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Abstract The aim of this paper is to present recent results
on the restricted five-body problem where the primaries are
located at a known central configuration having the x-axis
as symmetry axis, so that two bodies with equal masses are
situated symmetrically with respect to this axis. We firstly
give an overview of the axisymmetric central configurations
computed by Érdi and Czirják (2016), as well as that where
three bodies with equal masses are situated at the vertices
of an equilateral triangle, while the fourth body lies at the
center of the triangle. This last one bridges the gap between
convex and concave four-body central configurations. After
that, the characterization of the geometry of the restricted
five-body problem families with these configurations are de-
scribed, and the number and the evolution positions of equi-
librium points, which depend on the mass parameters of the
primaries, are compared.

Keywords Five-body problem · Four-body central
configurations · Equilibrium points

1 Introduction

From ancient times, the motion of heavenly bodies has at-
tracted the attention of all cultures, western and eastern civi-
lizations dedicated their attention to understand the universe,
this fascination still remains. At present times, one of the
tools that permits to understand the motion of some subsys-
tems in the Solar system is the one known as the few-body
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problem, which has been widely used by mathematicians,
astronomers as well as astrophysicists (Murray and Dermott
1999). In the Milky Way galaxy, it is known that more than
the 60% of its stars belongs to a system that can be seen as
a few-body system. There exist millions of systems in our
galaxy that are formed by four and five stars, this is a rea-
son why the interest of studying the four-body and five-body
problem has heightened in recent years. By using few-body
problems as models it is possible to understand the complex
behavior as well as the dynamics that is seen in the Solar
system and to grasp that of exoplanetary systems that have
been discovered by astronomers. Lately, stellar systems of
five stars have also been located. See Koo et al. (2014) and
Rappaport et al. (2016) for more detail.

The planar n-body problem describes the dynamics of
n ≥ 2 particles with masses mk , k = 1, . . . , n moving in the
plane R

2, and is governed by the Newtonian force law of
inverse square distance. Let ri ∈ R

2 the vector position of
the body with mass mi . The equations which describe the
motion of the masses are

d2ri

dt2
=

n∑

j=1
j �=i

mj (rj − ri )

|ri − rj |3 = ∂U

∂ri

, i = 1, . . . , n (1)

where U is the Newtomian potential given by

U(r) =
∑

1≤i<j≤n

mimj

|ri − rj |

and | · | denotes the Euclidean norm and the gravitational
constant is normalized to G = 1.

A solution of a system of differential equations, as the
given above, is said to experience a singularity at time
t∗ < ∞ if the solution cannot be analytically extended be-
yond t∗. Note that Eqs. (1) are defined everywhere and are
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real analytic except at points in the physical space that are
occupied by at least two bodies. In order to be more precise,
by defining the sets �ij = {(r1, . . . , rn) ∈ R

2n | ri = rj } and
� = ⋃

i<j �ij , we see that the potential U is a real analyti-

cal function in R
2n \ �.

This paper is inscribed in the realm of the restricted n-
body problems, whose importance has increasingly grown
in recent years. A planar restricted n-body problem con-
sists of describing the motion of n bodies with masses
m1, . . . ,mn−1 attracting each other according to the New-
tonian gravitational law, where m0 is an infinitesimal mass
and m1, . . . ,mn−1 are positive (usually called primaries).
We assume that m0 is so small that it does not influence the
motion of the primaries, and these are moving following a
known solution of the (n− 1)-body problem. It is further as-
sumed that the motion of m0 takes place in the same plane
where the primaries move.

In the case of the planar restricted three-body problem,
the primaries move in Keplerian orbits which are not af-
fected by the infinitesimal mass. The most extensively stud-
ied restricted problem has been the planar circular restricted
three-body problem, where the primaries move in fixed cir-
cular orbits around their common center mass. It is of prac-
tical interest as well since it accurately describes many
real-world problems, an important example being the Sun,
Jupiter and an asteroid system, see Szebehely (1967).

We denote by the vector r = (r1, . . . , rn) ∈ R
2n a config-

uration formed by n bodies. A central configuration in the
n-body problem is a special position of the bodies where the
position and the acceleration vectors are proportional and
the constant of proportionality is the same for all n bodies.
The acceleration vectors of the bodies satisfy the equations

n∑

j=1
j �=i

mj (rj − ri )

r3
ij

= λ(ri − cm), for i = 1, . . . , n

where λ is a constant, rij = |ri − rj | and

cm = m1r1 + · · · + mnrn

m1 + · · · + mn

is the position vector of the center of mass of the n bodies
(see, for example, Wintner 1941).

A central configuration r = (r1, . . . , rn) is convex if the
ri ’s are at the vertices of a convex polygon; r is concave if
one particle is located in the interior of the convex hull of
the other n − 1 vertices.

The central configurations allow to obtain the homo-
graphic solutions of the n-body problem, which are the
unique explicit solutions in function of the time known un-
til now of that problem, for such solutions the ratios of the
mutual distances between the bodies remain constant. In
the three-body problem the collinear configurations and the

equilateral triangle for any choice of positive masses are the
only central configurations, for further details see Wintner
(1941).

Now, we provide a brief summary of some results known
so far about the axisymmetric central configuration of four
bodies. Long and Sun (2002) proved that a convex non-
collinear planar four-body central configuration with three
equal masses must be a kite. They also proved the existence
of the two types of concave central configurations, in which
three equal masses are at the vertices of an equilateral trian-
gle and the fourth one with any given mass at its geometric
center, or three equal masses are at the vertices of an isosce-
les triangle and the fourth one on the symmetry axis.

Later on, in a seminal paper, Érdi and Czirják (2016) clas-
sified a broad class of central configurations for the four-
body problem in which two of the bodies lie along an axis
of symmetry, and the other two bodies with equal masses are
situated symmetrically with respect to this axis of symme-
try. They found three types of central configurations where
the four-sided polygon formed by connecting the on-axis
masses to the off-axis masses. The first family corresponds
to convex central configurations and it is shown in Fig. 1(a),
and the other two families are concave central configura-
tions, see Figs. 1(b) and 1(c).

The two concave subclasses are different depending on
whether the center of mass of the system excluding m2 is
enclosed by the polygon or not.

The goal of this paper is to perform an analysis of the pla-
nar symmetric restricted five-body problem in such a way
that the four primaries are arranged in a symmetric central
configuration forming a convex or concave four-sided poly-
gon obtained in Érdi and Czirják (2016). Moreover, we will
consider the configuration of equilateral triangle so that a
fourth mass is at its geometric center. This special four-body
central configuration was called as a singular case in Érdi
and Czirják (2016). Our review is mainly based on previ-
ous results obtained by Ollöngren (1988), Gao et al. (2017),
Zotos and Sanam Suraj (2018), and Zotos and Papadakis
(2019).

The main contributions of this paper are as follows:
A comprehensive survey of the restricted five-body prob-
lem approaches when the primaries form a four-body cen-
tral configuration computed by Érdi and Czirják’s is given.
A comparison on the number of equilibrium points for the
restricted five-body problem is shown, with focus on the re-
sults obtained by Ollöngren (1988), Gao et al. (2017), Zotos
and Sanam Suraj (2018), and Zotos and Papadakis (2019).
Connections between unconnected research about the re-
stricted five-body problem in the different descriptions are
shown, which can provide guidance both to the development
of novel formulations and to the use of the existing ones.

This paper is organized as follows. In Sect. 2, we set the
symmetric restricted five-body problem in a general frame.
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Fig. 1 The Érdi and Czirják’s
class of symmetric four-body
central configuration having one
pair of equal masses located
symmetrically with respect to
the x-axis, where the center of
mass is at origin. The two
off-axis masses are fixed by the
angles α and β , whereas the
positions of the masses m1 and
m2 are defined using rectangular
coordinates

Also, the equations of motion for the particular case stud-
ied in this work are introduced. Section 3 is dedicated to
give a brief description of Érdi and Czirják’s axisymmetric
four-body configurations, that are used in Sect. 4 to intro-
duce planar restricted symmetric five-body problems with
primaries in central configuration of the four-body problem.
Section 5 deals to describe how do the number and location
of the equilibrium points vary when the angular coordinates
change in the allowed domain. Finally, in Sect. 6 concluding
remarks are given.

2 The planar symmetric restricted five-body
problem

Let (x, y) be a synodic reference frame with origin at the
center of mass of the primaries cm. We consider the re-
stricted symmetric five-body problem where the primaries
form a symmetric four-body central configuration, with m1

and m2, ordered from right to left, are collinear on the x-
axis, while the other two bodies m3 = m4 = m are placed
symmetrically with respect to the line containing the two
collinear bodies.

In order to maintain the central configuration of the pri-
maries, the sum of the gravity forces exerted by m2, m3 and
m4 on m1 must be equal to the centrifugal force. Hence the
angular velocity of the synodal frame is

ω2 = Λ = (m2/|AB|2 + 2m sinα/|AE|2)
|AO| (2)

where the gravitational constant G = 1, the angle α is
formed by the lines connecting m1 with m3, and m3 with
m4, while |AO|, |AB| and |AE| are the relative distances
from m1 to cm, m2 and m3, respectively. We stress the fact
that this expression was derived by Gao et al. (2017).

If we assume that the rotating coordinate system (x, y)

rotates with the angular velocity of the primaries given by
(2), then the primaries are fixed in the (x, y) plane. We
take the primary of mass m1 located on the positive x-
axis at (x1,0) = (a,0), as well as m2 at (x2,0) = (b,0),
while the other two primaries m3 and m4 are placed at
(x3, y3) = (c,1) and (x4, y4) = (c,−1).

The differential equations describing the motion of the
infinitesimal mass of the restricted symmetric five-body
problem, in the usual dimensionless rectangular rotating co-
ordinate system are written as

ẍ − 2ẏ = ∂Ω

∂x
,

ÿ + 2ẋ = ∂Ω

∂y

(3)

where dots denote time derivatives while the gravitational
potential Ω is defined as

Ω = Ω(x,y) = 1

2

(
x2 +y2)+ 1

Λ

(
m1

r1
+ m2

r2
+ m3

r3
+ m4

r4

)
,

(4)

and

r2
i = (x − xi)

2 + (y − yi)
2, i = 1,2,3,4.

Note that Eq. (3) are invariant under the following sym-
metry:

(x, y, ẋ, ẏ, t) → (x,−y,−ẋ, ẏ,−t).

The system (3) has a first integral given by

CJ = 2Ω(x,y) − ẋ2 − ẏ2. (5)
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We remark that this expression bears resemblance to the
first integral of the circular restricted three-body problem,
called Jacobi’s constant, differing only in the expression of
the function Ω .

3 Some geometrical scenarios for the planar
four-body central configuration having an
axis of symmetry

From now on, we will consider that in the restricted five-
body problem the configuration of the four primaries is a
non-collinear central configuration with a symmetry axis
given by the x-axis. Furthermore, the bodies m1 and m2 are
placed on the x-axis, ordered from right to left, while the
other two, m3 and m4, are placed symmetrically with respect
to the line of symmetry. Hence, by using the symmetry, we
get that m3 = m4.

It is known that when three particles in a four-body
central configuration have equal masses, the configuration
possesses a symmetry, see Albouy (1996). In Shi and Xie
(2010), the authors discovered two families of central con-
figurations of the planar four-body problem, depending on
whether the unequal mass is inside or outside of the triangle
formed by the three equal masses. For the concave family
the bodies of equal mass lie at the vertices of the isosce-
les triangle, while the fourth particle is on the interior sym-
metric axis of the triangle. In the convex family the three
equal masses form an isosceles triangle, where the fourth
mass is located on the exterior symmetric axis of the trian-
gle.

3.1 Érdi and Czirják’s central configurations

Érdi and Czirják (2016) carried out an extensive and com-
plete study of the central configurations of the four bodies,
when two bodies have equal masses and are situated sym-
metrically with respect to the axis of symmetry, and the
other two bodies are on this axis of symmetry. They studied
in detail the cases of concave and convex central configura-
tions, so that the masses can be determined, and described
the geometry of the configurations in terms of two angles,
namely, α and β , and the positions of the masses m1 and
m2 are defined using rectangular coordinates. The angle α

is between the lines joining the masses m3 and m1 and the
line joining the masses m3 and m4, while β is the angle be-
tween the line joining mass m3 with m4 and the line joining
m3 and m2, see Fig. 1.

The masses and positions of the particles are obtained
from the angles α and β . In the case of convex central con-
figurations we have that the values of the angles α and β

are bounded on the (α,β) plane by the lines α + 2β = 90◦,
α = 60◦ and α = β . For the first case of concave central con-
figurations, the angles satisfy the restrictions β ∈ [0,30◦]
and β

2 +45◦ ≤ α ≤ 60◦, while for the second case of the con-
cave central configurations, β ∈ [30◦,60◦] and 60◦ ≤ α ≤
β
2 + 45◦. It is worthwhile to observe that the equilateral tri-
angle with the fourth mass placed at the geometric center
of the triangle corresponds to the singular case α = 60◦ and
β = 30◦. These angle coordinates appertain to the shared
vertex of the two regions associated to the concave central
configurations.

According to Érdi and Czirják (2016), to make the con-
vex or concave central configurations possible, the param-
eters of positions and masses in terms of the angles α

and β should satisfy some conditions respectively as fol-
lows.

1. Convex central configurations,

a0 =
(

cos3 α − 1

8

)
tanα,

a1 = 1

(tanα + tanβ)2
+

(
1

8
− cos3 α − cos3 β

)
tanβ

−1

8
tanα,

b0 =
(

cos3 β − 1

8

)
tanβ,

b1 = 1

(tanα + tanβ)2
+

(
1

8
− cos3 α − cos3 β

)
tanβ

−1

8
tanβ.

The ordinates a, −b and c of the masses m1, m2 and
m3 (which is the same as that of m4) are given through

a = (1 − m1) tanα + m2 tanβ,

b = m1 tanα + (1 − m2) tanβ,

c = − m1a − m2b

1 − m1 − m2
.

2. Concave central configurations

a0 =
(

cos3 α − 1

8

)
tanα,

a1 = 1

(tanα + tanβ)2
+

(
1

8
− cos3 α − cos3 β

)
tanβ

−1

8
tanα,

b0 =
(

cos3 β − 1

8

)
tanβ,



An overview on the planar restricted five-body problem Page 5 of 10 38

b1 = 1

(tanα + tanβ)2
+

(
1

8
− cos3 α − cos3 β

)
tanβ

−1

8
tanβ.

The values of the ordinates a, −b (first concave case)
or b (second concave case) and c of masses m1, m2 and
m3 (which is the same ordinate for m4) reduce to

a = (1 − m1) tanα − m2 tanβ,

b = m1 tanα − (1 − m2) tanβ,

c = − m1a − m2b

1 − m1 − m2
(first concave case),

c = − m1a + m2b

1 − m1 − m2
(second concave case).

Observe that the value c changes depending on the choice
of the concave case.

For all considered central configurations, either convex
or concave, the values of the masses of the particles are ob-
tained by using

m1 = (b1 + a0 − b0)b0

a0b1 + a1b0 − a1b1
, m2 = (a1 + b0 − a0)a0

a0b1 + a1b0 − a1b1

(6)

and

m = 1

2
(1 − m1 − m2). (7)

3.2 The case α = 60◦ and β = 30◦

Long and Sun (2002) proved that three equal masses form-
ing an equilateral triangle with a fourth mass located at the
center of the triangle is a concave central configuration of
the four body problem. In Érdi and Czirják (2016), the au-
thors called it as a singular case because it is associated to
the limit values of the angles α = 60◦ and β = 30◦.

Then, one finds that the parameters of the positions are
given explicitly by

a0 = 0, a1 = 9 − √
3

8
, b0 = b1 = 9 − √

3

8
,

while the masses satisfy m2 = 1−3m1. Since m3 = m4 = m

where m = 1
2 (1 −m1 −m2), it arises to m = m1. Hence, the

masses lying at the vertices of the equilateral triangle are
equal. Furthermore, according to what is said in Long and
Sun (2002), the fourth mass must be placed at the geometric
center of the triangle, which coincides with the center of
mass of the bodies forming the triangle.

Fig. 2 Equilateral triangle configuration having the body m2 = mβ̃ at
its geometric center, where α = 60◦ and β = 30◦

4 The planar symmetric restricted five-body
problem endowed with an axisymmetric
four-body central configuration

This section is addressed to describe planar symmetric re-
stricted five-body problems with primaries in central config-
urations of the four-body problem, as was described in the
last section, and that have been studied so far. It would seem
that the main differences in the corresponding effective po-
tential that characterize each problem are, the angular veloc-
ity Λ and the relative distances between the primaries.

Firstly, we consider the restricted five-body problem in-
troduced by Ollöngren (1988), who supposed that the three
bodies with equal masses m revolve in the same plane form-
ing an equilateral triangle (for which the lengths of the sides
are equal to unity), and they move around their center in cir-
cular orbits under the influence of their mutual gravitational
attraction. At the center of the triangle a mass β̃m is present,
where β̃ ≥ 0. We recall that this corresponds to α = 60◦ and
β = 30◦.

Note that for an equilateral triangle in which all three
sides are equal to a and the radius of the circle containing the
vertices of the triangle is given by r , we have that

√
3r = a,

see Fig. 2. So, for a = 1, we get r =
√

3
3 and the angle α

formed by the segments joining particles m3 with m4 and m3

with m1 is equal to π/3, |AE| = 1, |AO| = |AB| = r =
√

3
3 .

So, the angular velocity (2) yields

ω2 = Λ = (β̃/|AB|2 + 2 sin(π/3))

|AO| = 3(1 + β̃
√

3).

This is just the 1/k described in Ollöngren (1988), and has
been used afterwards.

Before continuing, let us make some comments involv-
ing the different notations used along (Ollöngren 1988; Zo-
tos and Sanam Suraj 2018) and compare them with the ones
we use. In both papers, the authors enumerate the primaries
at the vertices of the equilateral triangle in an increasing
way, starting at the mass at the right of the configuration
and use counterclockwise sense. While in Ollöngren (1988)
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the author use as notation m1, m2 and m3, in Zotos and
Sanam Suraj (2018) the authors use P1, P2 and P3 to refer
to the same. Finally, the mass inside the equilateral triangle
is denoted as m0 in Ollöngren (1988), and by P0 in Zotos
and Sanam Suraj (2018). In Érdi and Czirják (2016), Gao
et al. (2017) and this paper, m1, m3 and m4 denote m1(P1),
m2(P2) and m3(P3), respectively, while the mass inside the
triangle is named m2, that corresponds to m0(P0) in Ollön-
gren (1988) and Zotos and Sanam Suraj (2018), respectively.

By taking dimensionless masses of the primaries m1 =
m2 = m3 = m = 1 and m4 = β̃m, Ollöngren (1988) used
analytical methods to compute equilibrium points. He ob-
tained 9 points in total, 3 of them become stable when
β̃ > 43.18, while for smaller values all the equilibrium
points are linearly unstable. Later on, the same problem was
studied by Zotos and Sanam Suraj (2018), who explored
from a numerical point of view the basins of convergence
of the equilibrium points. They defined a mass parameter
μ = 1/(1+ β̃), similar to the mass parameter of the classical
restricted three-body problem, in such a way that μ ∈ (0,1]
when β̃ ∈ [0,∞). They concluded that the total number of
equilibrium points is as follows: for μ ∈ (0,0.98617275]
there are 9 points: 3 collinear and 6 non-collinear; if μ ∈
[0.98617276,1) there exits 15 points: 5 collinear and 10
non-collinear. They are shown in Fig. 3. More recently, Zo-
tos and Papadakis (2019) made a numerical study of the or-
bital dynamics for the same restricted five-body problem. In
order to classify the possible types of orbits, they carried out
a numerical integration of several large sets of initial con-
ditions of orbits, and found three main categories: (i) close
encounter orbits, (ii) bounded (chaotic or regular) and (iii)
escaping. In addition, the authors verified that when β̃ lies
in the interval (0,0.01402112) there are only 15 equilibrium
points, while when β̃ ∈ (0.01402113,∞) there are only 9
equilibrium points.

At this point, it is worth noting that we have a wide fam-
ily of the symmetric restricted five-body problem, where the
four primaries are maintaining four-body central configu-
rations given in Érdi and Czirják (2016), which have been
described in Sect. 3. Taking into account that the angular
velocity Λ depends on each specific central configuration
and the masses involved, Gao et al. (2017) got families of
restricted five-body problems, one for each of the configu-
rations that have been chosen. In particular, they computed
the number and placement of the equilibrium points, from a
numerical perspective, when varying the angles α and β that
are used as a coordinate system.

5 Analysis of the number of the equilibrium
points

In this section, we include a description of the number of
collinear and non-collinear equilibrium points of the re-

Fig. 3 The parametric evolution of the position of the equilibrium
points Lj , j = 1, . . . ,15 in the Ollöngren problem, when μ ∈ (0,1]
or equivalently β̃ ∈ (0,0.01402112) ∪ (0.01402113,∞). The arrows
indicate the evolution direction of the equilibrium points as the mass
parameter increases. The points P1, P2, and P3 denote the three pri-
maries forming an equilateral triangle with the fourth body at its ge-
ometric center. The big black dots pinpoint the fixed centers of the
primaries, whereas the small black dots A, B and C correspond to
μ → 0, μ = 0.98617276 and μ = 1, respectively. The figure was taken
from Zotos and Sanam Suraj (2018)

stricted five-problem and the bifurcations depending on the
angle coordinates.

In order to present the results, we have chosen differ-
ent values of the angles α and β , each pair corresponding
to a different scenario with respect to convex and concave
configurations, and consequently the number of equilibrium
points will vary.

At this stage, we make an account of the numerical re-
sults obtained by Gao et al. (2017), who considered the ax-
isymmetric central configurations studied by Érdi and Czir-
ják (2016). Gao et al. showed how the number and location
of the equilibrium points change when the angular coordi-
nates α and β are modified inside the permitted regions. To
do so, they fix the angle α and take a value for β and proceed
to compute where the equilibrium points are placed and de-
termine the number of collinear and non-collinear equilib-
rium points, then increase values for β and continue their
calculations.

Below we summarize the numerical results that appear
spread over several plots and tables in Gao et al. (2017)
about the number of the equilibrium points for some pairs
of the angles α and β .

1. Equilibrium points in convex configurations
(i) The equilibrium points in convex configurations

with α = 52.5◦.
When β increasing, the number of the non-

collinear equilibrium points jumps to 12 at 26◦ and
then decreases to 10 quickly. In the process of jump-
ing to 12 from 8, a critical solution should exist
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where the number of the non-collinear equilibrium
points equals to 10 at some value of β near 26◦.
When the number of the non-collinear equilibrium
points decreases to 10, at β = 27.5◦, it does not
change anymore. However, when β reaches 52◦, the
combination of the angle coordinates gets close to
α = β , and two more collinear equilibrium points
appear between the masses m1 and m2.

(ii) For α > 52.5◦.
The same behavior as in the previous case is ob-

served for α > 52.5◦. A critical situation comes up
in the process of increasing β from 50◦ to 52.5◦,
when there exist simultaneously only 2 collinear
equilibrium points between m1 and m2.

(iii) The value for α is taken as 50◦.
The same changing behavior occurs as β in-

creases, but the number of the collinear equilibrium
points is 3, and it remains fixed.

(iv) Fix α = 35◦.
There are 3 collinear equilibria for all the val-

ues of β considered. What changes is the number
of the non-collinear equilibrium points; as β = 28◦
there are 8 non-collinear equilibria, and when β is
increased to β = 33◦,34◦ and 34.9◦, in these cases
the number of non-collinear equilibrium points is
equal to 12, and this number does not decrease to
10 as β increases.

2. Equilibrium points in concave configurations, first case.

There are some regularities in the number of the equi-
librium points, there exist 3 collinear equilibrium points
that are separated by the primaries m1 and m2 and there is
no variation in this number for all combinations of the an-
gle coordinates that belong to the region which define the
first concave case. For angular combinations near β = 0◦
there are 6 axisymmetric equilibrium points.

(i) For α as large as 57.5◦ or 59.5◦, there is some pat-
tern in the way how the number of the non-collinear
equilibrium points changes as angle β increases. By
taking α = 59.5◦ as β grows from 0.5◦ there ap-
pear two new more collinear equilibrium points for
β = 2◦. For β = 18◦, there are 10 non-collinear
equilibrium points and then this number decreases
to 6. Another critical situation arises where the num-
ber of the non-collinear critical points is equal to 8
between β = 18◦ and β = 25◦.

(ii) If α = 65◦ or any value below this, no matter what
value is assigned to β , there are always 6 non-
collinear equilibrium points. So, it is likely to expect
that there must be a value for α between 57.5◦ and
55.0◦ which determines whether the number of the
non-collinear equilibrium points jumps from 8 to 6
or not.

3. Equilibrium points in concave configurations, second
case.

(i) If α = 60.5◦ is fixed, by beginning with β = 59.5◦
there exist 9 equilibrium points, 5 are collinear
while the other 4 are non-collinear. When decreas-
ing β , there appear 2 more non-collinear equilibria
at β = 40◦. By dropping to β = 35◦, that is, the an-
gular combination getting close to 2α − β = 90◦,
two collinear equilibria disappear and only one is
left. For a value of β between 40◦ and 35◦, there are
three collinear equilibrium points, two placed to the
left of m2, but for the authors it was difficult to find
it in an accurate way.

(ii) For α = 65◦, β < 60◦ and 2α − β < 90◦, some
changing trend appears. The larger α the larger is
β , where the number of the non-collinear equilibria
is equal to 4.

(iii) For α = 70◦ and β = 59.9◦ the non-collinear equi-
libria is 6.

(iv) As for the concave cases there are two allowed re-
gions in the plane (β,α), bounded by two right tri-
angles defined by the lines α = 60◦, β = 0◦ and
2α − β = 90◦ (first triangle), and by the lines α =
60◦, β = 60◦ and 2α − β = 90◦ (second triangle),
respectively. The last triangular region corresponds
to the second concave case. When the combination
of angles is inside the second triangle and it is near
the vertical and the horizontal sides of the triangle,
there are 5 collinear and 4 non-collinear equilib-
rium points. As the value of α is increased and kept
fixed, and those of β are decreased, at some point,
2 collinear equilibria to the left of mass m2 disap-
pear and there will appear 2 non-collinear equilib-
rium points.

It is worth noting the following. In the convex case,
for most combinations of α and β , there exist 3 collinear
equilibrium points that are separated by m1 and m2, but
as the combination gets close to α = β two new equi-
librium points emerge between m1 and m2. There exist
8 non-collinear equilibrium points when the combina-
tion of angles is near to α + 2β = 90◦ and their num-
ber will change regularly as β increases, once α has been
fixed. In general, for the first concave case there are al-
ways 3 collinear equilibrium points and 6 non-collinear
for most combinations of the angular variables. For the
second concave case, the changing pattern and distribu-
tion of the equilibrium points is relatively simple when
compared to the other two types of configurations.

From the information already described we see that the
distribution of equilibrium points and the way they behave
is more complex than the one that appears in the different
types of the restricted four-body problem studied so far. The
authors found that there exist many critical situations during
the process of change of the angle combination.
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Fig. 4 The equilibrium points
and zero velocity curves for
values of α = 60◦, β = 30◦,
m1 = m3 = m4 = 1 for
m2 = β̃ = 1, 0.00502513 with 9
(left plot) and 15 (right plot)
equilibrium points, respectively.
The figure was taken from Zotos
and Sanam Suraj (2018)

Fig. 5 The left picture
represents the restricted
five-body problem with
primaries in a concave
four-body central configuration.
The right picture contains the
zero velocity curves and 9
equilibrium points. It was taken
from Gao et al. (2017). The
parameter values are α = 60.5◦,
β = 31.5◦, m1 = 0.277665,
m2 = 0.161854,
m3 = m4 = 0.280241,
a = 1.17754, b = 0.0228463,
c = −0.589955

5.1 Equilibrium points for the problem close to
Ollöngren problem

In this section we analyze two Ollöngren restricted five-
body problems for different values of the mass parameter
β̃ and we compare them with some cases obtained by Gao
et al. (2017) that are close to them.

First, we consider configurations with α = 60◦ and β =
30◦, see Fig. 4, which have equilateral triangles. For the
parameter β̃ = 1, 0.00502513, their corresponding systems
have 9 and 15 equilibrium points, respectively, where 5 of
them are collinear.

Now, look into concave or convex central configurations
that are close to the one considered by Ollöngren. Consider
the second concave case with central configuration with
α = 60.5◦ and β = 31.5◦, the configuration formed by m1,
m3 and m4 is very near to equilateral, see Fig. 5. Observe
that the masses take values m1 = 0.277665, m2 = 0.161854,
m3 = m4 = 0.280241, and except for m2, the other three
masses are almost equal. For this, the number of equilibrium
points is equal to 9, where 3 are collinear.

In Fig. 6, the configuration belongs to the first concave
case with α = 59.5◦ and β = 18◦ then, as in the previous
case, the configuration formed by m1, m3 and m4 is almost
an equilateral triangle. Also, this is close to the one in Ollön-
gren problem, and the masses are given by m1 = 0.401265,
m2 = 0.00883964, m3 = m4 = 0.294947. Here the total
number of equilibria is 13 and 3 of them are collinear.

The convex case is more sensitive to small changes in the
angle parameters as we shall see through two configurations.
The angle α is fixed to α = 52.5◦ and β takes values β = 26◦
(see Fig. 7), β = 27.5◦ refers to Fig. 8, and β = 2◦ is shown
in Fig. 9. In the first one, the number of equilibrium points
is 15, while in the second one is equal to 13 and for the last
one there are 11 equilibria.

From the information in the previous paragraphs we get
that in the two configurations with three primaries close to
an equilateral triangle configuration there are 9, 11, 13 or
15 equilibrium points, unlike the Ollöngren problem, where
there are only 9, 10 or 15 equilibrium points. It seems that
this fact is “hidden” in existing symmetries, which will be
broken when the primary bodies reach unequal masses.
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Fig. 6 The left picture
represents the restricted
five-body problem with
primaries in a first concave four
central configuration. The right
picture contains zero velocity
curves and the 13 equilibrium
points. The right picture was
taken from Gao et al. (2017).
The parameter values are
α = 59.5◦, β = 18◦,
m1 = 0.401265,
m2 = 0.00883964,
m3 = m4 = 0.294947,
a = 1.01358, b = 0.359166,
c = −0.684086

Fig. 7 The left picture
represents the restricted
five-body problem with
primaries in a convex four-body
central configuration, where the
parameter values are α = 52.5◦,
β = 26◦, with 15 equilibrium
points. m1 = 0.73719,
m2 = 0.0307723,
m3 = m4 = 0.116019,
a = 0.357509, b = 1.43345,
c = −0.945716. The right
picture was taken from Gao
et al. (2017)

Fig. 8 The left picture
represents the restricted
five-body problem with
primaries in a convex four-body
central configuration, where the
parameter values are α = 52.5◦,
β = 27.5◦ giving rise to 13
equilibrium points.
m1 = 0.703401, m2 = 0.03524,
m3 = m4 = 0.1306769,
a = 0.404883, b = 1.41891,
c = −0.898343. The right
picture was taken from Gao
et al. (2017)

6 Concluding remarks

As we have seen, Zotos and Sanam Suraj (2018) studied
the restricted five-body problem where three primaries with
unit masses from an equilateral configuration, and a body
of mass β̃ is placed at their center of mass, as introduced

by Ollöngren (1988). The authors reparametrized the mass
parameter to μ = 1

1+β̃
and showed, in a numerical fashion,

that for μ = 0.5 the exist 9 equilibrium points, 3 collinear
and 6 non-collinear, while for μ = 0.995 there are 15 equi-
libria, where 5 are collinear and 10 non-collinear. From a
numerical point of view these are the only generic cases.
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Fig. 9 The left picture
represents the restricted
five-body problem with
primaries in a convex four-body
central configuration, where the
parameter values are α = 59.5◦,
β = 2◦ giving rise to 11
equilibrium points.
m1 = 0.173357,
m2 = 0.00615907,
m3 = m4 = 0.410242,
a = 1.40315, b = 0.259596,
c = −0.294517. The right
picture was taken from Gao
et al. (2017)

For several restricted five-body problems where the pri-
maries form Érdi-Czirják’s configurations that are close to
the Ollöngren problem, the number of the equilibrium points
are 9, 11, 13 or 15, but in all these examples the number of
the collinear equilibria are different from 5. In none of the
cases for the convex or concave Érdi-Czirják’s configura-
tions is recovered this number of collinear equilibria found
in the Ollömgren problem. This means that, for any of the
considered slight modifications of the Ollöngren problem
there is a variation on the number of equilibria and even
more, the number of collinear equilibria in it is altered and
not retrieved.

It is a hard task to establish a comparison between the nu-
merical studies done in Gao et al. (2017), Zotos and Sanam
Suraj (2018), and Zotos and Papadakis (2019), in relation to
the number and the evolution of the positions of the equilib-
rium points, since the symmetries imposed in the Ollöngren
problem are very restrictive, as we have seen in the last sec-
tion. As a matter of fact, for each fixed central configuration
one could perform numerical exploration of the basins of
attraction for the equilibrium points, but this is not enough.
The idea should be to apply technique of the bifurcation the-
ory, to prove the existence and the number of equilibrium
points as the parameters are varied. Nevertheless, we have
not been able to address this satisfactorily so far.
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