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Abstract A cislunar cargo spacecraft with low-thrust pro-
pulsion traveling between the Earth and the Moon is essen-
tial for sustainable, long-term manned lunar exploration. In
low-thrust Earth–Moon transfer (LTEMT), lunar capture is
the primary prerequisite for spacecraft subject to the circu-
lar restricted three-body model. Therefore, this study iden-
tifies sufficient conditions for lunar capture, which are de-
termined by the Jacobi integral and Hill’s region. This paper
proposes a guidance scheme that includes thrust direction,
thrust efficiency, and a five-stage flight control sequence
based on the variation of the Jacobi integral. The LTEMT
problem is then converted to an initial value problem of a
differential equation with three parameters. Lunar capture
set theories (LCSTs), which are convenient for identifying
lunar capture sets, are presented and proved according to the
continuous properties of the ordinary differential equation.
Finally, the solutions of the LTEMT trajectories departing
from a geosynchronous orbit with an altitude of approxi-
mately 35,827 km are discussed for different thrust accel-
erations and cut-off values of the thrust efficiency. The ro-
bustness is analyzed assuming that navigation and switch-
ing time errors are present to demonstrate the adaptability
of this method. The results reveal that the proposed guid-
ance scheme and LCSTs can provide technical support for
future cislunar cargo missions.
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1 Introduction

Manned lunar exploration has become the central concern
of various space powers (Crusan et al. 2018) such as China,
the United States, and the European Union. In previous
studies, manned spacecraft transfer trajectories, i.e., two-
impulse direct transfer trajectories between the Earth and
a lunar orbital station, have been solved (Gao et al. 2018).
In addition to a manned spacecraft, a cargo spacecraft for
supply deliveries between the Earth and the Moon (Mam-
marella et al. 2019; Woolley et al. 2019) is essential for
sustainable long-term manned lunar exploration (Hoffman
et al. 2011). In cargo spacecraft, a higher load ratio results
in higher efficiency and lower cost. Owing to the substan-
tial flight times of cargo spacecraft, an electric or nuclear
propulsion system with a high specific impulse of several
thousand seconds is an ideal choice (Mercer et al. 2016;
McGuire et al. 2017). However, designing low-thrust trajec-
tories is challenging, particularly for low-thrust Earth–Moon
transfer (LTEMT), where multibody dynamics are impor-
tant, and the solutions involve multiple revolutions (Oshima
and Campagnola 2017). Computing the long-duration thrust
vector histories and ensuring that the cargo spacecraft is
captured by the Moon are the main difficulties in designing
LTEMT trajectories.

Typically, the design of a low-thrust transfer trajectory
is modeled as a calculus of variations problem that maxi-
mizes or minimizes a performance index such as the space-
craft’s final mass or total flight time. Methods of solving
these problems can be classified as indirect, direct (Betts
1998), and hybrid methods. In the indirect method, Pontrya-
gin’s principle is used to obtain a two-point boundary value
problem (TPBVP) and the necessary optimal conditions
from the calculus of variations formulation. The TPBVP can
be solved by finding the unknown initial costate variables.
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The direct method converts the calculus of variations prob-
lem into a nonlinear optimization problem in which non-
linear programming is employed to minimize the perfor-
mance index. The entire trajectory is represented in terms
of nodes, and many design variables are used to increase
the convergence radius (Graham and Rao 2015, 2016). The
hybrid method uses the necessary conditions from opti-
mal control theory to parameterize the thrust vector his-
tories. Direct maximization replaces the indirect solution
of the transversality conditions (Kluever and Pierson 1995;
Ozimek and Howell 2010).

In contrast to the direct and hybrid methods, the in-
direct method requires solution of the TPBVP for opti-
mal control; a disadvantage of the method is a small ra-
dius of convergence. Estimation of the initial costates (Lee
et al. 2009, 2012) is particularly difficult owing to the long-
duration transfer and multiple revolutions. Pérez-Palau and
Epenoy (2018) investigated minimum-fuel low-thrust trans-
fers between low Earth orbit and low lunar orbit (LLO)
assuming that an initial velocity increment is provided to
the spacecraft. Oshima and Campagnola (2017) searched
globally for low-thrust transfers to the Moon in the planar
circular restricted three-body problem (CRTBP) by reduc-
ing the dimensions of the initial costate set. The homo-
topy method is often applied to overcome the disadvan-
tages of solving low-thrust trajectory optimization prob-
lems such as minimum-fuel (Haberkorn and Martinon 2004;
Caillau et al. 2012; Jiang 2012; Zhang et al. 2015; Chi et al.
2017, 2018) and minimum-time low-thrust orbital transfers
(Pan et al. 2018).

For the direct and hybrid methods, it is necessary to sup-
ply an initial approximation because these methods are non-
linear optimization algorithms. A simple linear function be-
tween boundary conditions is not applicable to LTEMTs be-
cause the dynamics are nonlinear, the problem is large, and
there are many local solutions (Betts and Erb 2003). Typi-
cally, a three-stage approach consisting of an Earth-escape
spiral followed by a translunar coast arc and then a Moon-
capture spiral to the desired LLO is used. The preliminary
LTEMT trajectories are obtained by dividing the entire tra-
jectory into segments and connecting these segments to each
other by constructing equality constraints at the boundaries
of each segment (Kluever and Pierson 1995; Gao 2007).
Herman and Conway (1998) computed the initial values us-
ing a trajectory that did not consider boundary conditions,
and the method was applied to obtain a solution that could
easily yield an LTEMT with an initial low-thrust accelera-
tion greater than 10−3 m/s2. Betts and Erb (2003) proposed
a four-step procedure to construct the initial guess based on
the three-stage approach and presented an LTEMT trajec-
tory that requires the solution of a sparse optimization prob-
lem with 211,031 variables and 146,285 constraints. Song
and Park (2009) used analytically optimized Earth-escape

and Moon-capture segments and a numerical optimization
method to match the spacecraft’s states and establish a final
near-optimal trajectory.

The shape-based trajectory design method (Petropoulos
and Longuski 2004) is another technique for designing pre-
liminary low-thrust trajectories. In this method, the shape of
the trajectory is assumed to have the form of a specific func-
tion, and the boundary conditions are used to compute a few
of the unknown parameters of the assumed fixed function.
Finite Fourier series have been implemented for low-thrust
trajectory approximations, and the capability was demon-
strated by generating planar Earth–Moon transfer (Taheri
and Abdelkhalik 2015) and three-dimensional interplan-
etary transfer trajectories (Taheri and Abdelkhalik 2016;
Taheri and Kolmanovsky 2018).

Although previous research has produced LTEMT trajec-
tories satisfying the boundary and dynamics constraints, the
lunar capture problem, the solution of which ensures that
a cargo spacecraft is captured by the Moon, has not been
solved. Ensuring that the spacecraft enters Moon orbit under
a preset guidance law is very important for engineering im-
plementations. Furthermore, considering Earth–Moon trans-
fer, lunar capture is a prerequisite and a core issue for any
propulsion system. For chemical propulsion, the spacecraft
is positioned in LLO by lunar orbital injection (LOI). Unlike
chemical propulsion systems, an electric propulsion system
cannot apply an instantaneous LOI to achieve lunar capture.
Therefore, this study focuses on lunar capture. Once the
spacecraft has entered the lunar capture orbit, the LTEMT
problem is transformed into a lunar orbit transfer problem,
which can be solved by feedback control (Jagannatha et al.
2018).

This paper is organized as follows. The controlled
CRTBP is described in Sect. 2 and used to derive the suf-
ficient conditions for lunar capture in Sect. 3. A guidance
scheme for the LTEMT is then proposed. Under the guid-
ance scheme, the design of the LTEMT trajectories is con-
verted to an initial value problem of a differential equation
with three parameters. On the basis of the continuous depen-
dence properties of the differential equation, lunar capture
set theories (LCSTs) are proposed and proved in Sect. 4.
LTEMT trajectories for different thrust accelerations and
thrust efficiencies are presented in Sect. 5. Finally, robust-
ness analysis considering navigation and switching time er-
rors shows that the proposed method can provide technical
support for future cislunar cargo spacecraft.

2 Controlled circular restricted three-body
problem

In the CRTBP, two primary bodies P1 and P2 with masses
m1 and m2, respectively (m1 > m2 > 0) move under mu-
tual gravity in circular orbits about their common center of



Low thrust Earth–Moon transfer trajectories via lunar capture set Page 3 of 17 219

Fig. 1 Hill’s region for (a) J = C1, (b) J = C2, and (c) J = C3

Table 1 Normalization constants

Physical constant Value

Mass parameter μ 1.2150568 × 10−2

Distance unit (LU) 3.84405 × 108 m

Time unit (TU) 3.75676967 × 105 s

Speed unit (VU) 1.02323 × 103 m/s

mass. A third body P , which is assumed to have infinites-
imal mass, moves under the gravity of the primaries. The
motion of the primaries is not affected by P . Here, P rep-
resents a spacecraft, and P1,P2 represent the Earth and the
Moon, respectively. The standard canonical system of units
associated with this model is used. μ = m2/(m1 + m2) de-
notes the mass parameter. The distance, velocity, and time
units are listed in Table 1.

For low-thrust propulsion, the dynamics equation in the
Earth–Moon rotating frame can be written as

ṡ = f (s) + g(u,α,m)

⇒
⎡
⎣

ṙ

v̇

ṁ

⎤
⎦ =

⎡
⎣

v

h(v) + Ωr

03×1

⎤
⎦ +

⎡
⎢⎣

03×1

uTmax
m

α

−uTmax
c

⎤
⎥⎦ (1)

where s = (rT ,vT ,m) is the state vector of the spacecraft;
r = [x, y, z]T and v = [ẋ, ẏ, ż]T are the position and veloc-
ity vectors in the Earth–Moon rotating frame, respectively;
and m represents the mass of the spacecraft, which has an
initial value of m0 = 1. The control variables include the
throttle factor u ∈ [0,1] and thrust direction unit vector α.
Tmax denotes the maximum thrust magnitude; c = Ispg0 is
the exhaust velocity, where Isp and g0 are the thruster spe-
cific impulse and gravitational acceleration at sea level, re-
spectively. Therefore, when u = 0,

ṡ = f (s) (2)

is the dynamics equation of the CRTBP.

The function h(v) is defined as

h(v) =
⎡
⎣

2ẏ

−2ẋ

0

⎤
⎦ (3)

Ω is the effective potential

Ω = Ω(r)

= 1

2

(
x2 + y2) + 1

2
μ(1 − μ) + μ

r2
+ 1 − μ

r1
(4)

with

r1 =
√

(x + μ)2 + y2 + z2 and

r2 =
√

(x − 1 + μ)2 + y2 + z2,

as P1 and P2 are located at (−μ,0), (1−μ,0), respectively.
The term Ωr is the partial derivative of Ω with respect to r .

The system of differential equations in (2) contains three
collinear points, denoted as Li , i = 1,2,3, on the x axis of
the Earth–Moon rotating frame and allows for an integral of
motion, called the Jacobi integral J :

J = 2Ω − v2 (5)

the value of which is determined from the initial conditions
and is used as a measure of energy. Here, v = ‖v‖ is the
velocity in the Earth–Moon rotating frame. For lower val-
ues of J , the energy of the spacecraft is higher. Substituting
v = 0 in Eq. (5) for a given value of J defines the bound-
ary of Hill’s region, in which the spacecraft is energetically
permitted to move, as shown in Fig. 1.

In Fig. 1, Ci , i = 1,2,3, are the values of the Jacobi in-
tegral at points Li , i = 1,2,3, which satisfy the condition
C1 > C2 > C3. Table 2 lists the locations and Jacobi in-
tegrals of the collinear points Li, i = 1,2,3. As shown in
Fig. 1(a), for J < C1, motion between the Earth and the
Moon is feasible (Mengali and Quarta 2005).
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Table 2 Locations and Jacobi integrals of the collinear points Li , i =
1,2,3

L1 L2 L3

x|Li
(LU) 0.837367772 1.155270268 −1.005062638

Ci 3.200343883 3.184163250 3.024150064

Note that the state vectors and dynamics equation given
above are discussed in the Earth–Moon rotating frame. It is
necessary to understand the relationship between the state
vector s = [rT ,vT ,m]T in the Earth–Moon rotating frame
and S = [RT ,V T ,m]T in the Earth-centered inertial frame.
{

r = Mz(t)R − [μ,0,0]T
v = Mz(t)V + M ′

z(t)R
(6)

where Mz and M ′
z are the rotation matrix and its deriva-

tive, respectively. R = [X,Y,Z]T and V = [Ẋ, Ẏ , Ż]T are
the normalized position and velocity vectors in the Earth-
centered inertial frame, respectively. In addition, t is the nor-
malized time associated with the state s = [rT ,vT ,m]T .

3 Lunar capture conditions and the
guidance law

3.1 Lunar capture conditions

The cargo spacecraft is initially in an Earth parking orbit
with the Jacobi integral J0 > C1. Under continuous low
thrust, the altitude of the spacecraft increases and the Ja-
cobi integral J (t) of the transfer trajectory decreases until
J = C1. At this time, although the spacecraft reaches the
critical condition for Earth–Moon transfer, it may not be
able to cross the point L1 to the near-Moon space because
its altitude is too low. Therefore, the spacecraft continues to
accelerate, and this minimum Jacobi integral is denoted as
Jmin. When the transfer trajectory can reach the near-Moon
space, deceleration thrust is applied from the appropriate
time until J = C1. At this time, the state of the spacecraft
may be in three regions described by Eqs. (7)–(9), which are
separated by R = x|L1 and R = x|L2 , as shown in Fig. 2.

I : {
(x, y)|R < x|L1&J = C1

}
(7)

II: {
(x, y)|x|L1 < R < x|L2 &J = C1

}
(8)

III: {
(x, y)|R > x|L2&J = C1

}
(9)

where R = √
x2 + y2.

If the terminal state is located in II, which satisfies the
following conditions,
{

Jf = C1

x|L1 < Rf < x|L2

(10)

Fig. 2 Three areas separated by R = x|L1 and R = x|L2 in Hill’s re-
gion J = C1

the spacecraft has been captured by the Moon. Here, the sub-
script f denotes the terminal state of the transfer trajectory.
Therefore, Eq. (10) represents the sufficient condition for lu-
nar capture.

3.2 Thrust direction

Let the Jacobi integral of the initial state s0 be J0 = J (T0),
where T0 is the initial epoch. Regarding the dynamics equa-
tion in Eq. (1),

v̇ = h(v) + Ωr + u
Tmax

m
α (11)

We multiply Eq. (11) by v and obtain the resulting sum. The
result, in combination with Eq. (5), can be written as

dJ

dt
= −u

2Tmax

m
(α · v) (12)

The rate of change of the Jacobi integral is related to the
thrust acceleration and the dot product α ·v. Therefore, when
α = ±v/v, that is, the direction of the thrust is the same as or
opposite to the direction of the velocity, the value of |dJ/dt |
is maximum.

dJ

dt
= ∓u

2Tmax

m
v (13)

Integrating Eq. (13) yields Eq. (14).

J (t) − J0 = ∓
∫ t

T0

u
2Tmax

m
vdt (14)

Here, ∓ corresponds to α = ±v/v.
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Fig. 3 Flight control sequence for LTEMT spacecraft departing from near-Earth parking orbit

3.3 Thrust efficiency

At time t0, for state s0 = (rT
0 ,vT

0 ,m0)
T , although the thrust

direction α0 = v0/‖v0‖ ensures the maximum change in the
Jacobi integral at the current position, it does not provide
any information about the thrust’s effectiveness as compared
with that at other locations in the same revolution. For exam-
ple, for another state s1 in the same revolution ϕ(s0), evalu-
ating the efficiency of these two thrusts is a problem. Here,
the revolution ϕ(s0) is defined as

ϕ(s0) :
{

ṡ = f (s)

s(t0) = s0,
t0 ≤ t ≤ t0 + T (15)

where T is the orbital period of the revolution.
As the variation in the Jacobi integral during the transfer

is related to the velocity, as shown in Eq. (13), it is natural
to define the thrust efficiency in state s as

η(s) = v − vmin

vmax − vmin
(16)

where

vmin = min
{
v|ϕ(s)

}
(17)

vmax = max
{
v|ϕ(s)

}
(18)

are the minimum and maximum velocities in the same revo-
lution ϕ(s), respectively.

Considering two states s0 and s1 in the same revolution,
if η(s0) > η(s1), the thrust in state s0 produces a larger
change in the Jacobi integral than the thrust in state s1.
Thus, fuel can be conserved by choosing to apply thrust
in states with higher thrust efficiency. Therefore, a cut-off
value ηcut ∈ [0,1) is chosen to prevent the spacecraft from
thrusting if the efficiency is below this value. That is,

u(t) =
{

1, η > ηcut

0, η < ηcut
(19)

For ηcut = 0, the propulsion system is powered on during
the transfer. A larger cut-off value is expected to result in
greater propellant savings but a longer flight time.

To avoid numerical integration of Eq. (15) and im-
prove the computational efficiency, the velocity vector v in
Eqs. (17) and (18) can be calculated using Eq. (6).

v =
⎡
⎣

cos t sin t 0
− sin t cos t 0

0 0 1

⎤
⎦V +

⎡
⎣

− sin t cos t 0
− cos t − sin t 0

0 0 0

⎤
⎦R

(20)

Then, the velocity v in Eqs. (17) and (18) is written as

v = ‖v‖ =
√

(X − Ẏ )2 + (Y + Ẋ)2 + Ż2 (21)

Here, R = [X,Y,Z]T and V = [Ẋ, Ẏ , Ż]T can be analyti-
cally approximated by the values from the two-body prob-
lem.

3.4 Flight control sequence

As shown in Fig. 3, a spacecraft departing from a near-Earth
parking orbit passes through five flight stages until Jf = C1,
where τi (i = 1, . . . ,5) is the duration of each stage. Ti (i =
1, . . . ,5) is the terminal time of each stage, which satisfies
Ti = Ti−1 + τi (i = 1, . . . ,5) and Tf = T5.

Stage 1: This stage is used to accumulate energy for the
spacecraft. The spacecraft is accelerated to the state in which
the Jacobi integral equals C1. The flight time of this stage
accounts for a majority of the total flight time. Hence, the
thrust efficiency in this stage is a critical factor affecting the
fuel consumption of the LTEMT. Therefore, ηcut is defined
in Stage 1, and the flight time τ1 satisfies

C1 − J0 = −
∫ T0+τ1

T0

u
2Tmax

m
vdt (22)
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where the throttle factor during [T0, T1] satisfies Eq. (19).
The additional computational load during the integration
due to the analytical expression of the thrust efficiency is
minor.

Stage 2: This stage is used to adjust the phase of the
transfer trajectory such that the phase relative to the x axis
of the Earth–Moon rotating frame satisfies the condition that
the spacecraft can cross the near-L1 space. During this stage,
the propulsion system is powered off; thus, u(t) = 0, T1 ≤
t ≤ T2, and J (t) = C1. The flight time τ2 is related to the
initial state s0 and thrust acceleration Tmax/m.

Stage 3: The acceleration in the first stage changes the Ja-
cobi integral of the spacecraft to C1. At this time, the space-
craft cannot cross the near-L1 space and enter lunar space,
as shown in Fig. 1(a). In Stage 3, the spacecraft is acceler-
ated such that the Jacobi integral equals Jmin, which satisfies
Jmin < C1. During this stage, the propulsion system is pow-
ered on; namely, u(t) = 1, T2 ≤ t ≤ T3. The thrust direction
is α = v/‖v‖, and the flight time τ3 satisfies

Jmin − C1 = −
∫ T2+τ3

T2

2Tmax

m
vdt (23)

Here, Jmin is the minimum Jacobi integral of the LTEMT
trajectory, and τ3 is an undetermined parameter.

Stage 4: This stage is added to the flight sequence to im-
prove the robustness of this guidance scheme. The propul-
sion system is powered off: u(t) = 0, T3 ≤ t ≤ T4. The Ja-
cobi integral satisfies J (t) = Jmin, and τ4 is an undetermined
parameter.

Stage 5: This stage is used to decelerate the spacecraft
and increase the Jacobi integral until Jf = C1, which is de-
signed to satisfy the lunar capture condition. The thrust di-
rection is α = −v/‖v‖. The flight time τ5 satisfies

C1 − J (Tf ) = C1 − Jmin =
∫ T4+τ5

T4

2Tmax

m
vdt (24)

Note that τ5 can be determined from τ2, τ3, and τ4.

4 Lunar capture set theory and its proof

By using the proposed guidance law in Sect. 3, the dynamics
equation of the LTEMT spacecraft can be converted into an
initial value problem of a differential equation with three
parameters, τ2, τ3, and τ4.
{

ṡ = f (s) + g(v,m, τ2, τ3, τ4)

s(T0) = s0,
T0 ≤ t ≤ Tf (25)

The solution of (24) can be denoted as ϕ(s0; τ2, τ3, τ4) and
is determined by the initial state s0 and τ2, τ3, τ4. To con-
struct and prove the LCSTs, lemmas regarding the continu-
ity of ϕ(s0; τ2, τ3, τ4) are presented.

4.1 Lemmas

Lemma 1 The state of ϕ(s0; τ2, τ3, τ4) at time T3 is a con-
tinuous function of parameter T3.

Proof The state of ϕ(s0; τ2, τ3, τ4) at time T3 can be written
as

s(T3) =
∫ T3

T0

[
f (s) + g(v,m,T2, T3, T4)

]
dt (26)

Because f (s) ∈ C1[T0, Tf ] is a first-order continuous deriv-
able function, f (s) satisfies the Lipschitz condition, that is,
for any s, s̄ ∈ [T0, T5],
∥∥f (s) − f (s̄)

∥∥ < L‖s − s̄‖ (27)

Let ε > 0. There exists 0 < δ < λ∗ such that for any T3,
T̄3 satisfying |T̄3 − T3| < δ, we can take T̄3 > T3; then
∥∥s̄(T̄3) − s(T̄3)

∥∥

=

∥∥∥∥∥∥∥

∫ T̄3

T3

⎛
⎜⎝f (s̄) − f (s) +

⎡
⎢⎣

03×1
Tmax
m

ᾱ

0

⎤
⎥⎦

⎞
⎟⎠dt

∥∥∥∥∥∥∥

≤
∥∥∥∥
∫ T̄3

T3

(
f (s̄) − f (s)

)
dt

∥∥∥∥ +

∥∥∥∥∥∥∥

∫ T̄3

T3

⎡
⎢⎣

03×1
Tmax
m

ᾱ

0

⎤
⎥⎦dt

∥∥∥∥∥∥∥

≤
∫ T̄3

T3

L‖s̄ − s‖dt + c
(
lnm(T3) − lnm(T̄3)

)
(28)

Because

m = 1 − Tmax

c
	T (29)

and

	v =
∫ T ′′

T ′
Tmax

m
dt = c

(
lnm

(
T ′) − lnm

(
T ′′))

> Tmax
(
T ′′ − T ′) = Tmax	T (30)

we have

m ≥ 1 − 	v

c
(31)

∥∥s̄(T̄3) − s(T̄3)
∥∥ ≤

∫ T̄3

T3

L‖s̄ − s‖dt + Tmax

c − 	v
(T̄3 − T3)

(32)

Therefore, by the Grönwall inequality (Hsu 2013),

∥∥s̄(T̄3) − s(T̄3)
∥∥ ≤ Tmax

c − 	v
(T̄3 − T3) exp

(∫ T̄3

T3

Ldt

)

≤ Tmax

c − 	v
(T̄3 − T3) eL(T̄3−T3) (33)
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Because (T̄3 − T3) eL(T̄3−T3) is a continuous nonnegative
function and increases monotonically, there exists λ∗ such
that Tmax

c−	v
λ∗ eLλ∗ = ε. Therefore,

∥∥s̄(T̄3) − s(T̄3)
∥∥ < ε (34)

�

Lemma 2 Solution ϕ(s0; τ2, τ3, τ4) is a continuous function
of T3.

Proof (1) When T0 ≤ t ≤ T3, the conclusion holds.
(2) When T3 < t ≤ T4, we have

s̄(t) = s̄(T̄3) +
∫ t

T̄3

f (s̄)dt

s(t) = s(T̄3) +
∫ t

T̄3

f (s)dt

(35)

Let ε > 0. From Lemma 1, there exists δ1 > 0, such that

∥∥s̄(T̄3) − s(T̄3)
∥∥ <

ε

2
(36)

From the initial value continuous dependence, there exists
δ2 > 0 such that
∥∥∥∥
∫ t

T̄3

(
f (s̄) − f (s)

)
dt

∥∥∥∥ <
ε

2
(37)

Then, there exists δ = min(δ1, δ2) such that

∥∥s̄(t) − s(t)
∥∥ ≤ ∥∥s̄(T̄3) − s(T̄3)

∥∥ +
∥∥∥∥
∫ t

T̄3

(
f (s̄) − f (s)

)
dt

∥∥∥∥
< ε (38)

(3) When T4 < t ≤ T5, we have

s̄(t) = s̄(T4) +
∫ t

T4

[
f (s̄) + g(v̄, m̄, T2, T̄3, T4)

]
dt

s(t) = s(T4) +
∫ t

T4

[
f (s) + g(v,m,T2, T3, T4)

]
dt

(39)

Let ε > 0. From (2), there exists δ1 > 0 such that

∥∥s̄(T4) − s(T4)
∥∥ <

ε

2
(40)

From the initial value continuous dependence, there exists
δ2 > 0 such that
∥∥∥∥
∫ t

T4

{[
f (s̄) + g(v̄, m̄, T2, T̄3, T4)

]

−[
f (s) + g(v,m,T2, T3, T4)

]}
dt

∥∥∥∥ <
ε

2
(41)

Then, there exists δ = min(δ1, δ2) such that
∥∥s̄(t) − s(t)

∥∥ < ε (42)

Thus, the conclusion holds. �

Lemma 3 Solution ϕ(s0; τ2, τ3, τ4) is a continuous function
of the parameters T1, T2 and T4.

The proof of Lemma 3 is similar to that given above.

Corollary 1 Solution ϕ(s0; τ2, τ3, τ4) is a continuous func-
tion of the parameters τ2, τ3 and τ4.

Proof Because τi = Ti − Ti−1, i = 2,3,4 are continuous
functions, from Lemma 3, the conclusion holds. �

4.2 Lunar capture set theories

As mentioned in Sect. 3, the lunar capture conditions for
the LTEMT are Jf = C1 and x|L1 < Rf < x|L2 . Because
Jf = C1 can be satisfied by choosing an appropriate initial
value of τ2, which causes the transfer trajectories to cross the
near-L1 space, the condition x|L1 < Rf < x|L2 is discussed
here by proposing and proving the LCSTs.

LCST 1 Considering the dynamics system in (25) for given
parameters τ3 > 0, τ4 ≥ 0, if τ 2 ≥ 0 causes the trajectory
to satisfy Rf > x|L2 , and τ 2 ≥ 0 causes the trajectory to
satisfy Rf < x|L1 , there exists τ 2 < τ ∗

2 < τ 2 satisfying
x|L1 < Rf < x|L2 .

Proof From Corollary 1, ϕ(s0; τ2, τ3, τ4) is a continuous

function of the parameter τ2. Therefore, Rf =
√

x2
f + y2

f is

also a continuous function of τ2. According to the definition
of continuous functions, there exists τ 2 < τ ∗

2 < τ 2 satisfying
x|L1 < Rf < x|L2 . �

LCST 2 Considering the dynamics system in (25), if the
parameters τ2 ≥ 0, τ3 > 0, τ4 ≥ 0, make the trajectory sat-
isfy Rf > x|L2 , there exists 0 < τ ∗

3 < τ3 satisfying x|L1 <

Rf < x|L2 .

Proof When τ3 = 0, the minimum Jacobi integral is Jmin =
J (T2) = C1. Therefore, for any t ∈ [T0, Tf ], R(t) < x|L1 .
Because there exist τ2 ≥ 0, τ3 > 0, τ4 ≥ 0 such that Rf >

x|L2 , and Rf is a continuous function of τ3, there exists 0 <

τ ∗
3 < τ3 satisfying x|L1 < Rf < x|L2 . �

LCST 3 Considering the dynamics system in (25), for the
parameters τ2 > 0, τ3 ≥ 0, if τ 4 ≥ 0 makes the trajectory
satisfy Rf > x|L2 , and τ 4 ≥ 0 makes the trajectory sat-
isfy Rf < x|L1 , there exists τ 4 < τ ∗

4 < τ 4 satisfying x|L1 <

Rf < x|L2 .
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Fig. 4 Variation in (a) R(t), T2 ≤ t ≤ Tf and (b) Jacobi integral with τ2

Proof The process is similar to the proof of LCST 1. �

LCSTs 1, 2, and 3 involve τ2, τ3, τ4, respectively. It is in-
dicated that if the transfer trajectory whose terminal state has
Rf < x|L1 and the transfer trajectory satisfies Rf > x|L2

can be found, then the trajectories satisfying x|L1 < Rf <

x|L2 can be obtained. In fact, the transfer trajectories sat-
isfying Rf < x|L1 or Rf > x|L2 can be found more easily
than the LTEMT trajectories.

5 Results and discussion

To test the proposed guidance law and the LCSTs, three
LTEMT cases with different thrust accelerations are con-
sidered. The LTEMT trajectories extend from a geosyn-
chronous orbit with an altitude of approximately 35,827
km to the vicinity of the Moon, where the lunar capture
condition is satisfied. The initial mass of the spacecraft is
1,500 kg. Maximum thrusts of 0.45, 0.3, and 0.15 N are
considered, and the specific impulse is 3,000 s. The opti-
mal solutions of the last two cases have been discussed in
a previous study (Oshima and Campagnola 2017) and pro-
vide a basis for comparison of the results. In the previous
study, a global search for LTEMTs in the planar CRTBP
was conducted, and the minimum-fuel LTEMT trajectories
were computed using an indirect method. Therefore, the op-
timal solutions in the literature provide the lower limit of
fuel consumption for the planar LTEMT. The fourth/fifth-
order Runge–Kutta method, with the relative and absolute
tolerances set to 10−13, was used to integrate Eq. (21). All
the cases were analyzed using a computer with a 3.30 GHz,
four-core i5 processor and 4 GB of onboard memory.

5.1 First case study

In the first case study, we determine the LTEMT trajectories
for a thrust of 0.45 N (3 × 10−4 m/s2) and a cut-off value of
ηcut = 0. The initial parking orbit has an inclination of 28.5◦
with respect to the Moon orbit. The initial right ascension
of the ascending node and true anomaly are 80◦ and 280◦,
respectively.

First, an initial value of the parameter τ2 is iteratively
computed by viewing the projection of the transfer trajectory
onto the x–y plane of the Earth–Moon rotating frame to sat-
isfy the condition that the spacecraft can cross the near-L1

space. This step requires eight iterations, which take 57.67 s.
Then, the transfer trajectories whose terminal states satisfy
Rf < x|L1 and Rf > x|L2 can easily be found. Finally, the
lunar capture sets for τ2, τ3, τ4 are solved by searching be-
tween the parameters of the above two trajectories on the
basis of the LCSTs. At the same time, the parameters of the
minimum-fuel LTEMT trajectory can be found; this takes
several seconds, because it does not include the numerical
integration in stage 1, which accounts for most of the com-
putational cost.

Figures 4–6 present the variation in R(t) and J (t) in the
transfer trajectories. The unit of τ is days. On the left side,
the curves with terminal states located at x|L1 < Rf < x|L2

and Jacobi integrals equal to C1, represent the LTEMT tra-
jectories. Figure 4 shows the variation in R(t) and J (t) dur-
ing T2 ≤ t ≤ Tf for τ2 ∈ [3.54,3.65], τ3 = 9, and τ4 = 2.
It can be seen that Jf = C1 is held for all the options
in Fig. 4(b). When τ2 = 3.65, then Rf > x|L2 , and when
τ2 = 3.54, then Rf < x|L1 . Then, from LCST 1, there exists
τ2 ∈ (3.54,3.65) such that x|L1 < Rf < x|L2 . Finally, the
lunar capture set of τ2 ∈ [3.55,3.64], τ3 = 9, and τ4 = 2 is
found for the LTEMT trajectory. Figure 7 shows the LTEMT
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Fig. 5 Variation in (a) R(t), T2 ≤ t ≤ Tf and (b) Jacobi integral with τ3

Fig. 6 Variation in (a) R(t), T2 ≤ t ≤ Tf and (b) Jacobi integral with τ4

trajectory with τ2 = 3.61, τ3 = 9, and τ4 = 2. The total
flight time is 100.18 days, and the corresponding fuel cost
is 124.98 kg, which is equivalent to a final-to-initial mass
ratio of 0.9167. The total computational cost for finding the
lunar capture set is 66.12 s.

Figure 5 shows the variation in R(t) and J (t) with T2 ≤
t ≤ Tf for parameters τ2 = 3.61, τ3 ∈ [8.7,9.2], and τ4 = 2.
When τ3 = 9.2, then Rf > x|L2 , and when τ3 = 8.7, then
Rf < x|L1 . Then, from LCST 2 and the numerical cal-
culation, τ2 = 3.61, τ3 ∈ [8.8,9.1], and τ4 = 2 is the lu-
nar capture set that generates the LTEMT trajectories. Fig-
ure 6 shows that, for τ2 = 3.61 and τ3 = 9, there exists
τ4 ∈ [1.3,2.6], which satisfies the lunar capture condition
from LCST 3.

5.2 Second case study

In the second case, planar LTEMTs are established with a
thrust of 0.3 N (2 × 10−4 m/s2) and cut-off values of 0.1,
0.2, 0.3, 0.4, and 0.5.

As in the first case, τ2 is solved iteratively. The number
of iterations is related to the preset cut-off values. More it-
erations are needed for larger cut-off values. For example,
when ηcut = 0.1, at most three iterations are needed, which
take 130.14 s, but when ηcut = 0.5, it takes seven iterations
and 547.61 s to find the parameter. Then, lunar capture sets
for τ2, τ3, τ4 are obtained by searching the parameter in-
tervals determined by the LCSTs. During this process, the
minimum-fuel LTEMT trajectories are obtained.
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Fig. 7 LTEMT trajectory in (a) Earth–Moon rotating frame (projection on the x–y plane) and (b) Earth-centered inertial frame

Fig. 8 Minimum-fuel LTEMT trajectory for a thrust of 0.3 N and ηcut = 0.1

Figures 8–12 show the minimum-fuel LTEMT trajec-
tories for different ηcut in both the Earth–Moon rotating
frame (left) and the Earth-centered inertial frame (right).
The LTEMT trajectories have five stages, as described in
Sect. 3.4. The red lines or dots represent the acceleration
propulsion segments, where u = 1 and α = v/v. The green
lines represent the deceleration segments, where u = 1 and
α = −v/v. The blue lines represent the coast segments,
where u = 0. The gray dots represent the states where the
thrust efficiency is below ηcut . As shown on the left, the ter-
minal states of the transfer trajectories are located in areas
where x|L1 < Rf < x|L2 , indicating that the trajectories sat-
isfy the lunar capture condition. The figures on the right-
hand side show that for larger cut-off values of the thrust
efficiency, the thrust is more concentrated near perigee.

The corresponding parameters are listed in Table 3 for
various ηcut . Here, 	T is the flight time, and 	m is the
fuel consumption. The computation time is the computa-
tional cost of searching for τ2, τ3, τ4 for the lunar capture
sets and minimum-fuel solutions. As indicated in Table 3,
for larger cut-off values of the thrust efficiency, the flight
time is longer, and less fuel is consumed. The search can be
completed in several seconds, because it does not include
the numerical integration over Stage 1, which accounts for
most of the calculation time.

The optimal solutions of this case reported in Oshima and
Campagnola (2017) provide a basis for comparison of the
results, as shown in Table 3. Here, 	mopt is the optimal fuel
consumption. The fuel consumption obtained in this paper
is comparable with (at most 2.52% higher than) the optimal
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Fig. 9 Minimum-fuel LTEMT trajectory for a thrust of 0.3 N and ηcut = 0.2

Fig. 10 Minimum-fuel LTEMT trajectory for a thrust of 0.3 N and ηcut = 0.3

Fig. 11 Minimum-fuel LTEMT trajectory for a thrust of 0.3 N and ηcut = 0.4
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value. In terms of the computational cost, although a three-
dimensional set was also searched, the numerical integration
over all of the LTEMT trajectories is not negligible. Thus,
the computational cost of the LCST-based solutions is rela-
tively low compared with that of the referenced solutions in
the literature.

5.3 Third case study

In the third case, planar LTEMT trajectories are determined
for a thrust of 0.15 N and ηcut values of 0.1, 0.2, 0.3, 0.4, and
0.5. The maximum thrust in this case is half that in the sec-
ond case, and the initial acceleration is only 1 × 10−4 m/s2.

Similarly, τ2 is solved iteratively. Because the thrust ac-
celeration is half that in the second case, the numerical in-
tegration time for a single iteration is relatively long. For
ηcut = 0.1, it takes at most three iterations and 242.79 s to
solve the parameter. For ηcut = 0.5, it takes seven iterations
and 16.8 min to obtain the initial value of τ2. Then, the lu-
nar capture sets and minimum-fuel LTEMT trajectories are
found by searching over the parameter intervals determined
by the LCSTs.

The minimum-fuel LTEMT trajectories in both the Earth–
Moon rotating frame (left) and the Earth-centered inertial
frame (right) are shown in Figs. 13–17. The terminal states
in the figures (left side) are located in the regions where
x|L1 < Rf < x|L2 , indicating that the states satisfy the lu-
nar capture condition. Consistent with the flight control se-
quence, five stages are included in the LTEMT trajectories.
The gray dot in the figures on the right side represents the
position where the thrust efficiency is smaller than the pre-
set ηcut . The figures indicate that when the cut-off value is
large, most of the thrust is concentrated near perigee.

The corresponding parameters of the minimum-fuel
LTEMT trajectories with different preset ηcut values are re-
ported in Table 4. As expected, at larger cut-off values of
the thrust efficiency, the flight time is longer, and the fuel
consumption is lower. A comparison of the obtained fuel
consumption values with the optimal values in Oshima and
Campagnola (2017) shows that the trajectories are compara-
ble with (at most 1.88% higher than) the optimal solutions.
Table 4 also lists the computation time required to search for
τ2, τ3, τ4. The computational cost is only tens of seconds.

6 Robustness analysis

In this section, the robustness of the guidance law based on
the LCSTs is demonstrated by considering the navigation
and switching time τi (i = 2,3,4) errors.

6.1 Navigation error

In the actual flight mission, the thrust direction and velocity
in the Earth–Moon rotating frame deviate owing to naviga-
tion error. It is assumed that uncorrelated, unbiased Gaus-
sian errors, characterized by σpos = 5 km and σvel = 5 m/s,
are applied to simulate the navigation error of the posi-
tion (subscript pos) and velocity (subscript vel), respectively
(D’Souza et al. 2007).

One thousand Monte Carlo simulations of the nomi-
nal LTEMT trajectory with τ2 = 0, τ3 = 0.4, and τ4 = 9
in the second case study were performed. As shown in
Fig. 18(a), all the terminal states satisfy the lunar capture
condition x|L1 < Rf < x|L2 , where x|L1 = 0.83736 and
x|L2 = 1.15527. Thus, the LCST-based guidance law is ro-
bust with respect to the navigation errors. The flight time
of the nominal LTEMT trajectories with navigation errors
ranges from 133.59 to 135.41 days, and the fuel cost is in-
creased by at most 1.58 kg, as shown in Fig. 18(b).

6.2 Switching time error

This section shows the importance of the LCSTs when there
are errors in the switching times T2, T3, T4. To maintain con-
sistency with Sect. 5, τ2, τ3, τ4 are used instead of T2, T3, T4.

In the first case study, the lunar capture sets based on the
LCSTs were found. Table 5 shows the lunar capture sets for
the nominal LTEMT trajectories in the second and third case
studies. The results show that the switching times have a rel-
atively wide range of values. For example, in the first case
study for ηcut = 0.1, the flight time of Stage 2 can range
from 0 to 0.6 days, the flight time of Stage 3 can range from
0.3 to 2.1 days, and the flight time of Stage 4 varies over a
period of more than 10 days. The LCSTs are used to find
feasible sets of τ2, τ3, τ4 that satisfy the lunar capture con-
dition. Therefore, the LCST-based LTEMT trajectories are
robust with respect to the switching time.

Additionally, there are a number of other key points with
regard to the method itself. First, the approach focuses on
lunar capture. Therefore, any LTEMTs in the lunar capture
set ensure that the spacecraft can be captured by the Moon.
Second, compared with other methods in which the thrust
direction is solved using nonlinear optimization by the direct
method or using the two-point boundary value problem for
optimal control by the indirect method, the proposed method
is based on a relatively simple guidance law, in which the
thrust direction is the same as or opposite to the velocity in
the Earth–Moon rotating frame. Therefore, it is practical for
engineering implementations.

7 Conclusion

This study investigates the LTEMT trajectories by explor-
ing the lunar capture set. Based on the CRTBP, the sufficient
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Fig. 12 Minimum-fuel LTEMT trajectory for a thrust of 0.3 N and ηcut = 0.5

Table 3 Parameters of the
minimum-fuel LTEMT
trajectories for a thrust of 0.3 N

ηcut τ2 (day) τ3 (day) τ4 (day) 	T (day) 	m (kg) 	mopt (kg) Computation time (s)

0.1 0 0.4 9 133.69 82.84 81.25 33.68

0.2 2.1 0.6 10.5 154.59 78.12 77.48 45.64

0.3 1.1 1.3 10 171.86 74.73 73.33 81.34

0.4 0.2 1.8 10.0 196.89 72.57 71.25 100.56

0.5 0 2.3 13 234.27 70.96 69.17 91.65

Table 4 Parameters of the
minimum-fuel LTEMT
trajectories for a thrust of 0.15 N

ηcut τ2 (day) τ3 (day) τ4 (day) 	T (day) 	m (kg) 	mopt (kg) Computation time (s)

0.1 0.3 0.4 13 261.74 82.32 80.77 59.22

0.2 0.3 0.7 8.5 289.68 77.58 76.67 70.01

0.3 0.2 1 11 332.11 73.88 73.33 86.86

0.4 0.1 1.4 10.5 382.78 70.74 – 116.71

0.5 0.1 2.2 12 448.34 67.73 66.53 130.04

Table 5 Lunar capture sets for
LTEMT trajectories with
switching time errors

Case ηcut τ2, τ3, τ4 (day) τ2, τ3, τ4 (day) τ2, τ3, τ4 (day)

Second case study 0.1 [0,0.6], 0.4, 9 0, [0.3,2.1], 9 0, 0.4, [5,25]
0.2 [0,2.2], 0.6, 10.5 2.1, [0.6,1.2], 10.5 2.1, 0.6, [4,11]
0.3 [0.9,1.1], 1.3, 10 1.1, [1.3,1.5], 10 1.1, 1.3, [5,25]
0.4 [0.1,0.2], 1.8, 10 0.2, [1.7,2.0], 10 0.2, 1.8, [5,18]
0.5 [0,0.02], 2.3, 13 0, [2.3,2.4], 13 0, 2.3, [6,20]

Third case study 0.1 [0,0.3], 0.4, 13 0.3, [0.4,0.7], 13 0.3, 0.4, [6,18]
0.2 [0,1.9], 0.7, 8.5 1, [0.5,1.1], 8.5 1, 0.7, [5,20]
0.3 [0.1,0.2], 1, 11 0.2, [0.96,1.05], 11 0.2, 1, [5,20]
0.4 [0,0.4], 1.4, 10.5 0.1, [1.34,1.47], 10.5 0.1, 1.4, [5,20]
0.5 [0,0.2], 2.2, 12 0.1, [2.2,2.3], 12 0.1, 2.2, [5,20]

condition for lunar capture is given on the basis of the Ja-
cobi integral and Hill’s region. A guidance law including the
thrust direction, the thrust efficiency, and a five-stage flight

control sequence is proposed. Then, an initial value problem
of an ordinary differential equation with three parameters
is obtained. Through a proof of the continuity of the three
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Fig. 13 Minimum-fuel LTEMT trajectory for a thrust of 0.15 N and ηcut = 0.1

Fig. 14 Minimum-fuel LTEMT trajectory for a thrust of 0.15 N and ηcut = 0.2

Fig. 15 Minimum-fuel LTEMT trajectory for a thrust of 0.15 N and ηcut = 0.3
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Fig. 16 Minimum fuel LTEMT trajectory for a thrust of 0.15 N and ηcut = 0.4

Fig. 17 Minimum-fuel LTEMT trajectory for a thrust of 0.15 N and ηcut = 0.5

Fig. 18 Results of Monte Carlo simulations of the nominal trajectory with η = 0.1 in the second case study
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parameters, the LCSTs are proposed and proved; they can
greatly simplify the LTEMT trajectory design.

The lunar capture sets and corresponding LTEMT trajec-
tories departing from a geosynchronous orbit with an alti-
tude of approximately 35,827 km for different thrust accel-
erations and preset cut-off values can be easily determined
from the LCSTs. The resulting LTEMT trajectories are com-
parable to the optimal solutions. The robustness is analyzed
to show the adaptability of the proposed method assuming
navigation and switching time errors. The results show that
the LCSTs proposed in this paper are significant for the gen-
eration of lunar capture sets and can provide technical sup-
port for future cislunar cargo spacecraft.
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