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Abstract The restricted four-body problem consists of an
infinitesimal particle which is moving under the Newtonian
gravitational attraction of three finite bodies, m1, m2 and m3.
The three bodies (called primaries) are moving in circular
orbits around their common centre of mass fixed at the origin
of the coordinate system. Moreover, according to the solu-
tion of Lagrange, these primaries are fixed at the vertices of
an equilateral triangle. The fourth body does not affect the
motion of the three bodies. In this paper, we deal with the
photogravitational version of the problem with Stokes drag
acting as a dissipative force. We consider the case where
all the primaries are sources of radiation and that two of
the bodies, m2 and m3, have equal masses (m2 = m3 = μ)
and equal radiation factors (q2 = q3 = q) while the domi-
nant primary body m1 is of mass 1 − 2μ. We investigate the
dynamical behaviour of an infinitesimal mass in the gravi-
tational field of radiating primaries coupled with the Stokes
drag effect. It is found that under constant dissipative force,
collinear equilibrium points do not exist (numerically and of
course analytically) whereas the existence and positions of
the non-collinear equilibrium points depend on the param-
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eters values. The linear stability of the non-collinear equi-
librium points (Li, i = 1,2, . . . ,8) is also studied and it is
found that they are all unstable except L1, L7 and L8 which
may be stable for a range of values of μ and various val-
ues of radiation factors. Finally, we justify the relevance of
the model in astronomy by applying it to a stellar system
(Ross 104-Ross775a-Ross775b), for which all the equilib-
rium points have been seen to be unstable.

Keywords Restricted four body problem · Radiation
pressure · Stokes drag · Equilibria · Stellar system ·
Stability

1 Introduction

The equilibrium solution of n-body celestial systems and re-
lated equilibrium points analysis have always been an at-
tractive and important field of research, especially these
days due to the detection of more than 2500 extra-solar
planetary systems (see, e.g., Murray and Dermott 1999;
Marchand et al. 2007 for the list of references and for some
interesting historical notes). Among extra-solar systems we
can find some of them with only one star and several plan-
ets, others with several stars and none or several planets.
Among the possible scenarios of extra-solar planets, those
involving multiple star systems are perhaps the most inter-
esting in terms of dynamics (Campo and Docobo 2014).
Since there is no general analytical solution to the n-body
problem for n ≥ 3, several simplifications have been intro-
duced with the most prominent being the restricted three
and four-body problems (Meyer et al. 2008). The restricted
three-body problem (R3BP) describes the motion of an in-
finitesimal mass moving under the gravitational effects of
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two finite bodies, called primaries, which move in circu-
lar or elliptical orbits around their center of mass on ac-
count of their mutual attraction and the infinitesimal mass
is not influencing the motion of the primaries. It is well-
known that, in the rotating frame this problem possesses
five equilibrium points three of which lie on the line con-
necting the primaries are called collinear points while the
other two form in the plane of motion equilateral config-
uration with the primaries and are called triangular points.
The restricted four-body problem (R4BP) is perhaps the
simplest model after the R3BP and a natural generaliza-
tion of it. It describes the motion of a body of infinitesimal
mass under the Newtonian gravitational attraction of three
much bigger bodies (called the primaries) moving in cir-
cular or elliptic orbits around their centre of mass fixed at
the origin of the coordinate system. The fourth body does
not affect the motion of the three primaries. Two different
configurations of the three bodies have been considered in
this case: collinear configuration of the primaries (see, e.g.,
Kalvouridis et al. 2006, 2007; Arribas et al. 2016a, 2016b;
Barrabés et al. 2017) and equilateral triangle for the three
main bodies (see, e.g., Baltagiannis and Papadakis 2011;
Papadouris and Papadakis 2013; Singh and Vincent 2015;
Singh and Omale 2019).

In this paper, we deal with the latter case since, from a
natural point of view there are astronomical bodies that ex-
hibit a triangular configuration when considered geometri-
cally. For instance, the Trojan asteroids of Jupiter and the
four Martian asteroids. For details on the examples of such
configuration we refer to Alvarez-Ramirez and Barrabes
(2015), Zotos (2016) and references therein. This prob-
lem has been used by many scientists for practical appli-
cations such as, among others, Robutel and Gabern (2006,
Sun, Jupiter and Saturn system), Schwarz et al. (2009a, star,
two massive planets and a massless Trojan), Schwarz et al.
(2009b, star, brown dwarf, gas giant and a massless Trojan),
Ceccaroni and Biggs (2012, Sun, Jupiter, Trojan Asteroid,
Spacecraft), Baltagiannis and Papadakis (2013, Sun, Jupiter,
Trojan Asteroid, Spacecraft), and references therein.

The case of R3BP where one or both primaries are
sources of radiation is a long-standing, well-known prob-
lem usually referred to as “the photogravitational prob-
lem of three bodies”; this case was initially studied by
Radzievskii (1950, 1953). Since then, a number of publi-
cations have been reported on this topic (see, Burns et al.
1979; Schuerman 1980; Bhatnagar and Chawla 1979; Sim-
mons et al. 1985; Manju and Choudhry 1985; Luk’yanov
1987, 1988; Ragos and Zagouras 1988; Papadakis 1996;
Ishwar and Elipe 2001, and references therein). However,
dissipative effects play a key role in Solar system dynam-
ics. One of the most important mechanism of dissipation
is the Poynting-Robertson (P-R) drag, which models the
Solar radiation effect on dust grains. The restricted three-
body problem with P-R drag force has been studied by

many scientists in recent times. Some of them are Murray
(1994), Ishwar and Kushvah (2006), Ragos and Zafiropou-
los (1995), Celletti et al. (2011). Another important kind
of non gravitational effect is the so-called Stokes drag;
this effect is due to the collisions of particles with the
molecules of the gas nebula being present during the forma-
tion of a planetary system (Beaugé and Ferraz-Mello 1993;
Celletti et al. 2011). In this context, Jain and Aggarwal
(2015a) have studied the R3BP with Stokes drag effect con-
sidering the primaries as point mass. Also, Jain and Aggar-
wal (2015b) discussed the same problem under Stokes drag
effect when the smaller primary is an oblate body. In both
papers, they have shown that there exist two non-collinear
libration points which are linearly unstable and collinear li-
bration points do not exist.

On the other hand, the generalization of the R4BP can
include the consideration of various types of effects such as
Coriolis and centrifugal forces, variation of masses, oblate-
ness of bodies, P-R drag, radiation pressure force, Stokes
drag, triaxiality, etc.

The study of radiation and its effects on the dynam-
ics of small bodies has attracted much attention in recent
years. This interest is absolutely justified, since a great num-
ber of strong radiation sources exist in the Universe (see
Baguhl et al. 1995; Jackson 2001 for details). For exam-
ple, Kalvouridis et al. (2006) discussed the effect of radia-
tion force due to primaries in the R4BP using Radzievskii’s
model and noticed that there are some variations in the re-
sult which are unstable for all values of the assumed pa-
rameters and later studied the parametric evolution of pe-
riodic orbits of the problem (Kalvouridis et al. 2007). The
photogravitational case, but of the Lagrangian R4BP, was
introduced by Papadouris and Papadakis (2013) where they
studied the equilibrium points of the problem for the case
of two equal masses. Also, the linear stability of each equi-
librium point was examined. Further, the periodic solutions
in the photogravitational case of this problem were stud-
ied by Papadouris and Papadakis (2014). Several authors,
among others, Suraj and Hassan (2014), Singh and Vincent
(2015, 2016) and references therein, studied the effects of
radiation pressure on the equilibrium points of the prob-
lem (Lagrange configuration). Similarly, the R4BP with ef-
fects of drag has received attention with respect to real sys-
tems in Celestial Mechanics. Recently, Kumari and Kushvah
(2013) examined equilibrium points and regions of motion
in the restricted four-body problem with solar wind drag ef-
fect. Singh and Omale (2019) studied the combined effect
of Stokes drag, oblateness and radiation pressure on the ex-
istence and stability of equilibrium points in the restricted
four-body problem.

In this paper, we intend to study the motion of an in-
finitesimal body in the R4BP in which the dissipative force
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(Stokes drag) is considered in the case where the three pri-
mary bodies are sources of radiation. Our goal is to inves-
tigate numerically the combined effect of radiation factors
and Stokes drag on the motion of a small particle in the force
field of three bodies much bigger than the particle, which are
always in Lagrangian configuration. Our target is not to pro-
vide a systematic search of their location and existence but
to detect them for several combinations of the parameters
of the problem. To do so, we firstly choose such qi , mi and
constant dissipative force (k) in order that the Lagrangian
configuration is stable, finally, then we compute numerically
the number and positions of the equilibrium points and then
their stability. We find that, in contrast to the photogravi-
tational one, the current problem does not admit collinear
equilibrium points which would have increased the dynami-
cal richness of the problem.

It is also interesting to observe that there are natural bod-
ies that are equal in mass and whose orbits are nearly cir-
cular. For two stars of equal masses it is expected that, in
general, they should be of the same age and composition
and, consequently, they should exert radiation of the same
order. This means that the choice of q2 = q3 = q would be
physically compatible.

The paper proceeds as follows: In Sect. 2, we present the
equations of motion of the considered dynamical system. In
Sect. 3, we determine the equilibrium points of the problem.
Specifically, we study the existence and location of the equi-
librium points under the influence of the system parameters.
Section 4 investigates the linear stability of the equilibrium
points; Sect. 5 is the validation of the model by its applica-
tion to a stellar system, while Sect. 6 discusses the obtained
results and conclusions of the paper.

2 Equations of motion

We consider three bodies of masses m1, m2 and m3 (m1 �
m2 = m3) always lying at the vertices of an equilateral tri-
angle and one of them, say m1, is on the positive x-axis at
the origin of time. The motion of the system is referred to
axes rotating with uniform angular velocity. The three bod-
ies move in the same plane and their mutual distances re-
main unchanged with respect to time (see e.g., Papadouris
and Papadakis 2013). We suppose that the origin is taken as
the center of gravity of the system and that the motion of the
infinitesimal mass m is governed by the gravitational force
of the primaries. We adopt the sum of the masses of the pri-
maries and the distance between them as the units of mass
and length. We choose the unit of time such as to make the
gravitation constant equal to unity. Let the coordinates of the
infinitesimal mass be (x, y) and those of masses m1, m2 and
m3 are:

(x1, y1) = (
√

3μ,0), (x2, y2) =
(

−
√

3

2
(1 − 2μ),

1

2

)
,

(x3, y3) = (x2,−y2),

respectively, relative to a rotating frame of reference Oxyz,
where O is the origin, μ = m2

m1+m2+m3
= m3

m1+m2+m3
is the

mass parameter, where μ ∈ (0,1/3).
The equations of motion of the infinitesimal mass m in

the photogravitational restricted four-body problem with the
origin resting at the centre of mass, in a rotating system
of coordinates can be described in the dimensionless vari-
ables as (see Papadouris and Papadakis 2013 and Singh and
Omale 2019):

ẍ − 2ẏ = Ωx − Sx, (1)

ÿ + 2ẋ = Ωy − Sy, (2)

where,

Ω = (x2 + y2)

2
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r1
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r2
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r3
, (3)

with
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(
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(
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)
,

S′ = S′(r) = r− 3
2 ,

(4)

while
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√

(x − √
3μ)2 + y2,

r2 =
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x +
√

3

2
(1 − 2μ)

)2

+
(

y − 1

2

)2

,

r3 =
√(

x +
√

3

2
(1 − 2μ)

)2

+
(

y + 1

2

)2

,

r =
√

x2 + y2.

(5)

Here r1, r2 and r3 are the distances of the infinitesimal body
from the primaries, Ω is the gravitational potential, dots de-
note time derivatives, the suffixes x and y indicate the par-
tial derivatives of Ω with respect to x and y, respectively.
k ∈ [0,1) is the dissipative constant, depending on several
physical parameters (Beaugé and Ferraz-Mello 1993) like
the viscosity of the gas, the radius and the mass of the par-
ticle and α ∈ [0,1) is the ratio of the gas and keplerian ve-
locities (Murray 1994). The Stokes drag effect is of order
of k = 10−5, α = 0.05 (Jain and Aggarwal 2015a, 2015b;
Celletti et al. 2011) for all numerical results. The radiation
pressure parameters of the primaries are expressed by means
of the relations 0 < qi = (1 − bi) ≤ 1, i = 1,2,3, where b1,
b2 and b3 are the ratios of the force Fr which is caused by
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radiation to the force Fg which results from gravitation due
to the three primary bodies m1, m2 and m3, respectively. It is
interesting to note that an increase in the radiation pressure
implies a decrease in the mass reduction factor at constant
gravitational force.

2.1 Linear stability of the Lagrange configuration in
the gravitational case

In Newtonian gravity, Gascheau (1843) proved that La-
grange’s equilateral triangular configuration for circular mo-
tion is stable, if:

m1m2 + m2m3 + m1m3

(m1 + m2 + m3)2
<

1

27
, (6)

where m1, m2 and m3 are the three primary bodies. The
gravitational interaction is usually considered to be the New-
tonian one in most of the studies concerning the Trojans.
However, if one wants to consider the problem in the frame-
work of General Relativity, we may refer here the article by
Yamada and Tsuchiya (2017).

2.2 Linear stability of the Lagrange configuration in
the photogravitational case

In the photogravitational case, the necessary condition for
the stability of the configuration is the inequality (see Pa-
padouris and Papadakis 2013):

q1m1q2m2 + q2m2q3m3 + q1m1q3m3

(q1m1 + q2m2 + q3m3)2
<

1

27
, (7)

where q1, q2 and q3 are the corresponding radiation pressure
forces of the primaries.

In the gravitational case (see Baltagiannis and Papadakis
2011) where the two small primary bodies have the same
mass, we know that only for a large value of m1 and small
masses m2 and m3, the Routh’s inequality is fulfilled. In
the case where the dominant primary body m1 is a radiation
source (q1 �= 1, q2 = q3 = 1) while the other two small pri-
maries have equal masses (m2 = m3), then a detailed study
of the equilibrium points of the problem has been done by
Papadouris and Papadakis (2013).

Next, we shall discuss the positions of the equilibrium
points of the test body under the above condition (7). As
we have already mentioned, our target is not to provide a
systematic search of their existence and location but to gain
more insight about their dynamics.

3 Existence and locations of equilibrium
points

The equilibrium points are those points at which the velocity
and acceleration of the fourth body are zero. Therefore, the

locations of these points are given by the solutions of the
equations:

∂Ω

∂x
= ∂Ω

∂y
= 0, i.e.,

x − (1 − 2μ)(x − √
3μ)q1

r3
1

− q2(x +
√

3
2 (1 − 2μ))μ

r3
2

− q3(x +
√

3
2 (1 − 2μ))μ

r3
3

+ k

(
y + 3yα

2r
7
2

)
= 0, (8)

y − (1 − 2μ)yq1

r3
1

− q2(y − 1
2 )μ

r3
2

− q3(y + 1
2 )μ

r3
3

− k

(
x + 3αx

2r
7
2

)
= 0. (9)

Their positions are hard to be obtained with analytical ex-
pressions; however, they can be approximated by using any
numerical method for solving non-linear algebraic systems.
For the numerical computation of the number and the posi-
tion of these equilibria, we shall do a graphical study of the
two curves. Using the Newton-Raphson (N-R) method of
solution, our experimental results on a wide range of param-
eter values show that the system admits only eight equilibria
in the (x, y) plane. The aforementioned method has been
successfully applied by Baltagiannis and Papadakis (2011),
Papadouris and Papadakis (2013) and references therein for
the determination of equilibrium points in a different model-
problem of Celestial Mechanics.

It is interesting to note that for k = 0, q1 = q2 = q3 = 1,
we obtain the classical case of the restricted four-body prob-
lem and the solutions are reported in Baltagiannis and Pa-
padakis (2011); while for k = 0, q1 < 1, q2 = q3 = 1, we
have a photogravitational case and some of the results can be
found in Papadouris and Papadakis (2013). In the absence of
dissipative force (k = 0) and q1 < 1, q2 = q3 < 1, the pho-
togravitational case of Singh and Vincent (2016) is verified.
Also, the restricted three body problem with Stokes drag ef-
fect of Jain and Aggarwal (2015a, 2015b) is recovered for
k �= 0, m3 = 0, and q1 = q2 = q3 = 1.

3.1 Collinear equilibrium points

The positions of the collinear equilibrium points are given
by solving (8) and (9) for y = 0. If, y = 0, equation (9) is not
fulfilled since it gives q2μ

2r3
2

− q3μ

2r3
3

− k(x + 3αx

2r
7
2
) = 0 which is

satisfied for q2 = q3 = k = 0. Thus, the solutions of (8) will
not correspond to equilibrium points (i.e. they are not solu-
tion of the initial system: {Ωx = 0, Ωy = 0}, or in other
words, do not lie exactly on the x-axis), called collinear
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equilibrium points. Hence, collinear equilibrium points do
not exist (numerically and of course neither analytically)
in the present problem. This result agrees with Baltagian-
nis and Papadakis (2011), who determined the positions and
stability of equilibrium points in the equilateral triangle con-
figuration of the four-body problem when m1 �= m2 �= m3,
Singh and Vincent (2017), when m1m2 = m3, and the stud-
ies carried out by Jain and Aggarwal (2015b). So, in this
problem there are cases where collinear equilibria do not
exist.

3.2 Non-collinear equilibrium points

The positions of the non-collinear equilibrium points are
given by solving (8) and (9) for y �= 0, that can be written
as:

x − (1 − 2μ)(x − √
3μ)q1

r3
1

− q2(x +
√

3
2 (1 − 2μ))μ

r3
2

−q3(x +
√

3
2 (1 − 2μ))μ

r3
3

+ k

(
y + 3yα

2r
7
2

)
= 0, (10)

y − (1 − 2μ)yq1

r3
1

− q2(y − 1
2 )μ

r3
2

− q3(y + 1
2 )μ

r3
3

− k

(
x + 3αx

2r
7
2

)
= 0, (11)

and the problem, for μ = 0.01, q1 = 0.99, q = q2 = q3 =
0.85, k = 10−5, and α = 0.05 admits eight non-collinear
equilibrium points, Li , i = 1,2, . . . ,8 (Fig. 1). One can eas-
ily see eight points of intersection of the curves Ωx = 0
(light blue line in the figure) and Ωy = 0 (orange line in
the figure), which correspond to eight equilibrium positions
of the infinitesimal body m. The three blue points are the
positions of the primary bodies and the red dots are the po-
sitions of the eight non-collinear equilibrium points of the
problem. In the figure, points L1 and L2 seem to correspond
to collinear equilibrium points as solution of (10) and (11)
[arising from (8) and (9)] when y = 0. However, this solu-
tion does not verify (11), hence L1 and L2 do not constitute
collinear points (i.e. do not lie exactly on the x-axis).

We note that the existence, number and location of these
equilibrium points depend on the system parameters (mass
parameter μ, dissipative constant k and the radiation factors
qi, i = 1,2,3) of the problem. For example, the problem
admits seven non-collinear equilibrium points for constant
values of μ = 0.01, q1 = 0.5, q = q2 = q3 = 0.7, k = 10−5,
and α = 0.05 (Fig. 2 panel (a)) because L5 in Fig. 1 does
not exist, while for constant values of μ = 0.005, q1 = 0.6,
q = q2 = q3 = 0.3, the problem has one less (six) equilib-
rium points (Fig. 2 panel (b)) since L5 and L6 in Fig. 1 do
not exist. Further, we observe that when radiation factors

Fig. 1 The eight non-collinear equilibrium points and the positions
of the primary bodies for μ = 0.01, q1 = 0.99, q = q2 = q3 = 0.85,
k = 10−5, and α = 0.05. Blue dots indicate the coordinates of the pri-
maries (mi ), while red dots (Li ) represent the positions of the equilib-
rium points

are relatively weak, all the equilibrium points existing in the
gravitational case appear; however, when the coefficients are
strong, only some points are likely to appear.

Next, we shall discuss the positions of the non-collinear
equilibrium points of the infinitesimal body for μ = 0.01,
k = 10−5 and α = 0.05 whereas the radiation factors q1 and
q2,3 vary in the interval qi ∈ [1,0); i = 1,2,3, while they
always satisfy the above condition (7).

To investigate the influence of the radiation factors on
the positions of the equilibria under consideration, the radi-
ation factor of the two equal primaries (q2 = q3) is arbitrary
set to be q = 0.9985 while that of the dominant primary q1

(0 < q1 ≤ 1) varies. The coordinates of the numerically de-
termined non-collinear equilibrium points are shown in Ta-
ble 1 for various values of the radiation factor q1. We ob-
serve that with the increase of values of the radiation factor
q1, the coordinates of the equilibria L5 and L6 tend to the
primaries m3 and m2, correspondingly while all the equilib-
rium points of the problem approach the dominant primary
m1. The aforementioned discussion are presented in Fig. 3
where we have shown the positions of the equilibrium points
for a fixed value of q = 0.9985 and for three different val-
ues of q1 = 1, q1 = 0.75 and q1 = 0.516. In the figure, we
have plotted using the following color code: panel (a) q1 = 1
(green, gray), panel (b) q1 = 0.75 (black, gray), and panel
(c) q1 = 0.516 (magenta, gray). From Fig. 3, we observe
that the variational trend of the equilibria is similar to the
scenario presented in Table 1, that is, equilibria L5 and L6

tend to the primaries m3 and m2, correspondingly while all
the equilibrium points of the problem approach the domi-
nant primary m1 as the radiation pressure q1 increases (i.e.
q1 decreases) for a fixed value of q = 0.9985.
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Fig. 2 (a) Positions of the seven equilibrium points for μ = 0.01,
q1 = 0.5, q = q2 = q3 = 0.7, k = 10−5, and α = 0.05, (b) the six equi-
librium points for μ = 0.005, q1 = 0.6, q = q2 = q3 = 0.3, k = 10−5,

and α = 0.05. Blue dots indicate the coordinates of the primaries (mi ),
while red dots (Li ) represent the positions of the equilibrium points

Table 1 The positions of the eight non-collinear equilibrium points as a function of q1 for μ = 0.01, k = 10−5 and α = 0.05

q = 0.9985

q1 L1 L2 L3 L4

1 (−0.98855, −0.0000366) (1.00659, −0.000746) (−0.72575, 0.42848) (−0.72576, −0.42848)

0.9 (−0.95279, −0.0000329) (0.97237, −0.000710) (−0.71423, 0.42161) (−0.71423, −0.42160)

0.8 (−0.91402, −0.0000303) (0.93552, −0.000673) (−0.69991, 0.41298) (−0.69992, −0.41298)

0.7 (−0.87167, −0.0000287) (0.89545, −0.000634) (−0.68194, 0.40199) (−0.68194, −0.40199)

0.6 (−0.82499, −0.0000284) (0.85137, −0.000595) (−0.65922, 0.38779) (−0.65923, −0.38778)

q1 L5 L6 L7 L8

1 (−0.98426, 0.57928) (−0.984267, −0.57927) (−0.21014, 0.97148) (−0.20966, −0.97158)

0.9 (−0.97624, 0.57443) (−0.976247, −0.57442) (−0.18399, 0.94194) (−0.18353, −0.94203)

0.8 (−0.96902, 0.57008) (−0.969019, −0.57008) (−0.15790, 0.90929) (−0.15745, −0.90937)

0.7 (−0.96252, 0.56621) (−0.962525, −0.56620) (−0.13189, 0.87293) (−0.13145, −0.87301)

0.6 (−0.95669, 0.56275) (−0.956697, −0.56274) (−0.10597, 0.83204) (−0.10555, −0.83210)

Similarly, for the investigation of the influence of the ra-
diation factor of the two equal primaries (q2 = q3) on the po-
sitions of the non-collinear equilibrium points, we set q1 =
0.9985 as q varies for the same fixed values of μ = 0.01,
k = 10−5, α = 0.05. The coordinates of the numerically de-
termined non-collinear equilibrium points are shown in Ta-
ble 2 for various values of the radiation factor q . We observe
that with the increase of the radiation pressure parameter q ,
the equilibria L1 and L2 approach the primary body m1, the
equilibria L4 and L8 increase towards m2, L3 and L7 in-
crease towards m3 whereas L5 and L6 decrease towards the
primaries m3 and m2 correspondingly. In Fig. 4, we have
shown the positions of the non-collinear equilibrium points

for a fixed value of q1 = 0.9985 and for three different val-
ues of q = 1, q =0.75 and q = 0.516 while the remaining
parameters are μ = 0.01, k = 10−5 and α = 0.05. In the fig-
ure, we have plotted using the following color code: panel
(a) q = 1 (green, gray), panel (b) q = 0.75 (black, gray),
and panel (c) q = 0.516 (magenta, gray). Panel (d) shows
the combined plots of panels ((a)–(c)) with arrows signify-
ing the directions of the equilibrium points. The points of
intersections: (red), (yellow) and (black) are when q = 1,
q = 0.75 and q = 0.516, correspondingly, for a fixed value
of q1 = 0.9985. From Fig. 4, we observe that the variational
trend of the equilibria is similar to the scenario presented in
Table 2, that is, for fixed a value of q1 = 0.9985 and for in-
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Fig. 3 The positions of the eight non-collinear equilibrium points for
μ = 0.01, k = 10−5, α = 0.05, and q = 0.9985 as q1 radiates, i.e.
panels: (a) q1 = 1 (green, gray), (b) q1 = 0.75 (black, gray), and

(c) q1 = 0.516 (magenta, gray). Blue dots (mi ) correspond to the coor-
dinates of the primaries, while red dots (Li ) show the positions of the
equilibrium points

creasing q , the equilibria L1 and L2 approach the primary
body m1, the equilibria L4 and L8 increase towards m2, L3

and L7 increase towards m3 whereas L5 and L6 decrease to-
wards the primaries m3 and m2, correspondingly. Also, we
see that L1 and L2 have very less dependence on the pa-
rameters as there is almost no change in the positions of the
equilibria.

4 Linear stability of the non-collinear
equilibrium points

In this section, we attempt to examine the linear stability of
an equilibrium configuration, that is, its ability to restrain
the body motion in its vicinity. To do so, we displace the
infinitesimal body a little from an equilibrium point with

a small velocity. Let the position of an equilibrium point
be denoted by (x0, y0), and consider a small displacement
(ξ , η) from the point such that x = x0 + ξ and y = y0 + η.
Substituting these values into (1) and (2), we obtain the vari-
ational equations:

ξ̈ − 2η̇ = ξ(Ω0
xx − S0

xx) + η(Ω0
xy − S0

xy) − S0
ẋx ξ̇ , (12)

η̈ + 2ξ̇ = ξ
(
Ω0

yx − S0
yx

) + η
(
Ω0

yy − S0
yy

) − S0
yẏ η̇. (13)

Here, only linear terms in ξ and η have been taken. The
second partial derivatives are denoted by subscripts x and
y while the dots represent the derivatives w.r.t the actual
time t . The superscript ‘0’ indicates that the partial deriva-
tives have been evaluated at the equilibrium point with
S0

xẋ = k = S0
yẏ .
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Table 2 The positions of the eight non-collinear equilibrium points as a function of q for μ = 0.01, k = 10−5 and α = 0.05

q1 = 0.9985

q L1 L2 L3 L4

1 (−0.98804, −0.0000365) (1.00610, −0.000746) (−0.72554, 0.42835) (−0.72555, −0.42835)

0.9 (−0.98734, −0.0000402) (1.00593, −0.000731) (−0.72939, 0.43089) (−0.72939, −0.43089)

0.8 (−0.98664, −0.0000447) (1.00575, −0.000716) (−0.73356, 0.43363) (−0.73357, −0.43362)

0.7 (−0.98595, −0.0000505) (1.00558, −0.000701) (−0.73813, 0.43659) (−0.73814, −0.43659)

0.6 (−0.98526, −0.0000580) (1.00541, −0.000688) (−0.74321, 0.43986) (−0.74321, −0.43985)

q L5 L6 L7 L8

1 (−0.98421, 0.57924) (−0.98421, −0.57923) (−0.20918, 0.97119) (−0.20871, −0.97129)

0.9 (−0.97913, 0.57661) (−0.97913, −0.57660) (−0.24720, 0.96154) (−0.24675, −0.96166)

0.8 (−0.97368, 0.57377) (−0.97369, −0.57377) (−0.28682, 0.94976) (−0.28640, −0.94989)

0.7 (−0.96780, 0.57068) (−0.96781, −0.57067) (−0.32834, 0.93546) (−0.32795, −0.93560)

0.6 (−0.96137, 0.56726) (−0.96138, −0.56725) (−0.37218, 0.91809) (−0.37181, −0.91824)

The characteristic equation corresponding to (12) and
(13) is given by:

λ4 + aλ3 + bλ2 + cλ + d = 0, (14)

where

a = S0
xẋ + S0

yẏ , b = 4 + S0
xẋS

0
yẏ − J 0

xx − K0
yy,

c = 2J 0
xy − 2K0

yx − S0
xẋK

0
yy − S0

yẏJ
0
xx,

d = J 0
xxK

0
yy − J 0

xyK
0
yx

(15)

with

J 0
xx = (

Ω0
xx − S0

xx

)
, J 0

xy = (
Ω0

xy − S0
xy

)
,

K0
yx = (

Ω0
yx − S0

yx

)
, K0

yy = (
Ω0

yy − S0
yy

)
.

(16)

Evaluating the partial derivatives at the equilibrium points,
we obtain:

J 0
xx = 1 − (1 − 2μ)q1

r3
10

+ 3q1(1 − 2μ)(x0 − √
3μ)2

r5
10

− μq2

r3
20

+ 3μq2(x0 +
√

3
2 (1 − 2μ))2

r5
20

− μq3

r3
30

+ 3μq3(x0 +
√

3
2 (1 − 2μ))2

r5
30

− 21kx0y0α

4r
11
2

0

, (17)

J 0
xy = 3y0q1(1 − 2μ)(x0 − √

3μ)

r5
10

+ 3μq2(y0 − 1
2 )(x0 +

√
3

2 (1 − 2μ))

r5
20

+ 3μq3(y0 + 1
2 )(x0 +

√
3

2 (1 − 2μ))

r5
30

− k

(
−1 − 3α

2r
7
2

0

+ 21αy2
0

4r
11
2

0

)
, (18)

K0
yx = 3y0q1(1 − 2μ)(x0 − √

3μ)

r5
10

+ 3μq2(y0 − 1
2 )(x0 +

√
3

2 (1 − 2μ))

r5
20

+ 3μq3(y0 + 1
2 )(x0 +

√
3

2 (1 − 2μ))

r5
30

− k

(
1 + 3α

2r
7
2

0

− 21αx2
0

4r
11
2

0

)
, (19)

K0
yy = 1 − (1 − 2μ)q1

r3
10

+ 3q1y
2
0(1 − 2μ)

r5
10

− μq2

r3
20

+ 3μq2(y0 − 1
2 )2

r5
20

− μq3

r3
30

+ 3μq3(y0 + 1
2 )2

r5
30

+ 21kαx0y0

4r
11
2

0

(20)

with

r10 =
√

(x0 − √
3μ)2 + y2

0,

r20 =
√(

x0 +
√

3

2
(1 − 2μ)

)2

+
(

y0 − 1

2

)2

, (21)
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Fig. 4 The positions of the eight non-collinear equilibrium points
for μ = 0.01, k = 10−5, α = 0.05, and q1 = 0.9985 as q radiates,
i.e. panels: (a) q = 1 (green, gray), (b) q = 0.75 (black, gray), and
(c) q = 0.516 (magenta, gray), (d) shows the combined plots of panels

((a)–(c)) with arrows showing the directions of the equilibrium points.
Blue dots (mi ) correspond to the coordinates of the primaries, while
red dots (Li ) show the positions of the equilibrium point

r30 =
√(

x0 +
√

3

2
(1 − 2μ)

)2

+
(

y0 + 1

2

)2

,

r0 =
√

x2
0 + y2

0 .

The equilibrium points are stable if all the roots of (14)
evaluated at the equilibrium points are purely imaginary
roots or complex roots with negative real parts; otherwise,
they are unstable. It is known (Papadouris and Papadakis
2013) that the condition of stability of triangular configura-
tion in linear approximation is given by (7). It is expedient
to make stability analysis of the obtained equilibrium solu-
tions in the domain restricted by (7). A numerical check of
the stability analysis for the equilibrium points L2, . . . ,L6

showed that under any values of the parameters, satisfy-
ing thus the requested equation (7) when exist, the eigen-
values are of the form λ1,2 = ±a, λ3,4 = −a ± ib where
a and b are real numbers. Consequently, they are unstable.
On the contrary, there are values of μ and radiation factors
where the equilibrium points L1, L7 and L8 may be sta-
ble. In Fig. 5, we have plotted the stability regions of the
non-collinear equilibrium points. We observed that when we
increase the radiation factors along with the increase of the
mass ratio, the stability interval of L1 increases. For the spe-
cific three pairs of values of q1 and q; (1,1), (0.995,0.99)

and (0.8,0.7), the equilibrium point L1 is stable for μ ∈
(0,0.00256], μ ∈ (0,0.00257] and μ ∈ (0,0.0030] corre-
spondingly. Now, we have found the stability regions on the
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Fig. 5 (a) Stability region of L1 for μ = 0.00256, q1 = 1, q = 1 (green
line); μ = 0.00257, q1 = 0.995, q = 0.99 (red line) and μ = 0.0030,
q1 = 0.8, q = 0.7 (black line). (b) Stability region of L7,8 for μ =
0.018, q1 = 1, q = 1 (green line); μ = 0.0175, q1 = 0.995, q = 0.99

(red line) and μ = 0.0132, q1 = 0.8, q = 0.7 (black line). We have
fixed the values of k = 10−5 and α = 0.05 in all cases. For complex
eigenvalues ±a ± ib, both the positives real and imaginary parts are
plotted

(λ,μ)-plane as shown in Fig. 5, panel (a). The figures are
obtained for different values of μ which can be as repre-
sentative for other cases. It can be seen from the figure that
for μ = 0.00256, q1 = 1 and q = 1 (green line), the trajec-
tory rotates around the position of L1 and does not leave
it essentially. For μ = 0.00257, q1 = 0.995 and q = 0.99
(red line) and μ = 0.0030, q1 = 0.8 and q = 0.7 (black
line), the trajectory rotates around L1 as well, but together
with the growth of μ and radiation factors begins more and
more to move away from it. Hence, we conclude that the
regions of stability increase with the increase of the radi-
ation factors and mass ratio. On the other hand, for the
same three pairs of values of q1 and q; (1,1), (0.995,0.99)

and (0.8,0.7), the equilibrium points L7,8 are stable for
μ ∈ (0,0.018], μ ∈ (0,0.0175] and μ ∈ (0,0.0132] corre-
spondingly. In Fig. 5 panel (b) we have drawn the stability
regions on the (λ,μ)-plane of the equilibrium points L7,8.
We observed that for μ = 0.018, q1 = 1 and q = 1 (green
line), the trajectory rotates around the positions of L7,8 and
does not leave it essentially. For μ = 0.0175, q1 = 0.995 and
q = 0.99 (red line) and μ = 0.0132, q1 = 0.8 and q = 0.7
(black line), the trajectory rotates around L7,8 as well, but
together with the increase of radiation factors along with the
decrease of mass ratio begins more and more to come close
to the equilibrium points. We also conclude that the regions
of stability decrease with the increase of the radiation fac-
tors.

From the results we can conclude that radiation factors
have strong effect on the stability regions for large devia-
tions of it values from the gravitational case. In the same
conclusion we have reached, for the mass parameter μ, com-
paring each frame of the figures.

Fig. 6 Equilibrium points for the (Ross 104-Ross775a-Ross775b) stel-
lar system

5 Model applications to
(Ross 104-Ross775a-Ross775b) stellar
system

In this section, we apply the model to study the motion of a
test particle in the vicinity of a star, Ross 104 whose mass
is 0.42 MSun and bolometric luminosity of 0.020 along with
its binary star, Ross 775a and Ross 775b each having equal
mass 0.23 MSun and bolometric luminosity of 0.20, respec-
tively. According to Xuetang and Lizhong (1993), the mass
reduction factors are expressed by means of the relations
qi = 1 − AκL

αρM
, i = 1,2,3, where M and L are the mass
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Table 3 Existence and stability of equilibrium points in the stellar system: Ross 104-Ross775a-Ross775b under the combined effect of radiation
pressure and Stokes drag

Li q1 = 0.9995264, q2,3 = 0.9913514 λ1,2 λ3,4 Stability state

L1 (−0.948683, −7.65573 × 10−6) −0.8504233 ± 0.9886238i 0.8504133±0.9886230i Unstable

L2 (1.15359, −0.0000256777) −1.0673643, 1.0673548 −0.0000052±1.2795736i Unstable

L3 (− 0.0502821, 0.256159) −3.0308203, 3.0308272 −0.0000135±2.2352967i Unstable

L4 (−0.0502839, −0.256150) −3.0307448, 3.0307517 −0.0000135±2.2352002i Unstable

L5 (−0.764559, 0.913317) −1.3464032, 1.3463932 −0.0000050±1.4034807i Unstable

L6 (−0.764584, −0.913296) −1.3464035, 1.3463935 −0.0000050±1.4034845i Unstable

L7 (0.298504, 0.876211) −0.7375716 ± 0.9603311i 0.7375616±0.9603297i Unstable

L8 (0.298525, −0.876204) −0.7375634 ± 0.9603271i 0.7375534±0.9603264i Unstable

and the luminosity of a star respectively, α and ρ are the
radius and density of the test particle, A = 2.9838 × 10−5

in the C.G.S system, and κ is the radiation pressure effi-
ciency factor of a star, and it is considered as a unity fol-
lowing Stefan-Boltzmsnn’s law. Now given a test particle
with radius α = 2 × 10−3 cm and density ρ = 1.4 g cm−3,
then qROSS 104 = q1 = 0.9995264, and qROSS 775A = q2 =
q3 = 0.9913514 and the mass parameter μ of the system
is 0.261363636. Using these data, we have computed the
positions of the non-collinear equilibrium points as shown
in Fig. 6. It can be seen that there exist eight non-collinear
equilibrium points of the problem. In addition, with the help
of the software package Mathematica, we obtain the roots
of the characteristic equation (14) as given in Table 3 for
the stellar system (Ross 104-Ross775a-Ross775b), for the
assumed values of k = 10−5 and α = 0.05. An analysis of
the numerical results shows the non existence of pure imag-
inary roots. Hence, the non-collinear equilibrium points are
unstable.

6 Discussion and conclusion

We have studied the photogravitational restricted four-body
problem with Stokes drag when the primary bodies m1, m2

and m3 are always at the vertices of an equilateral triangle
(Lagrangian configuration). The fourth particle in this sys-
tem has negligible mass m with respect to the primaries, and
its motion is perturbed by radiation factors and Stokes drag
from the primaries. We studied the existence, location and
stability of the equilibrium points as the parameters vary.
It was found that in the presence of Stokes drag, collinear
equilibrium points do not exist, both analytically and nu-
merically. The eight non-collinear equilibrium points were
seen to be affected by the radiation factors for fixed val-
ues of mass parameter and Stokes drag. It was also found
that the number of the equilibrium points depends on the
values of system parameters (Figs. 1 and 2). The effects of

the involved parameters on the positions of the equilibrium
points are given in Tables 1 and 2. These are shown graphi-
cally in Figs. 3 and 4. Finally, the stability investigation has
been achieved by determining the roots of the characteris-
tic equation. The numerical investigations of these roots re-
vealed that all the equilibrium points are unstable except L1,
L7 and L8 which may be stable for a range of values of μ

provided that the remaining parameters are fixed. Also, the
stability regions of these equilibria are plotted in Fig. 5 and
we observed that the regions of L1 increased with the in-
crease of the radiation factors and mass ratio whereas, the
stability regions of L7,8 decreased with the increase of the
radiation factors. The model has been applied to a stellar
system: Ross 104-Ross775a-Ross775b as seen in Fig. 6 and
Table 3. It was found that the stellar system under consid-
eration has no roots which are purely imaginary or complex
roots with negative real parts; consequently, the equilibrium
points are all linearly unstable.
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