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Abstract This paper is devoted to the investigation of spa-
tially homogeneous and anisotropic Bianchi type-III mas-
sive scalar field model in the presence of anisotropic dark
energy. We have constructed a deterministic cosmological
model using some relevant physical and mathematical con-
ditions. We obtain analytical solution of average scale factor
and determine various cosmological parameters. We have
also obtained the massive scalar field in the model and the
graphical description of all the dynamical parameters is pre-
sented. A detailed discussion of the above dynamical quan-
tities is, also, included.

Keywords Dark energy model - Massive scalar field -
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1 Introduction

The significance of spatially homogeneous and anisotropic
Bianchi models is, now, related to the discovery of an
amount of anisotropy in the background radiation. This in-
dicates that these models are more a realistic picture of past
eras in the history of the universe. Also, from the theoreti-
cal point of view, anisotropic models have a greater gener-
ality than isotropic solutions of Einstein field equations for

X D.R.K. Reddy
reddy_einstein @yahoo.com

Y. Aditya

aditya.y @gmrit.edu.in

Department of Applied Mathematics, Andhra University,
Visakhapatnam-530003, India

2 Department of Mathematics, ANITS (A),
Visakhapatnam-531162, India

Department of Mathematics, GMR Institute of Technology,
Rajam-532127, India

the cosmological problem. There are nine types of Bianchi
space-times in literature (Taub 1951) which have been ex-
tensively used to investigate cosmological models to de-
scribe early stages of evolution of the universe in the pres-
ence of various physical distributions of matter. Here, our
main concern is to present Bianchi type-(BT)-III cosmolog-
ical model in the presence of dark energy fluid and an attrac-
tive massive scalar meson field.

Dark energy (DE) which is defined as the exotic nega-
tive pressure causing the accelerated expansion of the uni-
verse (Riess et al. 1988; Perlmutter et al. 1999) is attract-
ing attention of several researchers in the recent years. In
order to explain this mysterious concept two ways have
been suggested. One way is to construct dark energy mod-
els and the other one is to modify Einstein’s theory of
gravitation to study the corresponding anisotropic dark en-
ergy cosmological models. Significant and useful modifi-
cations of Einstein’s theory are scalar-tensor theories of
gravity proposed by Brans and Dicke (1961), Saez and
Ballester (1986), f(R) and f (R, T) modified theories of
gravity (Nojiri et al. 2005; Harko et al. 2011). There have
been several investigations on anisotropic DE models in the
alternative theories of gravitation (Copeland et al. 1998;
Nojiri and Odintsov 2006). In the literature, there are very
nice reviews on modified theories of gravitation (Nojiri and
Odintsov 2011; Capozziello et al. 2012; Clifton et al. 2012;
Nojiri et al. 2017). It is important to mention, here, that the
investigation of Bianchi models in the modified theories of
gravitation is useful to understand the possible anisotropic
nature of DE and its effects on the evolution of the universe.

Here we are interested in the study of DE models of Ein-
stein field equations in the presence of scalar meson fields.
The works of Dirac (1937), Kaluza-Klein (1921) and subse-
quently Brans and Dicke (1961) through their scalar-tensor
theories have introduced scalar field (SF) in cosmology.
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Now particle physics theories confirm the presence of SFs.
For example the Higgs mechanism explaining the mass of
the particles is a massive SF (Zel’dovich 1986). Also, the
recent scenario of accelerated expansion of the universe is
explained by quintessence SF. It, also, helps to produce in-
flation at early stages of evolution of the universe. Scalar
meson fields are of two types, namely, zero mass SFs and at-
tractive massive SFs. Mass less SFs describes long range and
massive SFs short range interactions. Several researchers
have discussed, in the past, scalar meson fields associated
with various physical sources (Mohanty and Pradhan 1992;
Singh and Ram 1996; Singh 2005, 2008; Rahaman et al.
2002). In recent years, anisotropic DE cosmological mod-
els in the presence of massive and mass less SFs have been
the subject of active investigation. BT-V dark energy model
with scalar meson fields in general relativity has been ob-
tained by Reddy (2018) while Naidu (2018) discussed BT-II
modified holographic Ricci dark energy model in the pres-
ence of attractive massive SF. Aditya and Reddy (2018) dis-
cussed the dynamics of BT-III cosmological model in the
presence of anisotropic DE and an attractive massive scalar
meson field. Reddy et al. (2019) have investigated dark en-
ergy cosmological model in the presence of anisotropic dark
energy fluid coupled with mass less SF in Kantowski-Sachs
space-time in general theory of relativity. Recently, Reddy
and Ramesh (2019a) presented a new DE model in five di-
mensional Kaluza-Klein anisotropic space-time in the pres-
ence of zero mass SFs in general relativity while Reddy and
Ramesh (2019b) investigated FRW type Kaluza-Klein infla-
tionary cosmological model in the presence of mass less SF
with flat potential. Very recently, Naidu et al. (2019) dis-
cussed BT-V dark energy cosmological model in general rel-
ativity in the presence of massive SF. Aditya et al. (2019)
have discussed Kaluza-Klein dark energy model in Lyra
manifold in the presence of massive SF, whereas Aditya and
Reddy (2019) have studied dynamics of perfect fluid cos-
mological model in the presence of massive SF in f(R, T)
gravity. Singh and Rani (2015) obtained BT-III cosmolog-
ical models in the presence of perfect fluid and an attrac-
tive massive SF in Lyra (1951) geometry using a special law
of variation for Hubble’s parameter proposed by Bermann
(1983). Santhi et al. (2017) have investigated Kantowski—
Sachs SF cosmological models in f (R, T) theory of grav-
ity.

The above discussion has motivated us to consider a spa-
tially homogeneous and totally anisotropic BT-III cosmo-
logical model in the presence of DE fluid and an attractive
massive SF in general theory of relativity. The scheme of
this paper is as follows: Sect. 2 contains the metric and the
derivation of field equations in Einstein’s theory. In Sect. 3,
we obtain solutions of the field equations and present the
corresponding cosmological model. In Sect. 4, some dynam-
ical and physical aspects of our model are discussed. Finally
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the last section gives the summary and the results of our
work.

2 Metric and field equations in general
relativity

We consider the spatially homogeneous and anisotropic BT-
IIT metric in the form.

ds> =di* — A%dx* — B*e¥dy* — C?e 2*dZ? €))

where A, B, C are functions of cosmic time ¢ only.
In general relativity the field equations in the presence of
massive SF and anisotropic DE fluid are given by

1 (de) | —(s)
Rij — Egin = _(Tij 7+ TijY ) @)

and the other symbols have their usual meaning. We use
gravitational units so that 87 G = ¢ = 1. The energy conser-
vation equation is the consequence of Eq. (2), and is given
as

(Tij);; =0 3

Here the energy-momentum tensor of massive SF and
anisotropic DE fluid are given by

d s
Ty =T + T )
where
T(de) _ 1y e .. 5
ij = (Pde + Pde)Uiltj — Pde&ij (5)
) 1 k22
T =i = 5 (exe” — M), (©)

Here pg4. and py. are the DE density and pressure, whereas
mass of the SF ¢ is denoted by M. The SF always satisfies
the Klein-Gordon equation

g/ q.ij+ M9 =0. ©)

The anisotropy of the DE in BT space-times is useful in gen-
erating arbitrary ellipsoidality to the Universe, and to fine-
tune the observed CMBR anisotropies. Koivisto and Mota
(2008a, 2008b) have discussed cosmological model with
anisotropic EoS. They have proposed a different approach to
resolve CMB anisotropy problem and it could be distorted
by the direction dependent acceleration of the future Uni-
verse in such a way that it appears to us anomalous at the
largest scales. They have studied a cosmological model con-
taining a DE component which has an anisotropic EoS and
interacts with the perfect fluid component. They have also
suggested that cosmological models with anisotropic EoS
can explain the quadrupole problem and can be tested by
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SN Ia data. The energy-momentum tensor of anisotropic DE
fluid given by Eq. (5) can be parameterized as

7€)

T = diag[1, —wde, —(@de + ¥), —(@de + ] pae  (8)

where we have defined the EoS parameter of DE as wg, =
ﬁj‘-’ y and § are the skewness parameters which are the de-
viations from EoS parameter wg, along y and z-axes respec-
tively.

Now using commoving coordinates and Eqgs. (3)—(8) the

field equations (2) and (7) for the metric can be written as

AB BC CA 1 92 M2
B TBCTCA w Tty T ®
5 ’Ya .2 2.2
= . (10)
A C AC 02 M2p?
X+E+A___(wde+y)pde_§ + (11
A B AB 1 92 M2p?
1 E+E yeiu (wde+8),0de_§ + )
(12)
A_B (13)
A B
¢+¢<é+£+£)+M2¢=O (14)
A B'C

where an overhead dot denotes differentiation with respect
to time ¢. The conservation equation (3) is given by

, A B C
Pde + <A + = B + )(pde + Pde) = (15)

3 Solutions and the model

In this section, we solve the field equations (10)—(15) and
present the corresponding DE model with the attractive mas-
sive SF.

From Eq. (14) we obtain

A=ciB (16)

where ¢ is a constant of integration which can be assumed
as unity without any loss of generality so that we get

A=B (17)
Now using Eqs. (17), (12) and (13) we obtain
y=0 (18)

with the help of Eqgs. (17) and (18) the field equations (10)—
(15) reduce to the following independent equations:

B> 2CB 1 9% M?%p?
S T z 19
CB B2 Pde + ) + ) ( )

B C 'C' gbz M?p?

Z i - 20
+ C + BC —Wde Pde ) + ) (20)

B B2 1 02 M2g?

25 + B R —(@de + 8) pde — ) + > (21

R 2B+C +M?9=0 (22)

YT B C Q=

. C

Pde + 2 + (0de + Pde) = (23)

Now Egs. (19)—(23) are set of four independent equations in
six unknowns B, C, §, pge, wg. and ¢ (Eq. (23) is the conse-
quence of the field equations). Hence to obtain a determinate
solution of the field equations we need two extra conditions
which are either physically or mathematically viable. So we
use the following two conditions:

(i) the expansion scalar of the model is proportional to
the shear scalar so that we obtain a well-known result
(Collins et al. 1980)

B=C" (24)

where n # 1 is a positive constant. This preserves the
anisotropy of the space-time.

(i) with a view to reduce the mathematical complexity of
the field equations, we assume (Singh 2008; Singh and
Rani 2015; Naidu et al. 2019)

¢

¢
@n+1z == 25)

Now using Eq. (25) in Eq. (22) and integrating we ob-
tain

2t2
@ =exp (wot - + <p1) (26)

Using Eq. (26) in Eq. (25), we get
M2t
5 — ol — 91
— - 7 27
¢ eXp( 20+ 1 > @7

M>242

M- t n
A—B— |:exp<—2 2n‘f1 2 )} (28)

Now using Egs. (27) and (28) in Eq. (1) we can write
the BT-III model in the present case as
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ds* =dr?
M2 2n
— t —
_ [ep(%)} (@ — e ay?)
M342 2
2z t —
— [exp(%)] e *d7? (29)
n

with the SF in the model given by Eq. (26).

4 Kinematical parameters of the model

In this section, we compute the following kinematical pa-
rameters of the model (29) which play a significant role in
the discussion of the cosmological model of the universe.

The spatial volume in the model, in view of Egs. (17),
(27) and (28), is

M2s? 2n+1
- l‘_
V =a>=ABC = A>C = |exp 2 e
2n +1

(30)

where a is the average scale factor of the universe.
The average Hubble parameter in the model is given by

‘ M?t —

H:L(i‘”‘)) 31)
a 3

The scalar expansion of the model is

6 =3H=M?1— ¢ (32)

The shear scalar is given by
1A C\* 1/M*—g¢\>

2= (2 -Z) = (22 n—1)2 (33)
3\a C 3\ 2n+1)

The average anisotropy parameter is

_ 8(n—1)?

32+ 1)?

Using Egs. (26)-(28) in Eq. (19) we obtain DE density as

Ap (34)

n+2)

o= (M%t — 2 mtnT o)

pie = (M1 = ¢0) [(2n+1)2

M2+ 1) . M2t2 N 2
) P\ o ) 91
M?2¢? —2n
7~ — %ol —¢1

- R A 35
[eXp( 0+ 1 )} (33)

From Egs. (26)—(28) and Eq. (20) we find EoS parameter of
DE as

Wde = —

1 |:M2(n +1)
Pde 2n+1
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n?4+n+1
Mt — o) (s
+ (M1 — ) <(2n+1)2

M2 +1 M2 2
——( 2+ )(exp(q)ot— 2t +<p1>> >] (36)

From Eqs. (26)—(28), (20) and (21) we can find the skewness
parameter as

AT a=D s
S_pde[(2n+1)(M (M7= o))

M2l2 —2n
—(eXp< 2 _¢0t_¢1)) } (37)

where energy density is given by Eq. (35).
The deceleration parameter of the model is given by

B d 3M?
q_—l—i—E(H )= <1+7(M2t_¢0)2> (38)

The jerk parameter of the model is given by

, q om?
jO=q+2¢"— =1

- 0 g2 %)

5 Discussion of the parameters

The above dynamical and physical parameters will help us
to discuss their significance in the universe.

It may be observed that the spatial volume increases ex-
ponentially with cosmic time. This shows that the universe
expands from a finite volume. Observation of average scale
factor reveals that the model is nonsingular since the ex-
ponential function never vanishes. It may be noted that the
physical parameters H, 6, o2 all diverge when ¢ approaches
infinity and will have finite values at + = 0. The scalar ex-
pansion of the model is always positive for small values of
@o. Our model is totally anisotropic and spatially homoge-
neous since
o2
72 = constant 40)
Also the average anisotropy parameter is independent of ¢
and hence it is uniform throughout the evolution of the uni-
verse.

Scalar field 1In Fig. 1, we have analyzed the behavior of
the SF ¢ in terms of cosmic time for various values of ¢g.
For all three values of ¢, it can be observed that the SF is
positive throughout its evolution. SF increases with cosmic
time and reaches a maximum value at certain point of time
and then decreases to vanish at later point of time. We have
also observed that as ¢q increases the SF increases.
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Fig. 1 Plot of SF versus time ¢ for M = 0.9 and ¢; =20
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Fig. 2 Plot of energy density versus time ¢ for M = 0.9, n =2 and
o1 =20

Energy density (p4.) From Fig. 2, we observe that the DE
density of our model is always positive throughout the evo-
Iution for different values of ¢g. It is also observed that the
DE energy density increases with time, but decreases with
the value of ¢g. It is interesting to mention here that this
behavior of energy density is quite opposite to the behavior
of energy density in BT-III DE model with SF obtained by
Naidu et al. (2019).

EoS parameter Figure 3 describes the evolution of equa-
tion of state parameter versus time for our model. It can be
seen that for various values of ¢ the model starts in the
phantom region (wge < —1) and finally reaches a constant
value in the quintessence region (—1 < wge < _Tl).

Deceleration parameter (¢) This parameter plays a very
important role in the description of the nature of the model
obtained. For ¢ > 0, the model decelerates in the standard
way, when ¢ = 0 we have a constant rate of expansion and
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Fig. 3 Plot of EoS parameter versus time ¢ for M = 0.9, n =2 and
01 =20
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Fig.4 Plot of deceleration parameter ¢ versus time ¢ for M = 0.9

for —1 < g < 0 the model shows an accelerated expansion.
For g = —1, the universe exhibits an exponential expansion
and when ¢ < —1, the model is in super exponential ex-
pansion. Figure 4 depicts the behavior of deceleration pa-
rameter versus cosmic time t for different values of ¢g. For
our model we observe that initially g is less than —1 and
hence we obtain a universe with super exponential expan-
sion. However, finally, the expansion is independent of ¢
and g approaches —1, i.e., the model shows exponential ex-
pansion.

Skewness parameter Skewness parameter depicts the
amount of anisotropy in the dark energy fluid. In Fig. 5, we
have depicted skewness parameter versus time ¢ for differ-
ent values of g and positive throughout its evolution. Also,
we observe that the effect of SF on the skewness parame-
ters, influences rapidly initially and it is independent at the
present epoch.
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Fig. 5 Plot of skewness parameter versus time ¢ for M = 0.9, n =2
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Fig.6 Plot of jerk parameter versus time ¢ for M = 0.9

Jerk parameter In can be seen from Fig. 6 that the jerk
parameter is remains positive throughout the evolution for
all the three values of ¢y. Also, we observed that the jerk
parameter is independent of ¢ at late times and approaches
to a constant value, unity.

6 Conclusions

Investigation of dark energy models in Einstein’s modified
theories of gravity is drawing the attention of several re-
searchers in order to explain the interesting scenario of ac-
celerated expansion of the universe. Hence, in this article,
we have solved Einstein’s field equations in the presence of
anisotropic dark energy and a massive SF and presented a
BT-III DE universe. To construct a deterministic DE model
we have considered a relation between metric potentials, and
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a power law between the SF and the average scale factor.
We have evaluated various cosmological and kinematical
parameters and presented their physical discussion in view
of recent cosmological scenario and observations. The fol-
lowing are some conclusions:

i. Our model represents spatially homogeneous and
anisotropic BT-III DE model with an attractive mas-
sive scalar meson field in general relativity.

ii. Our DE model with massive SF is nonsingular and ex-
hibits an exponential expansion. Also, it shows an early
inflation with finite volume.

iii. The physical quantities H, 6, o0’ of the model are finite
initially (at # = 0) and tend to infinity for sufficiently
large values of cosmic time.

iv. The average anisotropy parameter of our model is con-
stant and hence the model is anisotropic. However it
may be noted that it becomes isotropic and shear free
forn=1.

v. Itis observed that the SF is positive throughout its evo-
lution for all three given values of ¢y. We have also
observed that as ¢g increases the SF increases (Fig. 1).
The energy density of DE is always positive and in-
creasing function of time ¢. Also as the SF increases
DE density decreases (Fig. 2).

vi. The EoS parameter of the DE model shows that the
model varies in phantom region (wge < —1), ini-
tially and it approaches to a constant value in the
quintessence region (—1 < wge < _Tl) finally. There-
fore our model varies in scalar field DE regions
(Fig. 3). The present value of EoS parameter in our
model is wge & —0.642 and it varies in the region
which is in accordance with the Planck Collaboration
(Aghanim et al. 2018) data as given below:

wge = — 1.5670:9% (Planck + TT + lowE);

wge = — 1.5810 31 (Planck + TT, TE, EE + lowE);

wge = — 1.577030(Planck + TT, TE, EE + lowE
+ lensing);

wge = — 1041710 (Planck + TT, TE, EE + lowE

+ lensing + BAO).

vii. We observe that, initially the deceleration parameter
(g) of our model is less than —1 and finally approaches
to —1. Hence, the model starts with super exponen-
tial expansion and finally approaches an exponential
expansion (Fig. 4). The present value of ¢ for our
model is g & —1.02 which is in accordance with the
observational data 2019 given as ¢ = —0:930£0:
218 (BAO + Masers + TDSL + Pantheon + H;) and
g = —1:2037 £0.175 (BAO + Masers + TDSL +
Pantheon + Hy + H;).
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viii. The skewness parameter of DE remains positive
throughout its evolution. Initially, the SF influences the
anisotropy of DE but the skewness is independent at
the present epoch (Fig. 5). The jerk parameter remains
positive and finally approaches to unity, i.e., our model
approaches AC DM model at late times (Fig. 6).

ix. Itis observed that all the dynamical parameters behave
in such a way that they are in good agreement with the
recent experimental observation of modern cosmology.

From the above results, it may be said that at initial
epochs the SF influences all the physical parameters of our
model. However, at late times they are independent of the
SF and approaches to a constant value. Hence, the effect of
SF gradually decreases during the course of evolution of the
model. It is interesting to mention, here, that the behavior of
massive scalar meson field in our model is quite opposite to
the behavior of SF in the BT-V DE model obtained by Naidu
et al. (2019).
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