = R =
radius of the self-gravitating system) to ensure smooth tran-
sition from internal matter distribution to external vacuum

(
g−

γ δ

)
Σ

= (
g+

γ δ

)
Σ

, (pr)Σ = 0,

(
Φ−(r)

)
Σ

= (
Φ+(r)

)
Σ

,
(
Φ ′−(r)

)
Σ

= (
Φ ′+(r)

)
Σ

.
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Continuity of the metric components at the hypersurface
specifies the constants A and B as

A = R − 2M

R(BR2 + 1)4
, (23)

B = −7MR2 − 2
√

9R6 − 14MR5 + 6R3

7MR4 − 4R5
. (24)

Krori and Barua presented a static solution for a charged
sphere that gained importance due to its singularity-free na-
ture which complies with all the validation tests. The so-
lution was initially limited to charged systems but later re-
searchers analyzed the physical behavior of uncharged sys-
tems as well with the help of this solution (Momeni et al.
2015; Zubair and Abbas 2016). Krori-Barua solution is de-
fined by the following metric functions

eν(r) = eGr2+H , (25)

e−λ(r) = ξ(r) = e−Fr2
, (26)

where the constants F , G and H are evaluated through the
junction conditions ((g−

γ δ)Σ = (g+
γ δ)Σ ) as

F = ln( R
R−2M

)

R2
, (27)

G = 2M

R2(R − 2M)
, (28)

H = ln

(
1 − 2M

R

)
− 2M

R − 2M
. (29)

Taking the above solutions as seed solutions, we can deter-
mine the associated anisotropic interior solutions by consid-
ering the respective metric potentials. However, in order to
close the system of geometric deformation and source Θγδ ,
certain constraints (a condition on f (r) or an equation of
state for Θγδ) must be applied. The complete anisotropic
solution is characterized by the following state variables

ρ = −1

2r2Φ(r)

{
rΦ(r)

(
rΦ ′(r)

(
βf ′(r) + ξ ′(r)

)

+ 2βf (r)
(
rΦ ′′(r) + 2Φ ′(r)

) + ξ(r)
(
rΦ ′′(r)

+ 2Φ ′(r)
)) + 2Φ2(r)

(
βrf ′(r) − +βf (r) + rξ ′(r)

+ ξ(r)1
) + r2ωBDΦ ′2(r)

(
βf (r) + ξ(r)

)

− r2Φ(r)V (Φ)
}
, (30)

pr = 1

2r2Φ(r)

{
r2(−ωBD)Φ ′2(r)

(
βf (r) + ξ(r)

)

+ rΦ(r)
(
rν′(r) + 4

)
Φ ′(r)

× (
βf (r) + ξ(r)

) + 2Φ2(r)
(
f (r)

(
β + βrν′(r)

)

+ rξ(r)ν′(r) + ξ(r) − 1
) − r2Φ(r)V (Φ)

}
, (31)

p⊥ = 1

4rΦ(r)

{
2Φ(r)

(
rΦ ′(r)

(
βf ′(r) + ξ ′(r)

)

+ βf (r)
((

rν′(r) + 2
)
Φ ′(r) + 2rΦ ′′(r)

)
+ ξ(r)

((
rν′(r) + 2

)
Φ ′(r) + 2rΦ ′′(r)

))

+ Φ2(r)
(
βf ′(r)

× (
rν′(r) + 2

) + βf (r)
(
2rν′′(r) + rν′2(r)

+ 2ν′(r)
) + 2rξ(r)ν′′(r) + rν′(r)ξ ′(r) + rξ(r)ν′2(r)

+ 2ξ(r)ν′(r) + 2ξ ′(r)
) + 2rωBDΦ ′2(r)

× (
βf (r) + ξ(r)

) − 2rΦ(r)V (Φ)
}
, (32)

with anisotropy defined as

� = p⊥ − pr .

The constants A, G and H remain unchanged for the
anisotropic solution (as temporal component is unperturbed)
whereas the constants B and F are treated as free parameters
which can be acquired from Eqs. (24) and (27), respectively.
Values of the coupling parameter are obtained through
the continuity of second fundamental form ((pr)Σ = 0),
scalar field and its first derivative ((Φ−(r))Σ = (Φ+(r))Σ ,
(Φ ′−(r))Σ = (Φ ′+(r))Σ ). Moreover, the wave equation is
solved numerically to determine the scalar field by taking
mΦ = 0.1 (which is in accordance with the constraints im-
posed by Gravity Probe B experiment). The viability of
a model can now be investigated by substituting the cor-
responding values of constants, f (r), ν(r), and λ(r) in
Eqs. (30)–(32). All numerical results are displayed graph-
ically for three values of β (0, 0.1, 0.9) for the star PSR
J1614-2230 (M = 1.97 M⊙ and R = 11.29 km).

4.1 Constraint I

The first constraint requires the radial pressure Θ1
1 to coin-

cide with isotropic pressure of the seed solution, i.e.,

Θ1
1 = p, (33)

which leads to an interior solution compatible with
Schwarzschild exterior. Employing Eqs. (15) and (18) in
(33) provides the following expression for metric deforma-
tion

f = 1

ς

[
r2ωBDξ(r)Φ ′2(r) + r2Φ(r)V (Φ)

− rξ(r)Φ(r)
(
rν′(r) + 4

)
Φ ′(r)

− 2Φ2(r)
(
rξ(r)ν′(r) + ξ(r) − 1

)]
, (34)

where
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Fig. 1 Plots of ρ, pr and p⊥ of anisotropic DF solution versus radial coordinate for constraint I

Fig. 2 Anisotropy in extended
DF solution for constraint I

ς = r2Φ(r)ν′(r)Φ ′(r) − r2ωBDΦ ′2(r) + 2rΦ2(r)ν′(r)

+ 4rΦ(r)Φ ′(r) + 2Φ2(r).

The junction conditions associated with DF solution yields
two values of ωBD: 10.0086 and 39.1171. The plots of den-
sity, radial and transverse pressures demonstrate adequate
trends (finite throughout and maximum at the center) for
both values as shown in Fig. 1. Energy density decreases as
β increases in both cases whereas pressure components in-
crease for ωBD = 10.0086 and decrease for ωBD = 39.1171
with an increase in the value of the decoupling parameter.
Moreover, positive and increasing anisotropy, portrayed in
Fig. 2, suggests the presence of a repulsive anisotropic force
counterbalancing the inward force of gravity leading to a
stable structure.

It is necessary for the study of compact structures that
their interior consists of normal matter, i.e., energy and mo-
mentum must be well-defined at every point inside the star.
The presence of normal matter is confirmed if four energy
conditions (null, weak, strong and dominant) are satisfied.

These conditions in the context of SBD gravity are ex-
pressed as (Fujii and Maeda 2003)

NEC: ρ + pr ≥ 0, ρ + p⊥ ≥ 0,

WEC: ρ ≥ 0, ρ + pr ≥ 0, ρ + p⊥ ≥ 0,

SEC: ρ + pr + 2p⊥ ≥ 0,

DEC: ρ − pr ≥ 0, ρ − p⊥ ≥ 0.

Since density and pressure components exhibit positive
trend for both values of the coupling parameter, the energy-
momentum tensor complies with the first three conditions.
The plots for DEC in Fig. 3 display acceptable behavior en-
suring physical viability of the anisotropic sphere. The ef-
fective mass of the sphere is calculated as

M(r) = R

2

(
1 − e−λ

)
. (35)

The ratio of mass to radius of a star gives a measure of its
compactness (u(r)) which must obey Buchdahl’s limit, i.e.,
u(r) = M

R
< 4

9 (Buchdahl 1959). Buchdahl’s limit further
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Fig. 3 DEC for anisotropic DF
solution with respect to
constraint I

Fig. 4 Plots of m, u and Z corresponding to anisotropic DF solution for constraint I

implies that value of surface redshift (Z(r) = 1√
1−2u

− 1)
must not exceed 2 for perfect fluids. However, if the distri-
bution is anisotropic then this limit changes to Z(r) < 5.211
(Ivanov 2002). The compactness factor and redshift, plotted
in Fig. 4, fulfil the above mentioned requirements.

In the case of anisotropic extension of KB solution, the
values of ωBD obtained are 15.831 and 33.7343. The graphi-
cal representations of energy density and pressure (radial as
well as transverse) in Fig. 5 depict a directly proportional re-
lation between the physical quantities and β . The behavior
of anisotropy is analyzed graphically in Fig. 6. For β = 0,

0.1, the anisotropy is positive whereas anisotropy is initially
negative corresponding to β = 0.9. According to Hossein
et al. (2012), the negative anisotropy helps in the formation
of a massive star. Hence, the anisotropic model gains stabil-
ity after a certain distance for β = 0.9. The physical valid-
ity of the solution is checked in Fig. 7 which shows stable
configuration for both values of the coupling parameter cor-
responding to β = 0,0.1 while DEC is violated for β = 0.9.
The effective mass, compactness factor and redshift param-
eter fall within the desired values (Buchdahl 1959; Ivanov
2002) as shown in Fig. 8.
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Fig. 5 Plots of ρ, pr and p⊥ of extended KB solution for constraint I

Fig. 6 Anisotropy in extended
KB solution for constraint I

Fig. 7 DEC for extended KB
solution with respect to
constraint I
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Fig. 8 Plots of m, u and Z corresponding to extended KB solution for constraint I

Fig. 9 Plots of ρ, pr , p⊥ and �

of anisotropic DF solution for
constraint II

4.2 Constraint II

Another constraint that closes the anisotropic system is

Θ0
0 = ρ. (36)

The differential equation obtained by inserting Eqs. (14) and
(17) in the above equation cannot be solved analytically.
Hence, by considering the constants computed for DF solu-
tion (or KB solution), the wave equation and Eq. (36) are
solved numerically. The trend of physical parameters as-
sociated with anisotropic version of DF solution is exam-

ined graphically in Figs. 9, 10 and 11 for ω = 9.89984.
The energy density and pressure components are positive
and decrease towards the boundary of the star. Moreover,
the positive anisotropy provides a repulsive force. The self-
gravitating system is viable as it is consistent with all energy
conditions and limits imposed on compactness and surface
redshift.

Figures 12, 13 and 14 graphically interpret the state pa-
rameters of anisotropic KB solution for ω = 14.367. The
model is regular and viable for β = 0, 0.1 but violates the
energy conditions corresponding to a higher value of the de-
coupling parameter. Further, the surface redshift exceeds the
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Fig. 10 DEC for anisotropic DF
solution with respect to
constraint II

Fig. 11 Plots of m, u and Z corresponding to anisotropic DF solution for constraint II

Fig. 12 Plots of ρ, pr , p⊥ and
� of extended KB solution for
constraint II

Fig. 13 DEC for extended KB
solution with respect to
constraint II
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Fig. 14 Plots of m, u and Z corresponding to extended KB solution for constraint II

required limit (Ivanov 2002). Hence, the distribution does
not represent valid self-gravitating systems for higher val-
ues of the decoupling parameter.

5 Conclusions

The study of self-gravitating objects provides insight into
hidden mechanism of the universe. Consequently, many re-
searchers have undertaken the task of finding interior solu-
tions that adhere to the physical behavior and structure of
relativistic objects. The technique of gravitational decou-
pling has proved beneficial in this regard. Self-interacting
BD theory allows a dynamical gravitational constant in
terms of a scalar field Φ as well as an effective potential
function V (Φ) that adjusts the values of cosmic inflation
with the observational data.

In this work, we have employed MGD method to de-
couple SBD field equations to obtain extended anisotropic
versions of interior isotropic solutions. For this purpose,
an additional source is introduced in the effective energy-
momentum tensor of SBD field equations. After geo-
metric deformation is applied, the system is split into
two separate arrays. The isotropic system is specified
through metric components of DF as well as KB solutions.
Their anisotropic counterparts are evaluated via mimic con-
straints: Θ1

1 = p and Θ0
0 = ρ. Matching conditions on the

boundary of the stellar object determine the unknown con-
stants while the wave equation is utilized to obtain the scalar
field. We have also inspected the anisotropic solutions for
regularity and viability in the presence of scalar field. Fi-
nally, compactness and redshift of self-gravitating system
have been analyzed graphically.

Durgapal-Fuloria as well as KB solutions extended via
constraint I have maximum energy density at the center
which decreases monotonically towards the hypersurface.
The anisotropy decreases as β increases implying that the
stellar structure is more stable for lower values of the decou-
pling parameter. For constraint I, the anisotropic DF solution
is viable whereas the extended KB solution violates DEC for

β = 0.9. When constraint II is imposed, the anisotropy be-
comes directly proportional to β indicating increased sta-
bility for higher values of the decoupling parameter. The
solution linked to DF metric potentials complies with the
regularity conditions at the center as well as the energy con-
ditions for all values of β . On the other hand, anisotropic
KB solution exhibits negative energy density for β = 0.9.
The dominant energy condition and limit of surface redshift
are also breached for this value of the decoupling parameter
leading to an unrealistic configuration in case of KB met-
ric potentials. Hence, KB solution yields valid scenarios for
small values of the decoupling parameter only. It is inter-
esting to mention here that all the results presented in this
paper reduce to GR under the conditions Φ = constant and
ωBD → ∞.

It is worth mentioning that SBD theory includes the ef-
fects of a massive scalar field which increases complex-
ity of non-linear differential equations. Hence the MGD-
decoupling represents a useful tool for extending analogue
of isotropic solutions for self-gravitating systems in GR into
solutions of SBD theory. Moreover, the anisotropic solutions
obtained via this technique can be employed to describe var-
ious cosmological as well as astrophysical phenomena. It
can be utilized, for instance, to investigate the role played by
the massive scalar field during gravitational collapse. In the
analysis of compact objects, anisotropic solutions contain-
ing the effects of scalar field can prove useful in examining
the physical characteristics (mass-radius relation, redshift,
etc.) of neutron stars, white dwarfs or hypothetical quark
stars. We would like to mention here that this approach can
be implemented for non-static scenarios as long as the spher-
ical symmetry is preserved under slowly evolving situations.
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