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Abstract The improvement of ephemeris models to un-
precedented levels of accuracy and the analysis of radiomet-
ric data for the planets, as well as Lunar laser ranging, have
revealed some inconsistencies between the established the-
ory and the observations. In the past decade, Krasinsky and
Brumberg found a positive secular trend in the Astronomical
Unit of a few meters per century. Some years before, a sec-
ular trend in the variation of the eccentricity of the orbit of
the Moon had also been reported. This anomalous trend can-
not, however, be explained within the context of the present
state-of-the-art models for tidal dissipation and, although,
the discrepancy has been reduced with the improvements
in modeling it still remains significant at 2σ level. More-
over, there are also some anomalies that have been detected
in spacecraft dynamics and, particularly, the so-called flyby
anomaly for spacecrafts performing a slingshot manoeuvre
around the Earth. Also the orbital decay and anomalous ac-
celerations acting upon the geodynamic satellites are not
completely understood with current orbital models. In this
paper we suggest that all these effects are, perhaps, con-
nected by means of an extra force proportional to the radial
velocity and with latitude dependence. We show that such a
phenomenological model could provide a common explana-
tion to these and other phenomena.
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1 Introduction

Phenomenological models have played a key role in the his-
tory of astronomy. Keplers’ laws were a way of organizing
the observations of planetary orbits into an understandable
pattern and they guided the discovery of Newton’s theory of
gravity. In the XIXth century a similar situation was posed
by the report in 1859 by Urbain Le Verrier of an anomalous
advance of Mercury’s perihelion (Roseveare 1982). This
spurred a lot of research into the problem and the sugges-
tion of many unconventional models of gravity, based upon
electromagnetism, to explain away the phenomenon as well
as the claim of the existence of a new planet closer to the Sun
than Mercury as responsible for the extra perturbation. It is
a landmark in the history of physics and astronomy that the
search for an explanation of this phenomenon finally lead to
the formulation of the General Theory of Relativity in 1915
that it is our current accepted paradigm for understanding
gravity. For some recent overviews on the present status of
General Relativity and future perspectives see Iorio (2015b),
Debono and Smoot (2016), Vishwakarma (2016). In relation
to the accuracy of the tests of General Relativity we should
mention that there have been a recent polemic concerning
some possible astrometric anomalies (Anderson and Nieto
2010; Iorio 2015a). In this paper we will develop a model
aimed at a possible unified explanation of some of these
anomalies that we will briefly discuss below.

Since the sixties of the past century there are new tech-
niques for measuring the distances among the planets that
were not available at the times of Le Verrier or Einstein. Af-
ter the invention of radar in World War II there appeared
applications to astronomy with the early radar detection of
the Moon in 1946 (Bay 1946; Mofensen 1946). This tech-
nique was refined throughout the years and it was commonly
used in spacecraft missions and in planetary radar systems

http://crossmark.crossref.org/dialog/?doi=10.1007/s10509-019-3645-6&domain=pdf
http://orcid.org/0000-0002-9118-1200


157 Page 2 of 10 L. Acedo

(Downs and Reichley 1975; Murphy 2008). This way a total
dataset of 7500 ranging distances measurements was col-
lected from the period from 1961 to 2003 only by the Jet
Propulsion Laboratory (JPL). This dataset was carefully an-
alyzed by Krasinsky and Brumberg (2004) in 2004 and they
found the surprising result that the Astronomical Unit (AU),
that was thought to be a constant, was increasing as an av-
erage rate of 15 ± 4 meters per century. Far from being a
consequence of the selection of the data, this result was sup-
ported by individual analyses of the data for landers, orbiters
and ranging or combinations of them but with different (pos-
itive) values for the secular trend. In connection with these
early analyses, we should mention that after 2012 the AU
has been fixed as a defining constant, as per the resolution of
the International Astronomical Union (2012). For this rea-
son, the discussion has been oriented towards possible secu-
lar trends in the semi-major axes of the planets (Iorio 2019).

In their work, Krasinsky and Brumberg considered and
dismissed the effect of the expansion of the Universe on
the local dynamics of the Solar system as a possible expla-
nation, as Arakida made later on with similar conclusions
(Arakida 2011, 2012). Another possible non-standard model
implies the decrease of the gravitational constant with the
rate Ġ/G � −2 × 10−12 per year (Krasinsky and Brum-
berg 2004; Bel 2014). However, the most recent constraint
on the cosmic-time variation of G obtained from helioseis-
mology clearly rules out that negative rate at 4-σ level (Bo-
nanno and Fröhlich 2017). Models of modified gravity have
been studied by Iorio (2005) and Li and Chang (2011) in
connection with the problem of the secular increase of the
AU. Another conventional explanation is provided by Miura
et al. (2009) who suggest that tidal recession is the main
cause of the phenomenon but without an adequate model of
the tidal effects of the Sun’s photosphere we cannot assess
the exact contribution of this effect. As said before, in 2012
the International Astronomical Union resolved that the AU
is a constant of value 149597870.7 km (International As-
tronomical Union 2012) but, of course, this do not solve
the problem but it simply displaces it to another parame-
ter, such as Gauss’ constant. Later analysis by Standish gave
the value of 7 ± 2 meters for century for the secular increase
of the AU (Standish 2005). Upper bounds on the errors of
the anomalous variability of the Solar System planetary el-
ements have been deduced by Iorio (2019) on the basis of
EPM2017 ephemeris.

The first laser echoes from the Moon were retrieved in
1962 by a team at the Massachusetts Institute of Technol-
ogy (Smullin and Fiocco 1962). Subsequently, the Apollo
and Lunokhod missions installed a set of retroreflectors on
the Moon’s surface that improved the accuracy of the Lunar
Laser Ranging (LLR) experiment and allowed for a moni-
toring of the distance among the Earth and the Moon for a
period of more than forty years (Dickey et al. 1994; Murphy

et al. 2011). This experiment has allowed to set limits on the
secular variation of the gravitational constant and it has also
establish the rate of increase of the semi-major axis of the
system in 3.8 cm per year as the consequence of tidal fric-
tion (Williams et al. 2001, 2014). The models of the Lunar
and Earth interiors and tidal dissipative processes are cur-
rently sufficiently developed to explain this phenomena but
there is still a small secular trend in the eccentricity of the
Earth-Moon system that cannot be deduced from the present
status of these models. By analyzing 38 years of LLR data,
Williams et al. (2001) found that the residual anomalous in-
crease of the eccentricity of the orbit of the Moon is esti-
mated in (9 ± 3) × 10−12 and, consequently, it is significant
at 2-σ level. Improved modeling and further data analysis
has reduced this value to (5 ± 2) × 10−12 but it still remains
significant (Williams and Boggs 2016).

Iorio considered a possible explanation of this secular
drift in the Moon’s orbital eccentrity by studying a scenario
in which a trans-Plutonian massive object could perturb the
orbit (Iorio 2011b). Nevertheless, the mass and distance re-
lation for such hypothetical planet would have been unreal-
istic and this idea is now dismissed. Iorio (2011a) also pro-
posed an acceleration of the form:

Apert = kH0ṙ r̂, (1)

where k and H0 are constants and ṙ is the radial velocity of
the Moon with respect to the Earth or a given planet with
respect to the Sun. With H0 of the order of the Hubble’s
parameter and k in the range 2.5 � k � 5 both the anoma-
lous increase of the Astronomical Unit and the secular drift
in the Moon orbit’s eccentricity are obtained. The numeri-
cal coincidence of the prefactor with the Hubble’s constant
may suggest a cosmological origin of these effects but it
is well-known that any cosmological effects are smaller by
ten orders of magnitude (Krasinsky and Brumberg 2004;
Arakida 2011). Acedo suggested that this numerical coin-
cidence may be attributed to the characteristics of the Solar
system masses and distance scales (Acedo 2013).

A third anomaly that it is currently being discussed was
found by Anderson and collaborators in their study of the
spacecraft flybys of the Earth in their course to their des-
tinations in the Solar system (Anderson et al. 2008). This
phenomenon is characterized by an anomalous energy vari-
ation when these spacecraft flybys the Earth very closely
with apogees at altitudes ranging 300 to 3000 km. Although
the velocity variations are in the range of a few mm per sec-
ond, they are still significant and they are unexplained in the
context of standard physics (Lämmerzahl et al. 2008; Iorio
2009, 2014; Rievers and Lämmerzahl 2011; Atchison and
Peck 2010; Hackmann and Laemmerzahl 2010).

Some models beyond standard physics have also been
proposed (Adler 2010, 2011; Nyambuya 2008; Lewis 2009;
Hafele 2009; Acedo 2014b; Varieschi 2014; Pinheiro 2014;
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Acedo 2015; Wilhelm and Dwivedi 2015; Pinheiro 2016;
Bertolami et al. 2016) but none of them is still accepted as
an explanation. A intriguing possibility not contemplated in
any of these papers is that the flyby anomaly could be con-
nected with both the anomalous increase of the astronomical
unit and the residual increase in the Moon orbit’s eccentric-
ity. In this work we propose an extra force of the form:

F = κg0e
− r

βR S(θ)
ṙ

c
r̂, (2)

where g0 is the surface gravity of the source body, R is the
corresponding radius, c is the speed of light in vacuum and
ṙ is the radial velocity of the test body. The parameters κ

and β are assumed to be constants of the order of unity and
S(θ) is a function of the colatitude that verifies the condi-
tion S(θ = π/2) = 1. In the spirit of some proposals for a
fifth force of nature, the expression in Eq. (2) corresponds
to an exponential decay with the radial distance to the cen-
ter of the source. Anyway, we will not assume that this force
couples to the baryon number or isospin as the original pro-
ponents did (Franklin and Fischback 2016). It could also be
an aspect of modified gravity sourced only by mass-energy.

The reason for this particular proposal is also substanti-
ated in some recent research concerning the fitting of flyby
orbits to orbital models. The study of possible anomalous
accelerations arising from the discrepancy between orbital
models and the best fits of Doppler data suggests the exis-
tence of an anomalous radial acceleration proportional to the
radial velocity, ṙ (Acedo 2017). Together with the expected
exponential decay for a fifth force, and a latitude depen-
dence, we obtain the proposal in Eq. (2). The parameter β is,
then, related to the length scale of the fifth force in terms of
the Earth’s radius. On the other hand, κg0 is the magnitude
of the anomalous acceleration at the celestial equator (when
multiplied by the radial velocity measured in terms of the
speed of light in vacuum).

Notice also that, depending on the location of the perigee,
the magnitude of the anomalous acceleration predicted by
Eq. (2) may be different before and after the perigee. This
is the case for any orbit not located at the equator and it
leads, naturally, to an asymmetry between the prograde and
retrograde orbital motions. This effect has been suggested in
connection with the analysis of Doppler data related to the
flyby anomaly.

The objective of this paper is to show that, with an ade-
quate choice of parameters, the extra force in Eq. (2) could
explain the anomalous increase of the AU, the anomalous
increase of the eccentricity of the Moon orbit and the flyby
anomaly (at least, in sign and order of magnitude). More-
over, we will also show that the contribution of the extra
force to the precession of the perihelion of Mercury is negli-
gible and it does not ruin the excellent agreement with stan-
dard General Relativity. The perturbations induced by this

force in the geodynamics satellites, such as LAGEOS, are
also studied and we conclude that they could be compatible
with observations.

The paper is organized as follows: in Sect. 2 we calcu-
late the perturbations induced by our fifth force proposal in
the semi-major axes of planets and the eccentricity of the
Moon’s orbit in order to estimate the parameters κ and β .
Section 3 is devoted to the calculations of the anomalous
variations of spacecraft velocities in several flybys of the
Earth. We analyze the advance of the perihelion of Mercury,
the orbital decay of the LAGEOS spacecraft in Sect. 4. The
paper ends with some conclusions and prospects for future
work in Sect. 5.

2 Perturbations of the planetary and Moon
orbits

We firstly consider a planet in orbit around the Sun. For an
exclusively radial perturbation force, we have that the semi-
major axis, a, evolves according to (Burns 1976):

da

dt
= 2

a2

μ
ṙR, (3)

where μ = GM� is the mass constant for the Sun, ṙ is the
radial velocity and R is the radial component of the force.
If we denote by ν the true anomaly, i.e., the angle among
the radius vector and the vector locating the position of the
periapsis, we also have:

r = a(1 − ε2)

1 + ε cosν
, (4)

where ε is the orbital eccentricity. The orbital velocity can
also be written as follows (Burns 1976):

ṙ =
√

μ

a

ε

(1 − ε2)1/2
sinν. (5)

Another useful relation gives the differential of time in terms
of the differential of the true anomaly:

dt = P

2π

(1 − ε2)3/2

(1 + ε cosν)2
dν, (6)

P being the orbital period, which can be expressed in terms
of the semi-major axis and the mass constant of the central
body by means of Kepler’s third law: P = 2πa3/2μ−1/2.
By taking into account Eqs. (2)–(6) and performing some
simplifications we finally arrive at:

da

a
= 2κg0P

c
ε2(1 − ε2)1/2

e
− a(1 − ε2)

βR(1 + ε cosν)
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× sin2 ν

(1 + ε cosν)2
dν. (7)

Here we have ignored the inclination of the axis of the Sun
with respect to the orbital plane of the planet so we take
θ = π/2 in Eq. (2). In order to obtain secular trends it is
customary in perturbation theory to perform an orbital aver-
age. To do so, the following integral it is useful in this case:

I (u, ε) = 1

2π

∫ 2π

0
e
− u

1 + ε cosν
sin2 ν

(1 + ε cosν)2
dν

= e−u

uε

∫ 2π

0
dν cosνeuε cosν +O

(
ε2)

= e−u

uε
I1(uε) +O

(
ε2), (8)

where we have used integration by parts and I1(x) is the
modified Bessel function of the first kind (Abramowitz and
Stegun 1968). The integral representation of I1(x) appears
as a consequence of the approximation to first order in the
eccentricity, ε. This is justified for most elliptical orbits in
the Solar system.

From Eqs. (7) and (8) we obtain the variation in an orbital
period as follows:

	a = 2κg0P

c
βRe

− a

βR I1

(
aε

βR

)
+O

(
ε2), (9)

and the variation in one terrestrial year can be simply be
obtained by replacing P by the corresponding time span of
one year.

The equation for the disturbance of the eccentricity of the
elliptical orbit by the effect of a radial perturbation force is
(Pollard 1966):

dε

dt
=

(
a(1 − ε2)

μ

)1/2

R sinν. (10)

By using again the Eqs. (4)–(6) and the expression of the
extra force in Eq. (2), and performing an orbital average, we
arrive at an expression involving the same definite integral
found in the previous case:

dε = κg0P

2πc
ε
(
1 − ε2)3/2

I

(
a(1 − ε2)

βR
, ε

)
. (11)

Performing the integral according to Eq. (8) yields:

	ε = κg0P

c

βR

a
e
− a

βR I1

(
aε

βR

)
+O

(
ε2). (12)

Now we will estimate the non-dimensional parameters, κ

and β , from the measured anomalies. According to Eq. (9)
the effect on the secular variation of the semi-major axis

would be larger for Mercury than for any other planet in the
Solar system because it is closer to the Sun and its orbit has
the largest eccentricity among the inner planets. The con-
stants needed for the calculation are the surface gravity of
the Sun: g0 = 274 m/s2, the Sun’s radius R = 695700 km,
the semi-major axis of Mercury’s orbit, a = 57.91×106 km,
its orbital eccentricity, ε = 0.2056, and the speed of light
in vacuum, c = 299792.458 km/s. Following Iorio (Iorio
2019) we should use the most recent upper bounds on the
secular rate of the semi-major axes of the planetary orbits in
the Solar system. These upper bounds were obtained from
the EPM2017 ephemerides. From Eq. (9) and parameters
of order of unity we obtain results for Mercury in agree-
ment with the upper bounds given by Iorio (2019). For ex-
ample, by taking κ = 1 and β = 1.98 we obtain a secu-
lar rate for the semi-major axis of Mercury of 0.0028 me-
ters per century, in comparison with the upper bound of
0.003 m/cty given by Iorio (2019). On the other hand, for
Venus we get da/dt � 1.14 × 10−24 m/cty to be compared
with the bound of 0.092 m/cty obtained from EPM2017
ephemerides. For the rest of the planets, even smaller rates
are predicted, as a consequence of the exponential decay of
the extra force in Eq. (2). Similarly, we can also predict the
extra rate for the secular change of the orbital eccentricity.
Once again, in the case of Mercury we get the larger value of
dε/dt � 1.14 × 10−13 that it is, indeed, negligible in com-
parison with the upper bound of 0.0006 per century (Iorio
2019). For other planets the predictions are even smaller in-
dicating that the contribution of the extra force to the rate of
change of the orbital eccentricity would require laser rang-
ing precision and a very accurate model of orbital perturba-
tions to be disentangled from classical effects.

We proceed in the same way for the anomalous increase
of the eccentricity of the orbit of the Moon by applying
Eq. (12) with g0 = 9.8 m/s2, ε = 0.0549, a = 384400 km/s
and R = 6371 km as the mean radius of the Earth. For a
an anomalous variation in the range 3 × 10−12 < 	ε <

7 × 10−12 per year, as reported by Williams et al., we get
2.60 < β < 2.70 for κ = 1 and 2.36 < β < 2.44 for κ = 10.
It is difficult to optimize this parameter estimation as the ob-
servations have still a relatively large uncertainty but we can
say that the anomalous force in Eq. (2) is compatible with
both anomalies for κ of the order of unity and β � 2. In the
section we will see to what extent this could be in agreement
with the flyby anomalies.

3 Application to the flyby anomalies

In this section we consider the effect of the perturbation in
Eq. (2) for a close flyby of the Earth. In a flyby a space-
craft describes an, approximately hyperbolic, orbit around
the Earth in which both the Moon and the Sun act as perturb-
ing bodies. The Jacobi’s integral remains constant during the
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flyby but the total energy in the Solar system’s barycenter
frame may increase or decrease depending on the incom-
ing direction of the spacecraft (Anderson et al. 2007). The
objective of these manoeuvres is, usually, to gain energy in
order to reach the outer Solar system. Doppler tracking us-
ing the Deep Space Network allows for a careful monitoring
of the trajectories and the subsequent analysis by means of
the most up-to-date ephemeris models. This thorough study
allowed for the detection of a small discrepancy among the-
ory and observations in the first Galileo flyby of the Earth
that took place on December, 8th, 1990. In that event the
post-encounter Doppler residuals exhibit an anomalous dif-
ference with respect to the pre-encounter ones to be inter-
preted as an increase of velocity around 3.92 mm per second
(Anderson et al. 2008; Anderson and Nieto 2010). Although
this may seem a small quantity, it is significant within the
accuracy of the ephemeris models. The largest discrepancy
was found in the NEAR flyby of January, 23th, 1998 corre-
sponding to 13.36 mm per second. In other cases the differ-
ence has been negative, such as the second Galileo flyby of
the Earth in 1992.

The objective of this section is to evaluate the effect of the
extra force in Eq. (2) on a flyby. To do so, we begin with the
equations of motion for the perturbation on the position, δr,
and velocity, δv, of the spacecraft written as follows (Acedo
2017):

dδr
dτ

= δv, (13)

dδv
dτ

= − δr
D3

+ 3D · δr
D
D5

+Fextra, (14)

where δr is measured in units of the semi-major axis, |a|,
τ = t/P , P being a characteristic time obtained from Ke-
pler’s third law, P = 2πa3/2μ−1/2 and δv is scaled with the
velocity |a|/P . The second term on the right-hand side of
Eq. (14) arises from the tidal forces exerted as a consequence
of the deviation of the trajectory from the ideal hyperbolic
orbit. The scaled radius vector for the ideal Keplerian orbit
is given by:

D = (ε − coshu)ŝ +
√

ε2 − 1 sinhun̂, (15)

where ε > 1 is the orbital eccentricity and u is the eccentric
anomaly whose relation with time is as follows:

τ = ε sinhu − u. (16)

In Eq. (15) the unit vector ŝ is directed from the center of the
Earth towards the spacecraft perigee, and n̂ is a unit vector in
the osculating orbital plane at perigee, perpendicular to ŝ and
directed opposite to the incoming direction of the spacecraft.
The scaled extra force is given as:

Fextra = κ
g0P

c
e−|a|(ε coshu−1)/(βR)S(θ)

ε sinhu

ε coshu − 1
r̂, (17)

where the scaled radial velocity has been calculated by
noticing that |D| = ε coshu − 1 and Eq. (16) so:

dr

dτ
= ε sinhu

ε coshu − 1
, (18)

and the unit radial vector is r̂ = D/(ε coshu − 1). The per-
turbing force in Eq. (17) is evaluated at the ideal Keplerian
orbit, so we ignore second-order contributions to the posi-
tion and velocity perturbations. We still have to define the
function S(θ) of the colatitude, θ . We will see that a rea-
sonable agreement with the flyby anomalies is obtained is
S(θ) is defined as a linear combination of sin θ and cos θ as
follows:

S(θ) = sin θ + χ cos θ, (19)

where χ is a constant parameter to be estimated.
Finally we will need an expression for sin θ and cos θ in

terms of the eccentric anomaly. Approximate values can be
obtained from the ideal Keplerian radius vector in Eq. (15)
in the following form:

cos θ = ((coshu − ε)ŝ · k̂ − √
ε2 − 1 sinhun̂ · k̂)

ε coshu − 1
, (20)

with sin θ obtained from this equation, taking into account
that it should be positive because 0 ≤ θ ≤ π .

Now we are prepared to perform the integration of the
equations of motion in Eq. (13)–(14) for particular condi-
tions. The data for the osculating orbit at perigee in the
NEAR flyby was given by Anderson et al. and other ref-
erences: semi-major axis, a = −8494.87, eccentricity, ε =
1.8135, colatitude of the incoming direction in sexagesimal
degrees, θin = 69.24◦, colatitude of the perigee, θp = 57.0◦,
colatitude of the outgoing direction, θout = 161.96◦, orbital
inclination, ι = 108.0◦, right ascension of the incoming di-
rection, αin = 81.17◦ and right ascension of the perigee,
αp = 280.43◦. From these parameters we can also calculate
the unit vectors of the orbital reference frame in terms of the
unit vectors along the axes of the equatorial frame:

ŝ = 0.151772ı̂ − 0.824823ĵ + 0.544639k̂, (21)

n̂ = −0.27079ı̂ − 0.56464ĵ − 0.779665k̂, (22)

ŵ = 0.95061ı̂ − 0.0291293ĵ − 0.309017k̂, (23)

where ı̂ points towards the first point of Aries and k̂ is di-
rected along the Earth’s rotation axis. Notice also that here
ŵ denotes the inclination vector.

It is convenient to define the deviation of the velocity
modulus from the keplerian value:

δV (t) =
√

(v + δv)2 − v2, (24)
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Fig. 1 Variation of the spacecraft velocity as a consequence of the per-
turbing effect of the extra force in Eq. (2). The vertical axis gives the
velocity change in mm per second. The horizontal axis is the time in
hours from the perigee. The solid line corresponds to the NEAR flyby
and the dashed line to the second flyby of the Galileo spacecraft

where v denotes the ideal keplerian value of the velocity
vector. In Fig. 1 we have plotted the results of the simula-
tion for κ = 6.0, β = 0.235 and χ = 5.0. These values were
chosen to obtain a good fit for the NEAR and Galileo II fly-
bys.

With these parameters values the net variation from the
pre-encounter trajectory to the post-encounter one (around
15 hours before perigee and after perigee) is 10.63 mm/s
for NEAR and −4.78 mm/s for Galileo II (to be compared
with the 13.46 mm/s and −4.6 mm/s reported by Ander-
son et al.). By using the orbital parameters for the Galileo I
and Cassini flybys we obtain a total anomalous variation of
6.36 mm/s and −1.15 mm/s in comparison with the values
of 3.92 mm/s and −2.0 mm/s of Anderson et al. (2008). We
conclude that with the force model in Eq. (2), and adequate
parameters, we obtain similar values to the observed anoma-
lies both in sign and order of magnitude. On the other hand,
to obtain a reasonable agreement we must chose a character-
istic length scale, ξ = βR, smaller than 25 per cent the Earth
radius. Larger values tend to overshoot the predictions of the
anomalous velocity change. This means that a model as sim-
ple as the one in Eq. (2) cannot predict, simultaneously, the
anomalies of the Moon and the AU and the flyby anomalies
if we consider β as a constant. Alternatively, we could de-
fine an effective parameter β(r) interpolating between the
values of β(r) � 0.23 for small r and β(r) � 2 for r � R.
We will discuss further this possibility on the last section.

4 The perihelion of Mercury and the LAGEOS
spacecraft

A radial perturbing force, R, induces a precession of the per-
ihelion of the orbit of a planet at a instantaneous rate given

by (Danby 1988; Pollard 1966):

ω̇ = −
√

a(1 − ε2)

μ

1

ε
cosνR, (25)

where ν is the true anomaly, a is the semi-major axis, ε is
the eccentricity and μ is the mass constant of the Sun. The
radial velocity of the planet satisfies the relation:

ṙ =
√

μ

a(1 − ε2)
ε sinν. (26)

So, it is clear that for an orbit in the equatorial plane of the
Sun, θ = π/2, we have from Eqs. (2), (25) and (26) that the
orbital average of the precession induced by the extra force
is zero (because 〈sinν cosν〉 = 0).

However, the equatorial plane of the Sun does not coin-
cide with the orbital planes of the planets. In particular, the
orientation of the axis of the Sun with respect to the ecliptic
plane is given by the Carrington’s elements (Giles 1999):

ιC = 7.25◦ (27)

ΩC = 73.67◦ + 0.013958◦(t − 1850), (28)

where ιC is the inclination of the Sun’s equatorial plane (in
sexagesimal degrees) and ΩC is the right ascension of the in-
tersection line with the ecliptic plane (with t being the year
of observation). Similarly, the orbital plane of the planet is
defined in terms of a pair of angles (ι,Ω) form which we
can obtain the unit vectors of a convenient orthonormal ref-
erence frame:

n̂1 = cosΩı̂ + sinΩĵ, (29)

n̂2 = − cos ι sinΩı̂ + cos ι cosΩĵ + sin ιk̂, (30)

n̂3 = sin ι sinΩı̂ − sin ι cosΩĵ + cos ιk̂. (31)

Now we denote by m̂i , i = 1, 2, 3 the vectors obtained with
Eqs. (29)–(31) and the Carrington’s elements in Eq. (27).
The change of basis matrix from the equatorial plane of the
Sun to the orbital plane of a planet is then given by αij =
n̂i · m̂j , i, j = 1, 2, 3. Using this change of basis, we can
prove that the colatitude of the planet with respect to the
Sun verifies the identity (Acedo 2014a):

cos θ = α13 cos(ν + ω) + α23 sin(ν + ω), (32)

where ω is the argument of the perihelion and ν is the true
anomaly (measured from the perihelion). As the orbits of
the planets lie close to the equatorial plane of the Sun we
have that the coefficients α13, α23 are small and we can also
obtain the approximation:

sin θ � 1 − α13α23 cos(2ω) sinν cosν

+ 1

2

(
α2

13 − α2
23

)
sin(2ω) sinν cosν. (33)
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From Eqs. (2), (19), (25), (32) and (33) we get, after some
simplifications, the average precession per orbit induced by
the extra force:

	ω = −κ
g0P

8c
e−a/(βR)

{
−α13α23 cos(2ω) + 1

2

(
α2

13 − α2
23

)
sin(2ω)

}

+O(ε), (34)

where P is the orbital period of the planet, g0 is the sur-
face gravity of the Sun and R its radius. This precession
would be larger for Mercury than for any other planet be-
cause of the exponential term. The relevant parameters for
Mercury’s orbit (NASA 2019) are: a = 57909100 km, ι =
7.005◦, Ω = 48.331◦ and ω = 29.124◦. By using the pa-
rameters estimations of Sect. 2 we find a contribution to the
advance of the perihelion 	ω = −1.013 × 10−10 mas per
century. This variation is completely negligible in compari-
son with the well-known value of the relativistic precession
and, consequently, such an effect of the extra force in Eq. (2)
would be out of the reach of any measurement technique
in the foreseeable future. In particular, from EPM2017, Io-
rio finds the upper bound of 0.008 mas/cty for Mercury,
0.315 mas/cty for Venus and 0.033 mas/cty for the Earth.
The predictions of Eq. (34) with κ = 1 and β = 1.98 are
6.26 × 10−27 mas/cty for Venus and 3.28 × 10−39 mas/cty
for the Earth.

4.1 Effects on the orbit of the LAGEOS spacecraft

LAGEOS is a geodynamic satellite launched on May, 1976
and it constitutes one of the most successful spacecraft mis-
sions in terms of the amount of data retrieved and duration.
This satellite takes the form of a sphere covered with 422
retroreflectors specially designed for laser ranging. The LA-
GEOS I and LAGEOS II spacecraft, as well as LARES, are
currently used, among other things, for the analysis of some
problems in fundamental physics such as the detection of the
Lense-Thirring effect (Iorio 2017; Renzetti 2013; Iorio et al.
2011).

A few years after the beginning of the LAGEOS mis-
sion it was clear that this satellite was experiencing an orbit
shrinking phenomenon at a rate of 1.1 mm per day. More-
over, this shrinking rate is not constant but it fluctuates with
time with a scale of several years. It is important to take
into account the actual experimental uncertainties for this
decay rate that it is around 0.03–0.1 meters per year (Pardini
et al. 2017; Sośnica et al. 2014; Rubincam 1982; Sosnica
2014; Iorio 2018). Many studies have been devoted to this
orbital decay (Rubincam 1980, 1988; Mignard et al. 1990;
Rubincam 1990, 1993; Rubincam and Mallama 1995; Mar-
tin and Rubincam 1996; Rubincam et al. 1997) but there still

remains the unexplained fluctuating behavior of the along-
track acceleration (Rubincam 1990; Mignard et al. 1990).
The general agreement is that the average orbital decay orig-
inates through the combination of three mechanisms: (i) the
neutral particle drag which constitutes a 14% of the total
drag, (ii) the charged particle drag by protons in the plasma-
sphere (around 16% of the total drag if we assume a poten-
tial of −1 V for the spacecraft), (iii) the Yarkovsky thermal
drag caused by the differential heating of the hemispheres
of the LAGEOS. As the spacecraft rotates, and because of
thermal inertia, we would have a larger radiation pressure
on one of the sides of the sphere and this would cause an
along-track acceleration with an estimated value of a 70%
of the total (Rubincam 1988, 1990).

LAGEOS’s orbit has an inclination of ι = 109.84◦ and a
semi-major axis, a = 12272.57 km. The orbit is almost cir-
cular with an eccentricity ε = 0.0045. To obtain the colat-
itude of the spacecraft with respect to the equatorial plane
of the Earth we can use the same arguments as those of the
previous section and from Eq. (32) we have:

cos θ = sin ι sin(ν + ω). (35)

From Eqs. (3) and (2), and using also Eq. (35), we can derive
an approximate expression for the secular variation of the
semi-major axis of the spacecraft as a consequence of the
extra force that we have proposed:
〈
da

dt

〉
= 2κaε2 g0

c
e−a/(βR)

〈
sin2 ν

√
1 − sin2 ι sin2(ν + ω)

〉 +O
(
ε3), (36)

where 〈. . . 〉 denotes the orbital average. We must also take
into account that the argument of the perigee is not a con-
stant because it is perturbed by the Earth’s oblateness, J2,
with a rate (Capderou 2005):

ω̇ = 3π

2(1 − ε2)

J2

P

(
R

a

)2(
5 cos2 ι − 1

)
, (37)

where J2 � 1.0826 × 10−3, R = 6378.1363 km is the
Earth’s reference radius and P = 225 minutes is the orbital
period of LAGEOS. This precession can be also deduced
from NORAD two-line elements sets (Kelso 2018), so we
can write:

ω(t) = 256.139◦ − 0.21427◦t, (38)

where t is measured in days since May, 1st, 1976 and ω is
given in sexagesimal degrees. By using Eqs. (36) and (38)
we can calculate a positive contribution to the rate of vari-
ation of the semi-major axis of the LAGEOS spacecraft as
a consequence of the extra force. If we assume that the av-
erage orbital decay is around −1.77 mm per day instead of



157 Page 8 of 10 L. Acedo

Fig. 2 Decay rate for the LAGEOS spacecraft since its launch vs time
in months. Solid line corresponds to a constant decay and the semi-ma-
jor axis increase predicted by the perturbing force in Eq. (2). Dashed
lines are the observed decays inferred from the along-track accelera-
tions. These results were obtained for κ = 6 and β = 0.235

the usually assumed −1.1 ± 0.274 mm per day and we con-
sider the orbital expansion predicted by Eq. (36) the result in
Fig. 2 is obtained. In this figure we compare the prediction
of the standard model for LAGEOS’s orbital decay (Rubin-
cam 1990) including the extra effect of the anomalous ra-
dial force in Eq. (2) with the observed decay deduced from
the along-track delay. We see that some amount of variabil-
ity could be explained with this extra force. The value of
−1.77 mm/day, for the average orbital decay, can be ob-
tained if the potential of the spacecraft is −3.75 Volts instead
of −1 Volts as usually assumed (Rubincam 1990). This is
not a disproportionate value for the spacecraft’s potential as
far more larger values can be attained by spacecraft’s charg-
ing in the plasmasphere (Davis and Duncan 1992). The ob-
served decay, which, on the other hand, is within 3σ of our
prediction, might be the result of a balance between the or-
bital expansion predicted by Eq. (9) and charged drag. The
lesson is that we cannot exclude the extra force in Eq. (2)
on the basis of the monitoring of the orbit of the LAGEOS
spacecraft throughout the years and our current understand-
ing of radiation models and the interaction of the plasmas-
phere with the spacecraft. The situation is more problematic
for the LAGEOS II spacecraft that imposes a stringent test
on any model of extra forces generated by the Earth. For
this spacecraft we have an orbital inclination of ι = 52.67◦,
a semi-major axis of a = 12158 km and an eccentricity
ε = 0.0137 (more than three times larger that the orbital
eccentricity of LAGEOS) (Lucchesi and Peron 2014). The
larger eccentricity implies also a greater expansion rate as
predicted from Eq. (9). For the same values of the parame-
ters used in Fig. 2 we have da/dt = 9.36 mm per day. If we
consider a slightly smaller value for β , such as β = 0.17, the
more reasonable prediction of da/dt = 0.419 mm per day
is obtained. This can be compatible with the observation of
the average orbital decay of −1.1 ± 0.237 mm per day if we

assume that the total decay (and taking into account the un-
certainty in the spacecraft charge) could be of −1.5 mm per
day. The conclusion of this analysis is that a geodynamic
spacecraft with a larger eccentricity could be fundamental
in disclosing the existence of a putative fifth force of the
form proposed in this paper (or other similar proposals) or
in, definitively, excluding it, despite of the evidence for the,
still unexplained, flyby anomalies.

5 Conclusions

The advance of physics and astronomy is based upon the in-
terplay of theory and observations. For this reason, it is of
paramount importance to test our current theoretical mod-
els with the highest accuracy allowed by the present tech-
niques. In this spirit, orbital models have been put to very
stringent test since the beginning of the space era with the
development of radar and laser ranging techniques as well
as the spacecraft missions to other planets in the Solar sys-
tem (Krasinsky and Brumberg 2004; Williams et al. 2014;
Williams and Boggs 2016). This way, further evidence on
the validity of the predictions of General Relativity, our ba-
sic framework to understand gravity, have been obtained
(Will 2014). But in the process some anomalies have also
been found, i.e., some observations that do not fit within the
current models.

Although there is a possibility that these anomalies may
be caused by data reduction problems, or by incomplete
models that do not take into account some phenomena re-
lated to a well-known theory, they deserve full consideration
as they might also be the consequence of some unknown
physics. Even in the case that they finally are explained con-
ventionally, we must strive to find an agreement between
theory and experiment as this is the fundamental objective
of any experimental science. In this paper, we have consid-
ered three, apparently, independent observations in the So-
lar system: (i) the anomalous increase of the length scales in
the Solar system (Krasinsky and Brumberg 2004; Standish
2005) (ii) the lingering problem of the anomalous increase
of the eccentricity of the orbit of the Moon (Williams and
Boggs 2016; Iorio 2011b) (iii) the flyby anomaly (Anderson
et al. 2008). Our objective was to develop a model that may
suggest a connection among all these anomalous observa-
tions.

In this spirit we have revisited the fifth force models but
with a different perspective. The original fifth force propos-
als were developed in the eighties of the past century in
the hope of explaining some possible anomalies in the mea-
surement of the acceleration of gravity on municipal scales.
However, these short-ranged versions of a fifth force were
finally abandoned by the evidence to the contrary (Franklin
and Fischback 2016). Our proposal in Eq. (2) is different for
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several reasons: firstly, it is proportional to the radial veloc-
ity of the object with respect to the main body, it also de-
pends on the celestial latitude with respect to the equatorial
plane of that main body and the scale is of the same order of
the radius of that body.

We have shown that this model can explain both the
anomalous increase of the length scale and the eccentric-
ity of the orbit of the Moon for a typical range of the extra
force, ξ � 2R, where R is the radius of the main body (the
Sun in the first case and the Earth in the second one). The in-
crease of the semi-major axis of the orbit of Mercury would
be larger than that of any other planet and, consequently, it
would dominate the contribution to the first effect. By using
the same force model we have also simulated the spacecraft
flybys of the NEAR, Cassini and Galileo spacecrafts and
we have found that the velocity variations coincide in sign
and order of magnitude to those reported by Anderson et al.
(2008) if a length scale ξ � 0.23R is considered. This means
that a short-range fifth force with a single length scale pa-
rameter cannot accommodate both the planetary and Moon’s
phenomena and the flyby anomaly. An effective length scale
for this force depending on the r coordinate will be neces-
sary.

One of the main criticisms to the proposal of additional
forces in the Solar system is that they may ruin the excellent
agreement with orbital models including relativistic correc-
tions. For this reason, we have analyzed the contribution
of our force proposal to the advance of the perihelion of
Mercury and the orbital decay of the LAGEOS’s spacecraft
(Rubincam 1990). The result is a negligible contribution to
the perihelion advance in the case of Mercury and a posi-
tive contribution of a fraction of a millimeter per day orbital
expansion. This result cannot be excluded because the LA-
GEOS’s spacecraft suffers several effects such as charged
and uncharged friction or the Yarkovsky effect (some of
them not understood in detail) and the orbital decay fluctu-
ates with a typical deviation as large as the average value. In-
deed, we have proposed that part of these fluctuations could
be attributed to the effect of the putative fifth force.

We have shown that despite the short-ranged fifth force
is no longer a viable paradigm in physics and astronomy
(Franklin and Fischback 2016) an extra force of the form
given in this paper could predict new phenomena in the So-
lar system without conflicting with the evidence supporting
current models and General Relativity, in particular. This ex-
tra force could not be assimilated to the standard concept of
a fifth force because we have not assumed any particular
coupling. On the other hand, if could simply represent the
effect of extra degrees of freedom not taken into account in
the lagrangian of the standard theory of gravity (Goenner
2004). Further analysis of the radar and laser ranging obser-
vations, as well as the flyby anomalies, would be necessary
to finally establish the existence of these phenomena and

their relations. If such objective in Solar system astronomy
is achieved, we will have additional reasons and guidance to
look for a modified model of gravity incorporating predic-
tions of these new effects.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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