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Abstract By using the spherical collapse model, we inves-
tigate the growth of perturbations in time varying G cos-
mologies. We study the transition redshift from early decel-
erated expansion to current accelerated phase in varying G

theories. Applying the Chevallier-Polarski-Linder parame-
terization for dark energy, we study the effect of dark energy
on the evolution of density perturbations in varying G cos-
mologies. The main quantities in spherical collapse model,
the linear overdensity parameter δc and the virial overdensity
�vir are calculated. We compute the number of virialized
dark matter haloes in the context of varying G cosmologies
using the Sheth-Tormen mass function. Finally, we improve
the spherical collapse model in varying G cosmologies by
calculating the effects of shear and rotation on δc and �vir

and the modification of mass function on the number count
of dark matter haloes.

Keywords Cosmology · Dark energy · Large scale structure
in the universe

1 Introduction

In 1998, two independent groups (Riess et al. 1998; Perl-
mutter et al. 1999) measured the apparent magnitudes
of Type I supernovae (SNeIa), which are known as the
standard candles since their absolute magnitudes are the
same. Their measurements reveal that the present phase
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of the expansion of universe is the accelerated expansion
(Jaffe et al. 2001; Riess et al. 2004; Tegmark et al. 2004;
Percival et al. 2004; Kowalski et al. 2008; Jarosik et al.
2011; Komatsu et al. 2011). In fact, the luminosity dis-
tance calculated in a universe dominated by cold dark matter
(CDM) is lower than the observed value at high redshifts.
Not only the observations of high-redshift SNeIa, but also
cosmic microwave background observations (CMB) (Ho
et al. 2008; Komatsu et al. 2009; Jarosik et al. 2011) and
baryon acoustic oscillations (BAO) (Eisenstein et al. 2005;
Percival et al. 2010) indicate that the current expansion of
universe is accelerated. In the context of General Relativity
(GR), an exotic fluid with sufficiently negative pressure, the
so-called dark energy (DE), is the source of this accelera-
tion. Moreover, the results of the Planck experiments (Ade
et al. 2014) indicate that DE occupies about two-thirds of
the total energy density in the current universe. In the past
two decades, many theoretical and phenomenological DE
models were proposed to describe the accelerated phase
of expanding universe. The earliest and simplest model is
the Einstein’s cosmological constant with constant equation
of state (EoS) ωΛ = −1 (Padmanabhan 2003). This model
has two famous difficulties namely cosmic coincidence and
fine-tuning problems (Weinberg 1989; Sahni and Starobin-
sky 2000; Carroll 2001; Peebles and Ratra 2003; Copeland
et al. 2006). In order to alleviate these problems, some al-
ternative DE models with time varying EoS parameter have
been proposed (Kamenshchik et al. 2001; Armendariz-Picon
et al. 2001; Caldwell 2002; Sen 2002; Thomas 2002; Lin-
der 2003; Nojiri and Odintsov 2003; Arkani-Hamed et al.
2004; Piazza and Tsujikawa 2004; Cai 2007). DE has two
important effects during the evolution of universe with cos-
mic time. Firstly, DE accelerates the expansion of the uni-
verse and secondly it changes the growth rate of cosmic
structures. In fact, the observations indicate that the universe
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is not homogeneous and isotropic on small scales. The in-
homogeneous universe originates from primordial quantum
density fluctuations at inflationary phase era (Starobinsky
1980; Guth 1981; Linde 1990). In the scenario of structure
formation we follow the evolution of small initial density
fluctuations during different phase of the evolution of uni-
verse until present time. In particular, we study how the
cosmic structures like galaxies and cluster of galaxies can
form from the initial density fluctuations due to the pro-
cess of gravitational instability (Sheth and Tormen 1999;
Barkana and Loeb 2001; Peebles and Ratra 2003; Ciardi
and Ferrara 2005; Abramo et al. 2009; Bromm and Yoshida
2011; Appleby et al. 2013; Pace et al. 2014a). Generally,
the growth of perturbations of a cosmic fluid on sub- Hub-
ble scales depends on the Jeans length scale λJ . On scales
smaller than Jeans length scale (λ < λJ ), perturbations can
not grow and vanish, while on scales larger than Jeans length
scale (λJ < λ < H−1) perturbations can grow due to grav-
itational instability (Peebles 1993). The spherical collapse
model (SCM) (Gunn and Gott 1972) is the semi-analytical
method to study the growth of structure formation. In SCM,
we consider a top-hat spherical overdense region with ra-
dius R inside the Hubble horizon. In this scale, the results
of Pseudo Newtonian dynamics are well consistent with
those of GR paradigm (Abramo et al. 2007, 2009). Due to
self gravity, the spherical region expands slower than the
background Hubble expansion. Hence the density inside the
overdense region becomes higher than background and the
expansion rate becomes slower. Finally, at a certain redshift,
the so-called turnaround redshift zta , the spherical over-
dense region detaches from the Hubble flow and starts to
collapse towards the center. At turnaround redshift zta , the
region has a maximum radius Rta . The collapsing sphere
finally reaches the steady state at a virial radius Rvir in a
certain redshift zvir . In the framework of GR, the SCM has
been investigated in several studies (Fillmore and Goldre-
icha 1984; Bertschinger 1985; Hoffman and Shaham 1985;
Ryden and Gunn 1987; Avila-Reese et al. 1988; Subrama-
nian et al. 2000; Ascasibar et al. 2004; Williams et al. 2004;
Mehrabi et al. 2017) Also, this model has been investigated
for various DE and scalar field models (Mota and van de
Bruck 2004; Maor and Lahav 2005; Basilakos and Voglis
2007; Abramo et al. 2007, 2009; Basilakos et al. 2009; Li
et al. 2009; Pace et al. 2010; Wintergerst and Pettorino 2010;
Basse et al. 2011; Pace et al. 2012, 2014a; Naderi et al. 2015;
Malekjani et al. 2015b).

On the other hand, there are enough observational evi-
dences which support the time variation of Newtons grav-
itational coupling G at Hubble scales H−1. Observations
of Binary Pulsar (Damour et al. 1988), Helio-seismological
(Guenther et al. 1998), SNeIa (Gaztanaga et al. 2002),
Astro-seismological (Benvenuto et al. 2004), Big Bang nu-
cleosynthesis (Copi et al. 2004), Lunar Laser Ranging (Tu-
ryshev et al. 2004) confirm the variation of G with cosmic

time. For instance, SNeIa observations lead to −10−11 ≤
Ġ/G < 0 yr−1, while Helio-seismological data give the
bound of G as −1.6 × 10−12yr−1 < Ġ/G < 0. From the
theoretical point of view, the time varying G scenarios at
cosmological scales can be proposed in the context of mod-
ified field equations. Notice that because of energy conser-
vation law, the Einstein field equations do not permit any
variations in the gravitational constant G, which couples
to geometry and matter. However, in Branse-Dicke (Brans
and Dicke 1961) and Kaluza-Klein (Kaluza 1921; Loren-
Aguilar et al. 2003; Kolb et al. 1986; Maeda 1986; Freund
1982) theories, the variation of G has been predicted. The
Brans-Dicke gravity makes the gravitational constant G as
a dynamical field coupled to the matter component T μν and
is proportional to the inverse of gravitational coupling G.
In Kaluza-Klein cosmology, we have (4 + 1) dimensional
space-time in which the extra dimension is used to couple
the gravity and electromagnetism. In these theories, G is re-
placed by a scalar function of time. In this paper, for the first
time, we extend the SCM in varying G cosmological mod-
els. We consider the Chevallier-Polarski-Linder (CPL) pa-
rameterization (Chevallier and Polarski 2001; Linder 2003)
for DE and investigate how DE affects the parameters of
SCM in varying G cosmologies. We also calculate the num-
ber count of massive halo clusters in the context of varying
G cosmology and compare the results with those of concor-
dance ΛCDM universe. This paper is organized as follows.
In Sect. 2, we study the varying G theories, then the mod-
ified Friedmann equations are obtained in varying G cos-
mologies. The SCM and the predicted number density of
dark matter haloes in varying G cosmologies are presented
in Sect. 3. Finally, our conclusions are presented in Sect. 4.

2 Varying G theories

The total action in varying G theories (hereafter, VG theo-
ries) is described as: (Lu et al. 2014)

S = 1

16π

∫ √−g
R

G(t)
d4x + Sm, (1)

where R = gμνRμν is the Ricci scalar, Sm is the action of
matter and g is the determinant of the metric, i.e., g = −|g|.
The function G(t) is proportional to the inverse of a dynam-
ical field φ, which is coupled to the mass density of the uni-
verse. G(t) is usually written as G(t) = φ−1 = G0a(t)−β ,
where a(t) represents the scale factor, β is a constant pa-
rameter and G0 is the bare gravitational constant. Taking
the variation of Eq. (1) with respect to gravitational field
gμν , field equations in VG theories are obtained as (Lu et al.
2014):

Gμν = Rμν − 1

2
Rgμν
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= 8πGTμν + G
(∇μ∂νG

−1 − gμν∇ρ∂ρG−1), (2)

where Rμν denotes the Ricci tensor and Tμν is the energy-
momentum tensor, which can be written for a perfect fluid
as:

T μν = Pgμν + (P + ρ)uμuν, (3)

here uμ is the velocity four-vector satisfying uμuμ = 1. In a
flat FRW universe, the metric is written in the form of

ds2 = dt2 − a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)]. (4)

From the modified field equation (2) in the context of FRW
metric, the modified Friedmann equations for VG universe
dominated by pressureless matter and DE can be obtained
as (Malekjani et al. 2015a):

H 2 = 8πG(t)

3(1 + β)
ρ (5)

and

ä

a
= −4πG(t)

3(1 + β/2)

[
(1 + β + β2)

(1 + β)
ρ + 3P

]
, (6)

where ρ = ρm + ρd and P = Pd are the total energy
density and pressure of the fluid in the universe, respec-
tively. Here subscript “m” refers to all pressureless mat-
ter (baryons+dark matter) and subscript “d” stands for DE
component. Furthermore, The dot is the derivative with re-
spect to the cosmic time. Note that in the case β = 0, the
above modified Friedmann equations reduce to those of
standard GR theory. In terms of dimensionless density pa-
rameters,

Ωm = ρm

ρc

, Ωd = ρd

ρc

, (7)

where ρc = 3H 2/8πG is the critical density, the first Fried-
mann equation (5) is written as

1 + β = Ωm + Ωd. (8)

From Eq. (8), we see that in VG formalism, for a spatially
flat FRW universe containing pressure-less matter and DE,
the sum of dimensionless density parameters can be less
(more) than one when β is negative (positive). Also the con-
servation law in an expanding VG universe reads (Lu et al.
2014; Malekjani et al. 2015a)

ρ̇ + 3H

(
6 + 2β + β2

6 + 3β
ρ + 2 + 2β

2 + β
P

)
= 0. (9)

Clearly, by inserting β = 0, we get the standard continu-
ity equation in standard gravity. The energy conservation

Eq. (9) can be separated in terms of pressureless matter and
DE components as

ρ̇m + H

(
6 + 2β + β2

2 + β

)
ρm = 0, (10)

ρ̇d + 3Hρd

(
6 + 2β + β2

6 + 3β
+ 2 + 2β

2 + β
ωd

)
= 0, (11)

where ωd = Pd/ρd is the EoS parameter of DE. Now, we
can integrate Eqs. (10) and (11) to find the energy densities
for matter and DE as follows:

ρm = ρm0a
− 6+2β+β2

2+β , (12)

ρd = ρd0a
− 6+2β+β2

2+β e
− 6+6β

2+β
(
∫ a

1 ωd
da
a

)
. (13)

Furthermore by combining Eqs. (12), (13) and (6), the di-
mensionless Hubble parameter E = H/H0 in VG theory is
written as

E2 = H 2

H 2
0

= a
− 6+2β+β2

2+β

1 + β

[
Ωd0e

− 6+6β
2+β

(
∫ a

1 ωd
da
a

) + Ωm0
]
, (14)

where Ωm0 = (8πG/3H 2
0 )ρm0 and Ωd0 = (8πG/3H 2

0 )ρd0.
Also, using Eqs. (5) and (9), we can obtain the deceleration
parameter, q = −1 − Ḣ

H 2 , in VG formalism as

q = 1

2 + β

(
1 + β + β2 + 3Ωdωd

)
. (15)

The positive sign of deceleration parameter (q > 0) repre-
sents the decelerated expansion and negative sign (q < 0)
indicates the accelerated phase of expansion in the universe.
Putting β = 0, the deceleration parameter is reduced to its
ordinary form in the standard FRW cosmology with con-
stant G as follows:

q = 1

2
(1 + 3Ωdωd). (16)

Combining Eqs. (7) and (13), we get

Ωd = Ωd0

E2
a

− 6+2β+β2

2+β e
− 6+6β

2+β
(
∫ a

1 ωd
da
a

)
. (17)

Now, we can rewrite Eq. (15) as

q = 1

2 + β

×
[

1 + β + β2 + 3ωd

Ωd0

E2
a

− 6+2β+β2

2+β e
− 6+6β

2+β
(
∫ a

1 ωd
da
a

)

]
.

(18)

In the rest of the paper, we adopt the EoS parameter of
DE as the Chevallier-Polarski-Linder (CPL) parameteriza-
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Table 1 Different DE models by considering the CPL parameteriza-
tion in VG theory

Model ω0 ω1 β

Model I −1 1/3 −0.01

Model II −1 1/3 +0.01

Model III −2/3 0 −0.01

Model IV −2/3 0 +0.01

Model V −4/3 1/3 −0.01

Model VI −4/3 1/3 +0.01

tion (Chevallier and Polarski 2001; Linder 2003)

ωd = ω0 + ω1(1 − a) = ω0 + ω1
z

1 + z
, (19)

where a = 1/(1 + z). It is easy to show that this parameter-
ization can be interpreted as a Taylor series with respect to
(1-a). This means that the CPL parameterization can be ex-
panded to more general case by assuming the second order
approximation, i.e., ω(a) = ω0 + ω1(1 − a) + ω2(1 − a)2

(Seljak et al. 2005). In this work, we consider three differ-
ent types of DE models via CPL parameterization presented
in Table 1. For each case, we consider the parameter β as
+0.01 and −0.01. These values are chosen based on obser-
vational constraints (Lu et al. 2014; Malekjani et al. 2015a;
Alavirad and Malekjani 2014).

In Fig. 1, we show the evolution of ωd , Ωd and decel-
eration parameter q as a function of redshift z for different
DE models presented in Table 1. In the upper panel, we see
that for DE models (I & II) the EoS parameter varies in the
quintessence regime (−1 < ωd < −1/3). While in DE mod-
els (V & VI), the EoS parameter evolves in phantom phase
(ωd < −1). In DE models (III & IV), the EoS parameter is a
constant value in quintessence regime. By considering these
DE models, we can calculate the effect of both quintessence
and phantom like DE models on the evolution of expanding
universe. In the middle panel the evolution of density of DE
for each model is depicted. The line style and colors are re-
ferred in Legends. We see that in all models the fractional
energy density of DE tends to zero at high redshifts. This re-
sult is expected since at enough high redshift the DE effect
on the evolution of Universe is negligible. Also, concerning
the phase of cosmic expansion we show the evolution of de-
celeration parameter q in bottom panel. We find that in all
VG models, the sign of parameter q changes from positive
to negative values at z � 0.6. This result is in good agree-
ment with observational predictions based on the cosmic
chronometers H(z) data (Farooq et al. 2017; Capozziello
et al. 2014, 2015).

Fig. 1 The redshift evolution of EoS parameter ωd(z) (top panel),
Ωd(z) (middle panel) and deceleration parameter q (bottom panel) in
VG cosmologies

3 Spherical collapse model

In this section we first present the basic equations of the
SCM in VG theory and then calculate the SCM parameters
in this theory. After that, the number of massive dark matter
haloes are counted in VG gravity. Finally we improve our
study by adding the shear and rotation as well as adopting
a different mass function to calculate the SCM parameters
and dark matter halo numbers in VG theory.
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3.1 Basic equations

The matter density contrast δm(t) for spherical region is de-
fined as

δm(t) = ρmc(t) − ρm(t)

ρm(t)
. (20)

Here ρmc is the matter density inside the spherical re-
gion and ρm denotes the matter density for the background.
Moreover, since the distribution of DE is uniform, this
means that the density of DE within the sphere is equal
to the density of DE in background, i.e. ρd = ρdc. Thus,
DE perturbations is vanishing everywhere under the influ-
ence of pressure. If δ is positive, then the overdense regions
will finally collapse (Bernardeau 1994; Padmanabhan 1996;
Wang and Steinhardt 1998; Ohta et al. 2003, 2004; Lin-
der 2005; Nesseris and Perivolaropoulos 2008). However,
a negative density contrast corresponds to the under-dense
regions, called voids, which expand faster than Hubble flow.
Note that, the second Friedmann Eq. (6) can be applied
for the dynamics inside the overdense region, replacing the
scale factor a by radius r (Abramo et al. 2007). Thus, we
have

r̈

r
= −4πG(t)

3(1 + β/2)

[
(1 + β + β2)

(1 + β)
ρc + 3Pc

]
, (21)

where ρc and Pc are, respectively, the total energy density
and pressure of the fluid within the sphere. Also, the con-
tinuity Eq. (10) for the evolution of matter inside the per-
turbed region is written as

ρ̇mc + h

(
6 + 2β + β2

2 + β

)
ρmc = 0, (22)

where h is the local expansion rate inside the spherical re-
gion, which obeys the relation h = ṙ/r . Now, taking the time
derivative of Eq. (20) and using the continuity Eqs. (10) and
(22), we find

˙δm +
(

6 + 2β + β2

2 + β

)
(1 + δm)(h − H) = 0 , (23)

where over dot denote derivative with respect to cosmic
time. The second derivative then gives

¨δm − δ̇2
m

1 + δm

− (1 + δm)

(
6 + 2β + β2

2 + β

)
(Ḣ − ḣ) = 0. (24)

To complete the derivations, we first need to compute Ḣ − ḣ.
Therefore, using Eqs. (6) and (21) we can obtain

Ḣ − ḣ =
(

ä

a
− H 2

)
−

(
r̈

r
− h2

)

= h2 − H 2 + 1 + β + β2

(1 + β)(2 + β)
δmΩmH 2. (25)

In the above equation, we use the relation ρmc − ρm =
−δmρm and we ignore the DE perturbation inside the per-
turbed region. Combining Eqs. (24) and (25), we find the
equation which describes the evolution of density contrast
in VG cosmology as follows:

¨δm −
(

8 + 3β + β2

6 + 2β + β2

)
δ̇2
m

1 + δm

+ 2H ˙δm

− (6 + 2β + β2)(1 + β + β2)

(1 + β)(2 + β)2
ΩmH 2(1 + δm)δm = 0.

(26)

Using the relations

δ̇m(t) = aH(a)δ′
m(a),

δ̈m(t) = a2H 2(a)δ′′
m(a) + aH 2(a)δ′

m(a)

+ a2H(a)H ′(a)δ′
m(a),

where the prime here is derivative with respect to the scale
factor a, we can rewrite Eq. (26) in the following form:

δ′′
m +

(
3

a
+ E′

E

)
δ′
m −

(
8 + 3β + β2

6 + 2β + β2

)
δ′2

m

1 + δm

−(1 + δm)δm

×
[
(6 + 2β + β2)(1 + β + β2)

(1 + β)(2 + β)2

Ωm0

E2
a

−(
10+4β+β2

2+β
)

]

= 0. (27)

Note that to obtain the above equation, we use Ωm =
(Ωm0/E

2)a
−(

6+2β+β2

2+β
). Ignoring the non-linear terms in this

equation, the linear equation for the growth of overdensities
in VG theory is obtained as

δ′′
m +

(
3

a
+ E′

E

)
δ′
m

−
[
(6 + 2β + β2)(1 + β + β2)

(1 + β)(2 + β)2

Ωm0

E2
a

−(
10+4β+β2

2+β
)
δm

]

= 0. (28)

It is easy to see that by putting β = 0, Eq. (27) reduces to
its standard form as follows (Abramo et al. 2007; Pace et al.
2010; Malekjani et al. 2017):

δ′′
m +

(
3

a
+ E′

E

)
δ′
m − 4δ′2

m

3(1 + δm)

− 3Ωm0

2E2a5
(1 + δm)δm = 0. (29)

3.2 SCM parameters in VG theory

Now we determine the two main quantities of SCM, the
linear overdensity δc and the virial overdensity parameter
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�vir , in the context of VG cosmologies. The importance of
quantity δc is that it is used, together with the linear growth
factor D(z), to calculate the number density of virialized
dark matter haloes. On the other hand, the virial overden-
sity �vir is used to determine the size of virialized haloes
(Lahav et al. 1991; Wang and Steinhardt 1998; Mota and
van de Bruck 2004; Horellou and Berge 2005; Wang and
Tegmark 2005; Abramo et al. 2007; Basilakos and Voglis
2007; Pace et al. 2010, 2012; Batista and Pace 2013; Pace
et al. 2014a; Malekjani et al. 2015b; Pace et al. 2014b;
Naderi et al. 2015). In order to calculate these quantities,
we follow the approach presented in (Pace et al. 2010). To
evaluate δc , we first need to solve the nonlinear Eq. (27) nu-
merically, starting from an initial condition at initial scale
factor ai . Since at collapse scale factor ac, the overdense
sphere falls to its center, the overdensity δm actually be-
comes infinite. Therefore, we should find an initial matter
overdensity δmi at the initial scale factor ai to solve non-
linear Eq. (27) such that the final value of δm at ac becomes
infinite. We fix the initial scale factor at ai = 10−4 indicat-
ing the start of matter dominated universe. Beside δmi , we
set δ′

mi = δmi/ai (Malekjani et al. 2015b, 2017; Rezaei and
Malekjani 2017).Numerically, we assume the infinite value
of δm at ac is achieved when δm > 107. Once δmi is found,
we use it together with δ′

mi to solve the linear Eq. (28) from
initial scale factor ai up to final scale factor ac. The value of
δm at collapse scale factor ac obtained from linear Eq. (28)
is defined as linear overdesnity δc (Malekjani et al. 2015b;
Nazari-Pooya et al. 2016) In the Einstein de-Sitter (EdS)
universe, the linear overdensity δc is equal to 1.686 inde-
pendent of redshift z. In the case of ΛCDM cosmology, this
value at present time is 1.675. Fig. 2 shows the evolution
of linear overdensity δc as a function of the collapse red-
shift zc in VG theory for two different parameters β = −.01
and β = .01 where the EoS parameter of DE is considered
by Eq. (19). The upper panel represents the quintessence
regime, namely the effective EoS parameter obeys ωd > −1.
The middle panel shows the solution for the VG model with
constant EoS parameter ωd = −2/3. Finally, the lower panel
refers to the phantom regime which has the EoS parameter
ωd < −1. Here we fix the present values of DE density and
matter density parameters as Ωd0 � .7 and Ωm0 � .3, re-
spectively. It can be seen that at low redshifts, when the uni-
verse is influenced by DE, δc for all models is smaller than
the value obtained at high redshifts. Eventually δc tends to
the EdS value at enough high redshifts when the universe
is dominated by matter and the growth of structures is not
affected by DE. Totally, the behavior of the evolution of lin-
ear overdensity δc in VG theory is compatible with that if
the DE cosmologies in GR theory (Devi and Sen 2011; Pace
et al. 2010; Batista and Pace 2013).

Now we calculate the virial overdensity �vir in VG the-
ory. In addition to determination the size of overdense re-
gion, �vir describes the ratio of the matter density in the

Fig. 2 The evolution of the linear overdensity δc(z) as a function of
cosmic redshift z in VG cosmologies. Line style and colours are same
as in Fig. 1

virialized structure to the background matter density at the
same epoch and is defined as �vir = ξ(x/y)3, where x is
the scale factor normalised to the turn-around scale factor, y

is the ratio between the radius of the sphere at z = zta and
at virialization, y = Rvir/Rta . The turn-around scale factor
ata can be easily computed by finding the minimum of quan-
tity log(

δnl+1
a3 ) where δnl is the non-linear overdensity. The

value of density contrast at turnaround redshift can be ob-
tained as ξ = ρmc(ata)/ρm(ata) = δnl(ata) + 1 (Wang and
Steinhardt 1998). Once ξ is obtained, we can calculate the
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virial overdensity parameter using �vir = ξ(x/y)3. In the
limiting case of EdS universe, using the fact that the time
of virialization is twice the turn-around time, tvir = 2tta ,
it is easy to show that (ac/ata)EdS = (1 + zta)/(1 + zc) =
(tc/tta)

2/3 = 22/3 = 1.587, hence y = 1/2, ξ = (3π/4)2 �
5.6 and �vir � 18π2 � 178. This result is independent of
cosmic redshift which means that the collapse of structures
takes place uniformly in the history of universe. However,
this is not the case for DE cosmologies. In particular, DE can
influence the virialization of structures at low redshifts. The
effect of such a DE fluid is that the final radius of virialized
halo will be larger or smaller than half of the turn-around
radius and the sphere can reach to the equilibrium state with
a larger or smaller radius that y = 1/2. Therefore in DE cos-
mologies, the SCM quantities vary by collapse redshift (La-
hav et al. 1991; Wang and Steinhardt 1998; Mota and van de
Bruck 2004; Horellou and Berge 2005; Wang and Tegmark
2005; Pace et al. 2014b; Malekjani et al. 2015b). In fact, in
DE cosmologies, since �vir depends on the evolution of the
DE component, it is a quantity depending on the redshift.
In other words, according to whether DE takes part or not
into the virialization process, the quantity y may be larger
or smaller than 1/2 and the parameter �vir can be affected
by including the DE sector (Pace et al. 2014b). This fea-
ture can be generalized when we consider DE in VG theory.
In Fig. 3, we calculate the virial overdensity �vir in VG for-
malism for two different values of parameter β . As shown in
the top panel, our results are closer to the reference ΛCDM
model. In middle and bottom panels, the difference between
ΛCDM model and VG models at the present time is bigger
than top panel. In all models, �vir reaches the fiducial value
�vir � 178 at high redshifts. Note that, at high redshifts,
since the effect of DE fluid on the growth of structures is
negligible, �vir increases to its EdS value for all models.

3.3 Haloes number counts

In this section, we compute the number counts of cluster-
size dark matter haloes in the context of the VG cosmolo-
gies. The Press-Shehter formalism (Press and Schechter
1974) assumes that the abundance of virialized haloes can
be expressed in terms of their mass. In this formalism, The
comoving number densities of collapsed haloes with masses
in the range of M and M +dM can be written as (Bond et al.
1991):

dn(M,z)

dM
= ρm0

M

dlnσ−1(M,z)

dM
f (σ), (30)

where ρm0 is the matter density of the background at the
present time, σ is the rms of the mass fluctuation in spheres
containing the mass M and f (σ ) is the mass function. The
earliest and simplest mass function is the Press-Schechter

Fig. 3 The evolution of the virial overdensity �vir with respect to the
collapse redshift for the VG theory considering the CPL parameteriza-
tion for DE. Line style and colours are same as in Fig. 1

(PS) mass function presented by (Press and Schechter 1974)
as follows:

f (σ ) =
√

2

π

δc(z)

σ (M,z)
exp

[
− δ2

c (z)

2σ 2(M,z)

]
. (31)

The PS mass function gives a good general result, especially
when the number density of intermediate size haloes is cal-
culated. But this mass function fails to calculate the number
density of high and low mass haloes. In fact it underpredicats
high mass objects and overpredicats low mass objects at the
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present epoch (Sheth and Tormen 1999; Jenkins et al. 2001;
Sheth and Tormen 2002; Lima and Marassi 2004). So it is
popular to use another fitting formula proposed by Sheth-
Tormen (ST mass function) as (Sheth and Tormen 1999,
2002; Jenkins et al. 2001; Reed et al. 2007)

fST (σ ) =A

√
2a

π

[
1 +

(
σ 2(M,z)

aδ2
c (z)

)p]
δc(z)

σ (M,z)

× exp

[
− aδ2

c (z)

2σ 2(M,z)

]
. (32)

It is easy to see that ST mass function reduces to stan-
dard mass function by setting A = 1/2, a = 1 and p = 0.
However, in ST mass function these numerical values read
A = 0.3222, a = 0.707 and p = 0.3. Hence Eq. (30) can be
written as

dn(M,z)

dM
=ρm0

M

dν

dM

[
0.2709

√
2

π

(
1 + 1.1096ν−0.6)]

× exp

[
−0.707ν2

2

]
, (33)

where ν(M,z) = δc(z)/σ (M,z) and δc(z) is the linear over-
density parameter. The quantity σ(M,z) is the variance of
mass scale M at redshift z and can be calculated as (Abramo
et al. 2007)

σ(M,z) = D(z)σM(z = 0), (34)

where D(z) = δm(z)/δm(z = 0) is the linear growth factor
computed from Eq. (28). Furthermore, we can calculate σM

by using the following relation between σM and σ8 (Viana
and Liddle 1996)

σM = σ8

(
M

M8

)−γ (M)/3

, (35)

where σ8 is the rms of the mass fluctuation on the scale
of size R8 = 8h−1 Mpc at present time. Also M8 = 6 ×
1014Ωm0h

−1M� is the mass inside R8 (Abramo et al. 2007).
In order to calculate σ8 in VG theory we can use the relation
σ8,V G = [δc,V G(z = 0)/δc,ΛCDM(z = 0)]σ8,ΛCDM where
we use the Planck observational value for σ8,ΛCDM as 0.815
(Ade et al. 2016). The exponent γ (M) in Eq. (35) is given
by

γ (M) = (0.3Γ + 0.2)

(
2.92 + 1

3
log

M

M8

)
, (36)

where Γ = Ωm0h exp (−Ωb − Ωb/Ωm0), is a shape param-
eter representing the profile of mass distribution inside the
virialized haloes. To obtain the number density of virialized
haloes with mass above a given value M1 at collapse redshift

z, we integrate Eq. (33) from M1 to M∞

n(> M1, z) =
∫ M∞

M1

dn

dM
dM , (37)

where we fix M∞ to 1018M�h−1 as such a gigantic struc-
ture could not be observed today. In this section, we compute
the number density of collapsed haloes with mass above a
typical value M1 from low mass tail (M1 ≡ 1013M�h−1) to
high mass tail (M1 ≡ 1015M�h−1) of halo clusters by using
the ST mass function. In terms of M8, this range belongs
to 0.05 < M/M8 < 5.55. In Figs. 4, 5 and 6, we display
the abundance of number of collapsed haloes as a function
of M/M8 computed in VG theory (nmodel) normalized to
its value calculated in standard ΛCDM model (nΛCDM ).
Various panels in Figs. 4, 5 and 6 from up to down are
shown for different cosmic redshifts, z = 0, z = 0.5, z = 1
and z = 2, respectively. Line style and colors are referred
in the caption of figures. In each figure, we can observe
the effect of DE as well as VG parameter β on the pre-
dicted number density of haloes based on the DE models
presented in Table 1. Comparing different panels in each
figure indicates the variation of these effects by varying
redshift z. On the other hand comparing different figures,
one can observe the effect of different DE models on the
computed number density in VG cosmologies. Since we
enforce all the models to share the same normalization of
matter power spectrum σ8 at the present time, all VG mod-
els and ΛCDM cosmology have the same number of ob-
jects at z = 0. At z = 0.5, we see that all models includ-
ing the ΛCDM one give roughly the same number of haloes
at low mass tail (M = 1013M�/h), while at high mass tail
(M = 1015M�/h) the differences between the VG models
and concordance ΛCDM one are more pronounced. Quanti-
tatively speaking, at z = 0.5, model I (model II) has roughly
6% (3%) more haloes than the ΛCDM model. This value
is approximately 30% (28%) for model III (model IV) and
−17% (−19%) for model V (model VI). At higher redshifts,
z = 1 and z = 2, the differences between VG cosmologi-
cal models and concordance ΛCDM universe appears also
at low mass tail. We observe that models I, II, III and IV
predict a higher number of virialized haloes compared to
ΛCDM model. While models V and VI result a lower num-
ber of objects compare to ΛCDM universe. The above re-
sult is due to the behavior of DE and its effect on the abun-
dance of virialized haloes. In fact for models I, II, III and
IV, DE has the quintessence like EoS parameter (see Fig. 1),
while in models V and VI, the EoS parameter of DE is phan-
tom like. We can also observe the effect of VG parameter β

on the predicted number of haloes. In all Figs. 4, 5 and 6,
one can see that models I, III and V with negative VG pa-
rameter (β = −0.01) has more virialized haloes than mod-
els II, IV and VI with positive VG parameter (β = +0.01).
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Fig. 4 Ratio of the number of haloes above a given mass M between VG models (I, II) and concordance ΛCDM model evaluated at different
redshifts:z = 0, z = 0.5, z = 1 and z = 2, respectively, from up panel to bottom panel. Line style and colours are same as in Fig. 1

Fractional differences in the number of virialised haloes be-
tween different VG models and the concordance ΛCDM
universe for three different mass scales: M > 1013M�/h,
M > 1014M�/h, and M > 1015M�/h, are reported in Ta-
ble 2.

3.4 Some improvements on SCM in VG theory

Here we first extend the SCM in VG formalism by studying
the effect of shear and rotation on the SCM parameters and
then investigate how the number counts of massive clusters
are changed by modification of mass function.

3.4.1 The effect of shear and rotation

In standard SCM, we assume that haloes form due to the
gravitational collapse of the initial spherical overdense re-
gion. This assumption is clearly a crude assumption. In
fact, the initial perturbations are not completely spherical
due to inclusion of shear and rotation (Bardeen et al. 1986;
Del Popolo et al. 2001; Del Popolo 2002; Shaw et al. 2006;
Bett et al. 2007). The general equations for the evolution of

perturbations in the presence of shear and rotation term have
been presented in (Abramo et al. 2007; Pace et al. 2010).
Also, the effect of shear and rotation on the evolution of
overdensities in standard GR gravity has been studied for
different DE models (Del Popolo et al. 2013a,b,c; Pace et al.
2014a). For the first time, the authors of (Del Popolo et al.
2013a) showed that including the shear and rotation term
causes that the parameters of SCM are mass-dependent. Fur-
thermore, the authors of (Del Popolo et al. 2013b) showed
that the joint effect of shear and rotation is the slowing down
of the collapse with respect to the simple SCM. Following
(Del Popolo et al. 2013a,c; Pace et al. 2014a), we define the
dimensionless quantity α as the ratio between the rotational
and the gravitational term as follows:

α = L2

M3RG
, (38)

where M and R are, respectively, the mass and the radius
of the spherical overdense region and L is the angular mo-
mentum. The values of α range from 0.05 for galactic mass
scales (M � 1011M�h−1) to 3 × 10−6 for cluster of galax-
ies scale (M � 1015M�h−1). In the presence of shear and
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Fig. 5 Ratio of the number of haloes above a given mass M between VG models (III, IV) and concordance ΛCDM model evaluated at different
redshifts:z = 0, z = 0.5, z = 1 and z = 2, respectively, from up panel to bottom panel. Line style and colours are same as in Fig. 1

rotation term, the equation for the evolution of non-linear
overdensities (e.g., Eq. (27)) can be written as

δ′′
m +

(
3

a
+ E′

E

)
δ′
m −

(
8 + 3β + β2

6 + 2β + β2

)
δ′2

m

1 + δm

− (1 − α)(1 + δm)δm

×
[
(6 + 2β + β2)(1 + β + β2)

(1 + β)(2 + β)2

Ωm0

E2
a

−(
10+4β+β2

2+β
)

]
= 0,

(39)

where the effect of α on the evolution of non-linear over-
densities appears on the last term in the left hand side of
above equation. For complete discussion and derivations,
see (Del Popolo et al. 2013b; Pace et al. 2014a). Note that
the quantity α is the non-linear parameter and therefore does
not appear in linear Eq. (28). It hs been shown that the effect
of shear and rotation on the SCM at high redshifts is much
smaller than present time (Pace et al. 2014a; Del Popolo
et al. 2013b). Hence we focus on this effect on the SCM
parameters only at the present time and calculate the present
values of δc and �vir by solving the non-linear Eq. (39).
The results for different values of α are collected in Table 3.

We see that both the linear overdensity δc and virial over-
density �vir get higher values by increasing the shear and
rotation parameter α. We also see that the effect of shear and
rotation on the collapsing sphere is more important at galac-
tic scale (α � 0.05) and is less important at massive cluster
scales (α � 10−6). Both the above results are in agreement
with those of the GR theory of gravity (e.g., see Pace et al.
2014a; Del Popolo et al. 2013b).

3.4.2 The effect of mass function

Here, we study that how changing the mass function affects
the number counts of dark matter haloes. To do this, we cal-
culate the number count of virialized haloes by adopting the
new mass function presented by Del Popolo et al. (2017)
which is in good agreement with simulations (Klypin et al.
2011; Bhattacharya et al. 2011). This new mass function is
introduced as (Del Popolo et al. 2017):

νf (ν) �A2

√
aν

2π

(
1 + 0.1218

(aν)0.585
+ 0.0079

(aν)0.4
+ 0.1

(aν)0.45

)
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Fig. 6 Ratio of the number of haloes above a given mass M between VG models (V, VI) and concordance ΛCDM model evaluated at different
redshifts:z = 0, z = 0.5, z = 1 and z = 2, respectively, from up panel to bottom panel. Line style and colours are same as in Fig. 1

× exp

[
− 0.4019aν2.12

(
1 + 0.5526

(aν)0.585
+ 0.02

(aν)0.4

+ 0.07

(aν)0.45

)2]
. (40)

In this mass function, the effects of angular momen-
tum and dynamical friction on the spherical collapse are
included. Here, the numerical constants are A2 = 0.93702,
a = 0.707 and ν = δc/σ . In Fig. 7, we show the number of
dark matter haloes in terms of M/M8 computed using the
mass function by Del Popolo et al. (2017) normalized to its
value computed by Sheth-Tormen mass function. In this fig-
ure, n2 and n1 are the number density of virialized haloes
with mass above a given value M1 (see Eq. (37)) at collapse
redshift z calculated using the mass function by Del Popolo
et al. (2017) and Sheth-Tormen mass function, respectively.
In general, we see that at low mass tail, the difference of
the two mass functions is small. While at high mass tail,
the difference is significant. We also see that the difference
between the mass functions is increasing by redshift. The
numerical results and the fractional differences of number
of haloes above a given large mass M > 1015M�/h calcu-

lated for mass function by Del Popolo et al. (2017) and the
Sheth-Tormen mass function are presented in Table 4.

4 Conclusion

In the context of VG theory, we firstly investigated the evo-
lution of main cosmological quantities in background level
and secondly studied the growth of cosmic structures using
the spherical collapse model (SCM). We adopted the CPL
parameterization and considered two different quintessence
and phantom regimes for EoS parameter of DE. At back-
ground level, we found that, for all VG models considered
in this work, the deceleration parameter q becomes nega-
tive at low redshifts. We also showed that in the context of
VG theory, the transition from early decelerated to current
accelerated expansion is consistent with observations.

In perturbation level, we calculated the growth of matter
spherical overdensities in both linear and nonlinear regimes.
In particular, we computed the evolution of linear overden-
sity parameter δc and virial overdensity �vir as a function
of cosmic redshift z for different VG models assumed in our
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Table 2 The fractional difference of number of haloes between cos-
mological models in VG cosmologies and the concordance ΛCDM
model. Results are shown at four different redshifts: z = 0, z = 0.5,
z = 1 and z = 2 for haloes with M > 1013M�/h, M > 1014M�/h,
and M > 1015M�/h

Model I z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% 1% 2.8% 11.6%

M > 1014M�/h 0% 2.1% 6.5% 29.1%

M > 1015M�/h 0% 6.6% 21.87% 131.3%

Model II z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% 0.4% 2.2% 9.3%

M > 1014M�/h 0% 1% 5% 23.1%

M > 1015M�/h 0% 3% 16.6% 98%

Model III z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% 4% 14.3% 54.9%

M > 1014M�/h 0% 9% 35.1% 176.9%

M > 1015M�/h 0% 29.8% 156.6% 2702%

Model IV z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% 3.8% 13.7% 52.3%

M > 1014M�/h 0% 8.6% 33.6% 166.2%

M > 1015M�/h 0% 28.4% 147.7% 2364.4%

Model V z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% −2.9% −8.4% −21.7%

M > 1014M�/h 0% −6.2% −18% −43.5%

M > 1015M�/h 0% −17.6% −46.5% −84.8%

Model VI z = 0 z = 0.5 z = 1 z = 2

M > 1013M�/h 0% −3.1% −9.1% −23.4%

M > 1014M�/h 0% −6.7% −19.3% −46.4%

M > 1015M�/h 0% −19% −49.1% −87.2%

analysis. Due to the effect of DE at low redshifts, we ob-
served the decreasing of δc and �vir along the cosmic red-
shift z in VG cosmologies similarly with that of the ΛCDM
universe. Also, these quantities in VG theory tend to those
of the EdS universe at enough high redshifts indicating that
at early times the effects of DE are negligible.

In next step, we computed the abundance of virialized
dark matter haloes in VG cosmologies using the Sheth-
Tormen mass function. We saw that at lower redshifts the
differences between the number of virialized haloes com-
puted in VG theory and concordance ΛCDM universe are
less (more) pronounced at low (high) mass tail of cosmic
structures. While at higher redshifts, the difference is also
considerable even at low mass tail of mass function. We

Table 3 The numerical values for δc (�vir ) calculated for different
cosmological models in VG theory affected by including shear and ro-
tation term

Model α = 0.00 α = 0.000001 α = 0.001 α = 0.05

Model I 1.675 1.675 1.684 2.183

(103.17) (103.17) (103.24) (107.17)

Model II 1.673 1.673 1.681 2.181

(100.09) (100.09) (100.17) (103.98)

Model III 1.670 1.670 1.679 2.170

(117.20) (117.20) (117.29) (121.74)

Model IV 1.667 1.668 1.676 2.169

(113.88) (113.88) (113.96) (118.29)

Model V 1.680 1.680 1.688 2.194

(88.58) (88.58) (88.65) (92.14)

Model VI 1.677 1.677 1.686 2.192

(85.79) (85.79) (85.86) (89.25)

ΛCDM 1.675 1.675 1.684 2.186

(101.90) (101.90) (101.97) (105.74)

Table 4 The fractional difference of number of haloes between the new
mass function presented by Del Popolo et al. (2017) and the Sheth-
Tormen mass function. Results are shown at four different redshifts:
z = 0, z = 0.5, z = 1 and z = 2 for haloes with M > 1015M�/h

M > 1015M�/h z = 0 z = 0.5 z = 1 z = 2

Models I, II 13.19% 44.96% 123.19% 859.25%

Models III, IV 13.19% 42.31% 105.36% 583.56%

Models V, VI 13.19% 48.57% 145.24% 1301.38%

showed that in VG theory, like GR theory, the abundance
of collapsed haloes in quintessence (phantom) DE models
is higher (lower) than those of the ΛCDM cosmology. The
impact of VG parameter β on the number density of virial-
ized haloes is investigated. We observed that the VG models
with negative sign of β have more collapsed objects rather
than models with positive sign.

Finally, we extended the SCM in VG theory by investi-
gating the effect of shear and rotation on the SCM parame-
ters and studying the change of number count of dark mat-
ter haloes by modification of mass function. We found that
δc and �vir reach the larger values by increasing the shear
and rotation parameter. Like standard gravity, in VG theory
of gravity, the effect of shear and rotation on the galactic-
size haloes is more pronounced than the massive cluster-
size haloes. In addition, we found that the abundance of dark
matter haloes at high mass tail computed by the new mass
function Del Popolo et al. (2017) is higher than that of the
Sheth-Tormen mass function while the difference is negligi-
ble at low mass tail.
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Fig. 7 Ratio of the number of haloes above a given mass M be-
tween the new mass function presented in (Del Popolo et al. 2017)
and Sheth-Tormen mass function at different cosmological redshifts
z = 0.0, z = 0.5, z = 1.0 and z = 2.0 for VG models I & II (upper
panel), VG models III & IV (middle panel) and VG models V & VI
(lower panel)
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risdictional claims in published maps and institutional affiliations.
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