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Abstract The number of exact solutions for spherically
symmetric anisotropic fluid spheres is derived. And the rela-
tivistic model of an electrically charged compact star whose
energy density associated with the electric fields is on the
same order of magnitude as the energy density of fluid mat-
ter itself, such as electrically charged bare strange stars is
also investigated. Among the three models, Heintzmann and
Durgapal IV, and V permit a simple method that provide
bounds on the maximum possible mass of compact electri-
cally charged self-bound stars, and numerically exhibit that
the maximum compactness and mass increase in the pres-
ence of an electric field and anisotropic pressure. Based on
analytic models developed in this work, it has been com-
pared to investigate which one is better than the others; the
values of some pertinent physical quantities have been con-
sidered by assuming the estimated masses and radii of some
well-known potential strange star candidates like Vela X-1,
Cen X-3, PSR J1903+327 and EXO 1785-248. This analysis
depends on several mathematical assumptions.

Keywords General relativity · Einstein–Maxwell ·
Reissner–Nordström · Relativistic astrophysics · Compact
star · Equation of state · Self-bound star · Anisotropic fluid
sphere

1 Introduction

The Reissner–Nordström spacetime provides the general-
ized Schwarzschild exterior solution leading to the behav-
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ior of the gravitational field outside a spherically symmet-
ric perfect fluid including the effects of the electromagnetic
field. The nonlinear Einstein-Maxwell field equations are re-
quired for the description of the behavior of relativistic grav-
itating matter with electromagnetic field distributions, and
they are the key for modeling of the relativistic compact ob-
jects.

To integrate the field equations, various restrictions have
been developed due to the geometry of space-time and
content of the matter. The exact Einstein solutions can
be obtained by specifying the geometry and form of the
anisotropic factor when differential equations are resolved
by computations using an equation of state.

The exterior solution of a compact object is unique, and
also important for simple algebraic relations to the analytical
solutions that permit the distribution of matter in the interior
of the stellar object. Dev and Gleiser (2002, 2003), Herrera
and Santos (1997), Herrera et al. (2008), and Lake (2003)
(Lake’s algorithm), have all developed the analytical solu-
tion of locally anisotropic fluids. Bowers and Liang (1974)
accomplished the original work in the field of anisotropic
fluid models which shows the physical behavior of a star un-
dergoing gravitational collapse, and promotes the researcher
for further research in anisotropic effect. Herrera and Santos
(1997) explored the properties of anisotropic self-gravitating
spheres using the perturbation method. According to Her-
rera et al. (1998), local pressure anisotropy is one of the in-
fluencing factors for inhomogeneities in energy density.

Based on the behavior of matter, the analytic solutions to
the equation of relativistic stellar structure of gravitational
field equations are of two types; one is “normal” matter
for neutron stars and another is “self-bound” strange quark
stars. The Tolman VII solution is useful for realistic neutron
star models which are bounded by gravity. Quark stars are
self-bound by the strong interaction and are massive for their
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gravity. The self-bound strange quark star has finite density
and is about 2–3 times of the normal nuclear matter satu-
ration density (Postnikov et al. 2010). The Bodmar–Witten
hypothesis states that strange quark matter is the ultimate
ground state of matter and this hypothesis remains as a great
opportunity in physics and astrophysics (Weber 1999, 2005;
Glendenning 2000; Haensel 2003; Haensel et al. 2007).

The wide range of values of constant parameters permit
the required maximum mass of charged fluid spheres. This
aside, on the particular choice of stellar surface density ρs ,
various authors usually have chosen ρs = 2 × 1014 g/cm3 to
calculate the mass and radius of the charged fluid spheres,
which give rise to the stellar configuration as massive as 4–
6 M� with much lower central density. Such a massive con-
figuration may not serve as a realistic model for a self-bound
star. This choice is, therefore, not a physical one.

Bare strange stars have own ultra-strong electric fields
on their surface which is around 1018 V/cm (Alcock et al.
1986) and for color superconducting strange matter is
1020 V/cm (Usov 2004; Usov et al. 2005; Negreiros et al.
2010). Ray et al. (2003) and Malheiro et al. (2004) first
inquired the influence of the energy density of ultra-high
electric fields on the bulk properties of compact stars. We-
ber et al. (2007, 2009, 2010) and Negreiros et al. (2009)
have also proposed that electric fields of this magnitude in-
crease stellar mass by up to 30%, contingent on the strength
of the electric field which is generated by charge distri-
butions situated on the neighbor surfaces of strange quark
stars. However, in the case of the neutron star, the sur-
face electric field is absent. These characteristics may allow
the observationally to distinguish quark stars from neutron
stars.

The principal objective of this work is twofold. I seek a
model that is physically acceptable in the relativistic sphere
with an anisotropic fluid and compare the three types of
models and try to investigate which one is better than the
other by using physical analysis. The metric function is
nonsingular, continuous and well behaved in the interior of
the star. All the three models permit a simple method that
bounds on the maximum possible mass of compact electri-
cally charged self-bound stars, and numerically exhibit the
maximum compactness and increase in mass in the presence
of an electric field and anisotropic pressure. This analysis
depends on several mathematical assumptions.

This paper is organized into six sections. In Sect. 2
presents Einstein’s field equations, electrically charge distri-
bution and pressure anisotropy. Section 3 introduces phys-
ical quantities using boundary conditions. Some physical
properties are discussed and comparison among the physical
behavior of the strange stars candidates based on the three
models is discussed in Sects. 4 and 5. And, lastly, Sect. 6 is
a conclusion of this work.

2 Fundamental equations

2.1 Field equations

We intend to describe stellar structure with a statically sym-
metric matter distribution, in spacetime manifold (Sunzu
et al. 2014), and whose stress tensor may be locally an-
isotropic. The interior metric in Schwarzschild coordinates
xμ = (t, r, θ,φ) (Tolman 1939; Oppenheimer and Volkoff
1939) is given by the metric (Herrera et al. 2008; Bowers
and Liang 1974; Cosenza et al. 1981; Herrera et al. 2001):1

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2). (2.1)

The function ν(r) and λ(r) are arbitrary and satisfy the
Einstein-Maxwell field equations,

Gμ
ν = Rμ

ν − 1

2
δμ
ν R = κ

(
T μ

ν + Eμ
ν

)
, (2.2)

where κ = 8π is Einstein’s constant. Consequently, T
μ
ν and

E
μ
ν are energy-momentum tensor of fluid distribution and

electromagnetic field, assumed in locally anisotropic fluid,
defined by (Dionysiou 1982; Herrera and Ponce de León
1985)

T μ
ν = (

Pt + ρc2)υμυν − Ptδ
μ
ν + (Pr − Pt )χ

μχν,

Eμ
ν = 1

4π

(
−FμiFνi + 1

4
δμ
ν F ijFij

)
,

where ρ, Pr , Pt , υμ, denote the energy density, radial pres-
sure, and tangential pressure of the fluid distribution respec-
tively and velocity vector. Antisymmetric electromagnetic
field strength tensor, Fμν , defined by

Fμν = ∂Aν

∂xμ
− ∂Aμ

∂xν
, (2.3)

which satisfies the Maxwell equations,

F
μν

;ν = 1√−g

∂

∂xν

(√−gFμν
) = −4πJμ, (2.4a)

Fμν;λ + Fνλ;μ + Fλμ;ν = 0, (2.4b)

where g is the determinant of quantities gμν in Eq. (2.1),
defined by

g =

∣∣∣∣∣∣∣∣

eν 0 0 0
0 −eν 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

∣∣∣∣∣∣∣∣

= −eν+λr4 sin2 θ

1Throughout the work using c = G = 1 except in the tables and figures.
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and Aν = (φ(r),0,0,0) is the four-potential and Jμ is the
four-current vector, defined by

Jμ = ρch√
g00

dxμ

dx0
,

where ρch denotes the proper charge density. The nonvanish-
ing components of electromagnetic field tensor are related to
F 01 = −F 10, which represents the radial component of the
electric field. From Eq. (2.4a) the following expression for
the electric field:

F 01 = −e− ν+λ
2

q(r)

r2
,

where q(r) represents the total charge contained within the
sphere of radius by

q(r) = 4π

∫ r

0
e

λ
2 ρchu

2du. (2.5)

Charge density

ρch = e− λ
2

4π r2

dq

dr
. (2.6)

The above equation treated as the relativistic version of
Gauss’s law.

For the metric (2.1), the Einstein–Maxwell field equa-
tions with matter and charge are expressed as (Herrera and
Ponce de León 1985):

ν′

r
e−λ − 1 − e−λ

r2
= κPr − q2

r4
, (2.7)

(
ν′′

2
− ν′λ′

4
+ ν′2

4
+ ν′ − λ′

2r

)
e−λ = κPt + q2

r4
, (2.8)

λ′

r
e−λ + 1 − e−λ

r2
= κρ + q2

r4
(2.9)

where prime (′) denotes the r-derivative.
For electrically uncharged case, introducing a quantity

m(r) in the following expression:

e−λ = 1 − 2m(r)

r
+ q2

r2
. (2.10)

If M is the gravitational mass and R represents the radius
of the fluid distribution then m is constant m(r = R) = M

outside the fluid distribution. Murad and Fatema (2015) de-
scribe m(r) and finally get, using Eqs. (2.10) and also (2.7)
to (2.9),

m(r) = κ

2

∫
ρr2dr + q2

2r
+ 1

2

∫
q2

r2
dr, (2.11)

ν′ = κrPr + 2m

r2 − 2q2

r3

1 − 2m
r

+ q2

r2

, (2.12)

dPr

dr
= −Pr + ρ

2
ν′ + q

4πr4

dq

dr
+ 2(Pt − Pr)

r
. (2.13)

Using (2.7), (2.8) and (2.9), following charged generaliza-
tion of Tolman–Openheimer–Volkoff (TOV) equation of a
hydrostatic equilibrium for the anisotropic stellar configura-
tion (Ponce de León J. 1987)

dPr

dr
= − (Pr + ρ)

2

(κrPr + 2m

r2 − 2q2

r3 )

(1 − 2m
r

+ q2

r2 )
+ q

4πr4

dq

dr
+ 2


r
,

(2.14)

where 
 ≈ κ(Pt − Pr).
To transform the system into relatively simpler form of

Eqs. (2.7)–(2.9) with the help of following ansatz (Durgapal
1982; Korkina 1981),

eν = BN

(
1 + Cr2)N

, (2.15)

where N is a positive integer and BN , C > 0 are two con-
stants to be determined by the appropriate physical bound-
ary conditions. Equation (2.15) has chosen for giving us a
very simple relation for the redshift from any region of the
configuration. And also a simple expression for eν can help
calculate the trajectories of ultra-relativistic particles in the
gravitational field. For each integral value of N the field
equation can be solved exactly and also get a new exact so-
lution. From (2.7) and (2.8) one can obtain the equation of
“pressure anisotropy”,

(
ν′′

2
− ν′λ′

4
+ ν′2

4
− ν′ + λ′

2r

)
e−λ + 1 − e−λ

r2

= κ(Pt − Pr) + 2q2

r4
. (2.16)

Equation (2.16), is a second order nonlinear differential
equation in ν and first order linear in λ, may have two gen-
erating functions, κ(Pt − Pr) and ν, as Herrera et al. (2008)
notified in all static spherically symmetric anisotropic so-
lutions of Einstein’s field equations. Now we are going to
introduce the following transformations:

e−λ = Z, x = Cr2, C > 0. (2.17)

Equation (2.16) becomes the following equation by trans-
forming Eq. (2.14):

dZ

dx
+ P(x)Z = Q(x), (2.18)

where

P(x) = (N2 − 2N − 1)x2 − 2x − 1

x(1 + x)(1 + (1 + N)x)
,
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Q(x) = (1 + x)

x(1 + (1 + N)x)

(
2Cq2

x
+ 
x − 1

)
.

This equation is linear differential equation and the solution:

Z = e− ∫
P(x)dx

[∫
e− ∫

P(x)dxQ(x)dx + AN

]
. (2.19)

Here AN is the integral constant, which may be deter-
mined by imposing appropriate physical boundary condi-
tions. When the metric potential Z is attained, other phys-
ical variables may be represented in terms of the generating
functions and the equation of state may be extracted, and we
may write the parametric equations:

κ

C
Pr = 1 + (2N + 1)x

x(1 + x)
Z − 1

x
+ Cq2

x2
, (2.20)

κ

C
Pt = 2N + N2x

(1 + x)2
Z + 1 + (1 + N)x

(1 + x)

dZ

dx
− Cq2

x2
, (2.21)

κ

C
ρ = −2

dZ

dx
− Z

x
+ 1

x
− Cq2

x2
. (2.22)

Now we can generalize the metric potential Z in general
form is

Z = x

(1 + x)N−2[1 + (1 + N)x] 2
1+N

×
∫

(1 + x)N−1[1 + (1 + N)x] 1−N
1+N

x2

×
(

2Cq2

x
− 1 + 
x

)
dx

+ AN

x

(1 + x)N−2[1 + (1 + N)x] 2
1+N

. (2.23)

2.2 Electric charge distribution and pressure
anisotropy

Anninos and Rothman intuitively remarked from their paper
(Anninos and Rothman 2001) that, the “realistic” charge dis-
tribution inside the fluid sphere, is reasonable due to electri-
cal repulsion the charge distribution should be weighted to-
wards the surface. To obtain a closed form solution, one can
imagine several plausible distributions to integrate the equa-
tion of pressure isotropy (2.16). Various authors presented a
variety of solutions previously for different suitable choices
of charge distributions. Some of the solutions will be found
from Murad and Fatema (Murad and Fatema 2013). In this
work we consider the following model distributions to avoid

the singularity at the center:

2Cq2

x2
= kx(1 + x)1−N

[
1 + (1 + N)x

]N−1
N+1 , (2.24)


 = δx(1 + x)1−N
[
1 + (1 + N)x

]N−1
N+1 , (2.25)

where k, δ ≥ 0.
These distributions are chosen, in term of x, in such a

way that electric field intensity and anisotropy vanish at
the center and remains continuous and bounded in the in-
terior of the star for a wide range of values of the param-
eters k and δ. Thus these choices are physically reason-
able and useful in the study of the gravitational behavior of
charged stellar objects. It has been shown by Maurya and
Gupta (Maurya and Gupta 2011a, 2011b) for the uncharged
and charged cases respectively that the ansatz is the metric
function eυ = BN(1 + x)N where N is a positive integer,
produces an infinite family of analytic solutions of the self-
bound type. Some of these were previously known (N = 1,
2, 3, 4, and 5). The most relevant case is for N = 2, for
which the velocity of sound ≈ 1/

√
3 throughout most of the

star, somewhat similar to the behavior of strange quark mat-
ter (Lattimer and Prakash 2005).

In our model calculation, the density at the stellar ra-
dius is a value taken from the work (Sharma et al. 2006)
within the range 4–10 × 1014 g/cm3 (Bombaci 2001) and
rapidly to zero, as with all stellar models matching an in-
terior metric to the external Reissner-Nordström form. This
abrupt drop in density is a reasonable model approximation
since the thickness of the “quark surface” is of order 1 fm,
a negligibly small dimension compared to the stellar radius.
The solutions obtained in this work are expected to provide
simplified but easy to mathematically analyzed charged stel-
lar models with nonzero super-high surface density which
could reasonably model the stellar core of an electrically
charged strange quark star by satisfying applicable physical
boundary conditions.

In this work we keep our interest particularly to obtain
the charged analogue of the types N = 3, 4, 5 which cor-
respond to Heintzmann (Heintzmann 1969) and Durgapal
(Durgapal 1982; Delgaty and Lake 1998) models and derive
corresponding equations of state.

For the cases N = 3, 4 and 5, the solution of the Einstein–
Maxwell system (2.7)–(2.9), for the model charge distri-
bution and pressure anisotropy considered in Eqs. (2.24)–
(2.25), are then given by the following.
Type I:

eν = B3(1 + x)3, (2.26a)

2Cq2

x2
= kx(1 + x)−2(1 + 4x)

1
2 , (2.26b)


 = δx(1 + x)−2(1 + 4x)
1
2 , (2.26c)
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Z = x2(k + δ)

(1 + x)(1 + 4x)1/2
+ A3

x

(1 + x)(1 + 4x)1/2

+ 2 − x

2(1 + x)
,

κ

C
Pr = 1

2(1 + x)2(1 + 4x)
1
2

× [
kx(3 + 18x) + 2δx(1 + 7x)

+ 9(1 − x)(1 + 4x)
1
2 + 2A3(1 + 7x)

]
, (2.26d)

κ

C
Pt = 1

2(1 + x)2(1 + 4x)
1
2

× [
kx(3 + 18x) + 2δx(2 + 11x)

+ 9(1 − x)(1 + 4x)
1
2 + 2A3(1 + 7x)

]
, (2.26e)

κ

C
ρ = − 1

2(1 + x)2(1 + 4x)
3
2

× [
kx

(
11 + 46x + 32x2) − 2δx

(
5 + 19x + 8x2)

+ 3(3 + x)(1 + 4x)
3
2 − 3A3(1 + 3x)

]
. (2.26f)

Type II:

eν = B4(1 + x)4, (2.27a)

2Cq2

x2
= kx(1 + x)−3(1 + 5x)

3
5 , (2.27b)


 = δx(1 + x)−3(1 + 5x)
3
5 , (2.27c)

Z = x2(k + δ)

(1 + x)2(1 + 5x)2/5
+ A4

x

(1 + x)2(1 + 5x)2/5

+ 7 − 10x − x2

7(1 + x)2
,

κ

C
Pr = 1

14(1 + x)3(1 + 5x)
2
5

[
7kx(3 + 23x)

+ 14δx(1 + 9x) + 32
(
2 − 7x − x2)(1 + 5x)

2
5

+ 14A4(1 + 9x)
]
, (2.27d)

κ

C
Pt = 1

14(1 + x)3(1 + 5x)
2
5

[
7kx(3 + 23x)

+ 28δx(1 + 7x) + 32
(
2 − 7x − x2)(1 + 5x)

2
5

+ 14A4(1 + 9x)
]
, (2.27e)

κ

C
ρ = − 1

14(1 + x)3(1 + 5x)
7
5

[
7kx

(
11 + 54x + 27x2)

+ 14δx
(
5 + 22x + x2) − 16

(
9 + 2x + x2)(1 + 5x)

7
5

+ 14A4
(
3 + 10x − 9x2)]. (2.27f)

Type III:

eν = B5(1 + x)5, (2.28a)

2Cq2

x2
= kx(1 + x)−4(1 + 6x)

2
3 , (2.28b)


 = δx(1 + x)−4(1 + 6x)
2
3 , (2.28c)

Z = x2(k + δ)

(1 + x)3(1 + 6x)1/3
+ A5

x

(1 + x)3(1 + 6x)1/3

+ 112 − 309x − 54x2 − 8x3

112(1 + x)3
,

κ

C
Pr = 1

224(1 + x)4(1 + 6x)1/3

[
112kx(3 + 28x)

+ 224δx(1 + 11x)

+ 50
(
19 − 165x − 42x2 − 8x3)(1 + 6x)

1
3

+ 224A5(1 + 11x)
]
, (2.28d)

κ

C
Pt = 1

224(1 + x)4(1 + 6x)1/3

[
112kx(3 + 28x)

+ 224δx(2 + 17x)

+ 50
(
19 − 165x − 42x2 − 8x3)(1 + 6x)

1
3

+ 224A5(1 + 11x)
]
, (2.28e)

κ

C
ρ = − 1

224(1 + x)4(1 + 6x)
4
3

[
112kx

(
11 + 62x + 16x2)

+ 1120δx
(
1 + 5x − 2x2)

− 30
(
129 + x + 30x2 + 8x3)(1 + 6x)

4
3

+ 224A5
(
3 + 11x − 22x2)]. (2.28f)

3 Determination of constants and physical
quantities using boundary conditions

3.1 Conditions for physical acceptability

For well-behaved nature of the solutions for anisotropic
fluid sphere should be satisfied by the following conditions
(Abreu et al. 2007):

i. The solution should be free from physical and geomet-
ric singularities (Singh et al. 2015), i.e. it should yield
finite and positive values of the central pressure, central
density and nonzero positive value of eυ(0) = constant,
and e−λ(0) = 1.

ii. The pressure (Pr , Pt ) and density ρ should be positive
inside the fluid configuration.
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iii. The interior solution for strong energy condition should
be positive (Esculpi et al. 2007), i.e. (Pr + 2Pt )/ρ ≥ 0
and dominant energy condition ρ ≥ Pr and ρ ≥ Pt .

iv. The relativistic adiabatic index is given by Γ =
(P+ρ)

P
dP
dρ

. The necessary condition for this exact so-
lution to serve as a model of a relativistic star is that
Γ > 4/3.

v. The radial pressure must be vanished but the tangential
pressure may not necessary to vanish at the boundary
and the radial pressure is equal to the tangential pres-
sure at the center of the fluid sphere. So, 
(0) = 0
(Bowers and Liang 1974) and tangential pressure is
greater than redial pressure, 
(r) > 0 (Böhmer and
Harko 2006; Maurya et al. 2017; Abbas et al. 2018).

vi. Electric field intensity E, such that E(0) = 0, is taken
to be monotonically increasing (Harrison et al. 1965)
i.e. (dE/dr) > 0 for 0 < r < R.

vii. Pressure and density, should maximum at the center
and monotonically decreasing towards the pressure free
interface i.e. (dPr/dr)r=0 = 0, (dρ/dr)r=0 = 0 and
(d2Pr/dr2)r=0 < 0, (d2ρ/dr2)r=0 < 0 so that pressure
gradient dPr/dr ≤ 0 and density gradient dρ/dr ≤ 0
for 0 < r < R.

viii. The redshift z should be positive, finite and monotoni-
cally decreasing in nature with the increase of r .

ix. Buchdahl condition (Buchdahl 1959) must be sat-
isfy for neutron star which has the maximally allow-
able mass- radius ratio 2M/R ≤ 8

9 . But Böhmer and
Harko (2007) proved that for a charged compact ob-
ject, there is a lower bound for mass-radius ratio,
3
2

Q2

R2
1+Q2/(18R2)

1+Q2/(12R2)
≤ 2M

R
.

x. Since Γ > 4/3 and Pr > 0, then for realistic star, the
compression modulus κe , κe = PrΓ , must be decreas-
ing outwards (Singh et al. 2016c).

3.2 Determination of the arbitrary constant A

To specify A the boundary condition P(r = R) = 0 can be
utilized
Type I:

A3 = − 1

2(1 + 7X)

[
kX(3 + 18X) + 2δX(1 + 7X)

+ 9(1 − X)(1 + 4X)
1
2
]
. (3.1a)

Type II:

A4 = − 1

14(1 + 9X)

[
7kX(3 + 23X) − 14δX(1 + 9X)

− 32
(
2 − 7X − X2)(1 + 5X)

2
5
]
. (3.1b)

Type III:

A5 = − 1

224(1 + 11X)

[
112kX(3 + 28X)

− 224δX(1 + 11X)

− 50
(
19 − 165X − 42X − 8X3)(1 + 6X)

1
3
]
, (3.1c)

where X = CR2.

3.3 Determination of the constant B

The constant B can be specified by the boundary condition
eυ(R) = e−λ(R), which yields,
Type I:

B3 = 1

2(1 + X)4(1 + 4X)1/2

[
2X2(k + δ) + 2A3X

+ (2 − X)(1 + 4X)
1
2
]
. (3.2a)

Type II:

B4 = 1

7(1 + X)6(1 + 5X)2/5

[
7X2(k + δ) + 7A3X

+ (
7 − 10X − X2)(1 + 5X)2/5]. (3.2b)

Type III:

B5 = 1

112(1 + X)8(1 + 6X)1/3

[
112X2(k + δ) + 112A5X

+ (
112 − 309X − 54X2 − 8X3)(1 + 6X)

1
3
]
. (3.2c)

3.4 Determination of the total charge to radius ratio

Type I:

Q2

R2
= K

2

X2(1 + 4X)1/2

(1 + X)2
. (3.3a)

Type II:

Q2

R2
= K

2

X2(1 + 5X)3/5

(1 + X)3
. (3.3b)

Type III:

Q2

R2
= K

2

X2(1 + 6X)2/3

(1 + X)4
. (3.3c)

3.5 Determination of the total mass to radius ratio

Type I:

2M

R
= − 1

2(1 + X)2(1 + 4X)
1
2

[
3kX3 + 2δX2

− 3X(1 + 4X)
1
2 + 2A3X

]
. (3.4a)
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Type II:

2M

R
= − 1

14(1 + X)3(1 + 5X)2/5

[
7kX2(1 − 3X) + 14δX2

− 16X(3 + X)(1 + 5X)2/5 + 14A4X
]
. (3.4b)

Type III:

2M

R
= − 1

224(1 + X)4(1 + 6X)1/3

[
112kX2(1 − 4X)

+ 224δX2 − 30X
(
43 + 26X + 8X2)(1 + 6X)1/3

+ 224A5X
]
. (3.4c)

3.6 The central and surface redshift zc, zs

The central and surface redshifts of the charged fluid sphere
are given by

zc =
√

e−υ(0) − 1 = 1√
BN

− 1, (3.5a)

zs =
√

e−υ(R) − 1 = (1 + X)− N
2√

BN

− 1. (3.5b)

Type I:

zs = (1 + x)−3/2

√
B3

− 1. (3.5c)

Type II:

zs = (1 + X)−2

√
B4

− 1. (3.5d)

Type III:

zs = (1 + x)−5/2

√
B5

− 1. (3.5e)

4 Constructing physical realistic fluid
spheres

4.1 Pressure and density gradients

To analyze the analytical equation of state, a straightfor-
ward differentiation of the pressure and density equations
(2.26a)–(2.28f) with respect to the auxiliary variable x. Due
to the comparison of those types we obtain the pressure and
density gradients as
Type I:

κ

C

dPr

dx
= 1

2(1 + x)3(1 + 4x)3/2

[
k
(
3 + 39x + 90x2 − 36x3)

+ 2δ
(
1 + 15x + 36x2)

− 9(3 − x)(1 + 4x)
3
2

+ 6A3
(
1 − x + 14x2)],

κ

C

dPt

dx
= 1

2(1 + x)3(1 + 4x)3/2

[
k
(
3 + 39x + 90x2 − 36x3)

+ 2δ
(
2 + 24x + 54x2 − 22x3)

− 9(3 − x)(1 + 4x)
3
2 + 6A3

(
1 − x + 14x2)],

κ

C

dρ

dx
= − 1

2(1 + x)3(1 + 4x)
5
2

× [
k
(
11 + 59x + 78x2 − 52x3 − 64x4)

+ 2δ
(
5 + 23x + 12x2 − 58x3 − 16x4)

+ 3(5 + x)(1 + 4x)
5
2 − 6A3

(
5 + 23x + 30x2)].

Type II:

κ

C

dPr

dx
= 1

14(1 + x)4(1 + 5x)7/5

× [
7k

(
3 + 49x + 125x2 − 161x3)

+ 14δ
(
1 + 19x + 51x2 − 63x3)

− 32
(
13 − 12x − x2)(1 + 5x)7/5

+ 28A4
(
1 − 2x − 27x2)],

κ

C

dPt

dx
= 1

14(1 + x)4(1 + 5x)7/5

× [
7k

(
3 + 49x + 125x2 − 161x3)

+ 28δ
(
1 + 15x + 37x2 − 49x3)

− 32
(
13 − 12x − x2)(1 + 5x)

7
5

+ 336A4
(
1 − 2x − 27x2)],

κ

C

dρ

dx
= − 1

14(1 + x)4(1 + 5x)
12
5

× [
7k

(
11 + 64x + 2x2 − 432x3 − 189x4)

+ 14δ
(
5 + 24x − 38x2 − 256x3 − 7x4)

+ 16
(
25 + 2x + x2)(1 + 5x)

12
5

− 56A4
(
5 + 31x + 47x2 − 27x3)].

Type III:

κ

C

dPr

dx
= 1

224(1 + x)5(1 + 6x)4/3

× [
112k

(
3 + 59x + 164x2 − 392x3)

+ 224δ
(
1 + 15x + 36x2)
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+ 50
(
8x3 + 60x2 + 411x − 241

)
(1 + 6x)4/3

+ 1120A5
(
1 − 3x − 44x2)],

κ

C

dPt

dx
= 1

224(1 + x)5(1 + 6x)4/3

× [
112k

(
3 + 59x + 164x2 − 392x3)

+ 224δ
(
2 + 36x + 96x2 − 238x3)

+ 50
(
8x3 + 60x2 + 411x − 241

)
(1 + 6x)4/3

+ 1120A5
(
1 − 3x − 44x2)],

κ

C

dρ

dx
= − 1

224(1 + x)5(1 + 6x)
7
3

× [
112k

(
11 + 69x − 114x2 − 1096x3 − 224x4)

+ 1120δ
(
1 + 5x − 22x2 − 118x3 + 28x4)

+ 30
(
515 − 57x + 36x2 + 8x3)(1 + 6x)

7
3

− 1120A5
(
5 + 39x + 66x2 − 88x3)].

4.2 Stability and equilibrium conditions

In connection to stability of the stellar model, Stettner
(1973) argued that a fluid sphere of uniform density with a
net surface charge is more stable than without charge. Theo-
retically (Canuto and Chitre 1973; Canuto 1975; Ruderman
1972a, 1972b; Canuto and Lodenquai 1975), the pressure
anisotropy is one of the most significant factor for compact
stellar objects. The nuclear matter, relativistic interaction,
may be very high density range (ρ > 1015 g/cm3) (Murad
2018; Ruderman 1972a, 1972b). In this point of view, re-
dial pressure and tangential pressure may not be equal and
considering Pt > Pr for 
 > 0.

Herrera (1992) developed a criteria to check the stability
of anisotropic gravitating source. This technique state that
if radial speed of sound is greater than the transverse speed
of sound in a region, then it is a potentially stable region,
otherwise unstable. So, if the term |ν2

t − ν2
r | ≤ 1 then local

anisotropic matter distribution is stable. Figure 9 indicates
that this model is stable within the specific configuration.

The static stability criterion (Zel’dovich and Novikov
1971; Harrison et al. 1965), dM

dρc
> 0, in the literature if the

mass M increases consequently central density ρc is also
growing. In this study the parameters may be set in such a
way that the solution satisfies the necessary conditions of
physical acceptability.

5 Discussions

For the particular set of values of (δ,K,X) for which the
fluid distribution satisfies the following inequalities; P(r) ≥

Fig. 1 Behavior of adiabatic sound speed

Fig. 2 Behaviors of the energy density c2ρ

Fig. 3 Behavior of tangential pressure for same stellar configuration as
in Fig. 1

0, ρ(r) > 0, dP/dr < 0, dρ/dr < 0, the speed of sound sat-
isfies 0 ≤ √

dP/c2dρ ≤ 1. A fluid sphere satisfying these
inequalities will be termed as well-behaved. Though there
is no explicit relation in between K and X, but for some
particular choices of δ, the parameters K andX found to
follow the relation plotted in Figs. 1–13. Here considering
the range of the parameters are 0.3 < δ < 5, 0.5 < k < 1.8
and 0 < X < 0.235 use to illustrate the figures and also
in Table 1. For particular input (δ,K,X) = (5,0.5,0.063),
among three particular models, the graphs describe N = 3,
5 are better than N = 4. The maximum value of X is fixed
for one minimum value of K and every values depend on
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Fig. 4 Behavior of electric charge distribution for same stellar config-
uration

Fig. 5 Pressure-density outlines for same fluid spheres

Fig. 6 Behavior of redial pressure same configuration as Fig. 1

particular value of ‘δ’. To illustrate the behaviors of vari-
ous physical variables in the interior of the star, among the
three models, describe by various inputs we have plotted the
pressure–density relation in Fig. 5. In Figs. 3, 6, and 2 have
the behavior of anisotropic pressure, energy and density
respectively. For instance, to generate an anisotropic fluid
sphere just set δ = 1.6 which corresponding to the sound
speed vs = √

dP/c2dρ = 0.502546, 0.591875, 0.6990695
for N = 3, 4 and 5 respectively and which are less than the
speed of light. If considering N = 3, for maximum value of
compactness parameter is obtain (2M/R)max = 0.541742,
Solar mass Mmax = 2.041M�, radius = 11.197 km and
also surface density κρs = 6.941 × 1014 g/cm3, central den-

Fig. 7 The same configuration for anisotropy behavior

Fig. 8 The relativistic adiabatic index Γ for the same stellar configu-
ration

Fig. 9 Plot of the v2
t − v2

r for the parameter values

sity κρc = 1.0902 × 1015 g/cm3 for maximum value of
(X,K, δ) = (0.202,1.4,1.6) where as for N = 4 and 5, the
results are not similar for sound and surface and center den-
sity i.e. for same value of X, K , δ there are compactness
parameter (2M/R)max = 0.609125,0.658835 and surface
density κρs = 5.7512 × 1014 g/cm3, 6.6110 × 1014 g/cm3,
central density κρc = 7.63059 × 1015 g/cm3, 1.15265 ×
1015 g/cm3 respectively but sound speed are too high (see
Fig. 1). From Fig. 11, solar mass Mmax = 2.8227M�, ra-
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Fig. 10 Behavior of charge density

Fig. 11 Behavior of mass vs. radius relation

Fig. 12 Behavior of transverse adiabatic sound speed

dius = 12.733 km and solar mass Mmax = 1.7164M�, ra-
dius = 10.434 km for N = 4 and N = 5 respectively.

It is well known that anisotropy will be directed outward
when pt > pr (i.e. 
 > 0), and inward when pt < pr (i.e.

 < 0). It is evident from Fig. 7 that for the given model a
repulsive force would exist as 
 > 0, that permits the forma-
tion of a supermassive star, for large values of r/R, 
 = 0,
where a star comes to the equilibrium position. This implies
that the anisotropic force allows the construction of more
massive stars. For N = 3, anisotropy behavior is better than
the rest of the other types.

Fig. 13 Behavior of variation of compression modulus κe

From Figs. 2 and 4, energy density is too low for N = 5
but electric charge distribution is good enough. On the other
hand for N = 4, electric charge distribution is low enough
whereas energy density is very high. In Fig. 10, surface
charge density is higher for N = 4 then other two models.
And it’s not realistic for N = 4. It shows that in Fig. 4 the
charge distribution is zero at the center and monotonically
increasing towards the pressure free interface (boundary).
Behavior of mass-radius relation from Fig. 11 all models
i.e. N = 3, 4 and also 5 are satisfied by Buchdahl condition
(Buchdahl 1959) for which all are less than or equal to 8/9.
Figure 9 shows that all the models are stable, but N = 5 is
decreasing from center to surface, according to the stability
condition.

6 Conclusions

This work has presented a new family of interior solutions
of Einstein–Maxwell field equations for a static spherically
symmetric distribution of perfect fluid with particular forms
of charge distribution to construct electrically charged stellar
models for better fit. And comparing which model is better
than others. Based on ad hoc assumptions, metric potential,
the electric charged distribution and the pressure anisotropy,
the analytical equation of state has been computed from the
resulting metric. It is shown that in the presence of charge
the solutions satisfy all the physical requirements adopted
in this work to construct physically acceptable electrically
charged stellar models (Sect. 3.1). While, not only the case
N = 3, Heintzmann model, is well satisfied the physical re-
quirement but also other two models i.e. Durgapal models
(N = 4,5) are considerable for static neutral solutions be-
longs to the class of 16 solutions (Delgaty and Lake 1998)
at passes at least all the tests. The speed of sound is obtained
∼ 1/

√
3 at the center and remains almost the same through-

out most of the fluid sphere for N = 3 and 4 but N = 5 is
slightly greater than the speed of sound. Comparing behav-
ior of the Strange stars candidate and graphical represen-
tation confirm that Heintzman N = 3 and Durgapal Model
N = 5 are best fitted. Although there are some pitfall among
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Table 1 Physical values of
energy density and pressure for
different strange stars about
N = 3, 4, 5 respectively

[1]: Murad and Fatema 2015;
[2]: Rahman and Murad 2014;
[3]: Das et al. 2016; [4]: Singh
et al. 2016b; [5]: Singh and Pant
2016; [6]: Singh et al. 2016a

Strange star candidate (δ, k,X) M(M�) R (km) Pc,35 ρc,15 ρs,14

PSR J1614-2230 (2.5, 0.05, 0.22) 1.978 [1,2,5] 9.612 1.82 1.618 7.90

(3.25, 0.06, 0.086) 1.38 10.01 0.70 0.692 5.415

(2.01, 0.02, 0.15) 1.978 9.74 1.54 1.012 6.50

PSR J1903+327 (4.5, 0.9, 0.16) 1.671 [2,3,6] 9.541 1.268 1.088 6.512

(3.3, 1.2, 0.0815) 1.367 9544 0.710 0.705 5.125

(10, 0.6, 0.08115) 1.667 9.776 1.528 1.020 6.559

4U 1608-52 (2.9, 0.92, 0.09) 0.896 [2] 7.866 0.529 0.712 4.443

(2.2, 0.2, 0.068) 0.895 7.866 0.623 0.719 4.035

(1.23, 1.2, 0.053) 0.893 7.866 0.612 0.689 3.965

Vela X-1 (4.5, 1, 0.18) 1.782 [2,3] 10.55 1.01 1.221 7.245

(0.33, 1.17, 0.0817) 1.36 10.551 0.71 0.705 5.524

(10, 6, 0.089) 1.77 10.88 0.76 0.954 6.569

4U 1820-30 (4.5, 1.71, 0.1408) 1.580 [2] 10.339 0.695 1.038 6.826

(3.3, 1.25, 0.0746) 1.262 10.3388 0.641 0.683 5.450

(10, 6, 0.076) 1.581 10.672 0.638 0.975 6.210

Cen X-3 (2.2., 1.1, 0.165) 1.489 [2,3,4] 9.17 0.630 0.972 6.603

(1.1, 0.06, 0.13) 1.481 9.17 1.38 0.852 7.507

(1.43, 1.4, 0.098) 1.485 9.17 1.24 0.831 4.396

EXO 1785-248 (2.2, 1.1, 0.165) 1.3 [2,3] 8.849 0.785 0.925 7.109

(1.8, 0.8, 0.106) 1.312 8.849 1.02 0.839 4.387

(2.2, 0.9, 0.083) 1.3 8.849 1.02 0.7889 5.838

the three models, but the pressure–density relation which al-
most linear for N = 3 and N = 5. This behavior is like MIT
bag model.

The charged stellar models obtained here crucially de-
pend on the choice of metric potential and the forms of elec-
tric charge distribution. However, the numerical outcomes
might be the indication of astrophysical significance of the
equations of state obtained in parametric form (2.26d, e, f),
(2.27d, e, f) and (2.28d, e, f) in the study of relativistic stellar
structure of very cold compact self-bound charged star. If we
juxtapose all the properties (comparing) of Heintzmann and
Durgapal IV, and V models, our toy models may facilitate
studies of anisotropic fluid sphere with an electromagnetic
field distribution and provide possibility for further studies
of other relativistic matter distributions.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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