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Abstract The inner structure of a star or primordial inter-
stellar cloud is a topic of major importance in classical and
relativistic astrophysics. The impact that General Relativ-
ity has on this structure has been the subject of many re-
search papers. In this paper we consider within the context
of General Relativity a prototype model for stellar struc-
ture in which the pressure and density, but not tempera-
ture and density, are related polytropically. To justify this
assumption, we note that stars undergo thermodynamically
irreversible processes, including the loss of heat to their
surroundings. Because of these processes, the temperature
may not be controlled by local pressure and gas density.
The usual polytropic equation of state relating pressure p

and density ρ may now be replaced the generalized equa-
tion p = A(r)ρα(r), where the isentropy coefficient A(r)

and isentropy index α(r) are functions of radius r . Solutions
for the interior stellar structure are then derived within the
framework of Einstein’s equations for General Relativity.
A single equation for the cumulative mass distribution of the
star is obtained and the Tolman-Oppenheimer-Volkoff equa-
tion is used to derive formulae for the isentropic index and
coefficient. We present analytic and numerical solutions for
the generalized polytropic structure of self-gravitating stars
and examine their stability. We also prove that if the isen-
tropic index and isentropic coefficient are known, the cor-
responding distribution of mass within the star is uniquely
determined.
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1 Introduction

The distribution of mass within a star is an important astro-
physical problem and has been the subject of intense ongo-
ing research. Within the context of classical physics Euler-
Poisson equations form the basis for this research (Humi
2018, 2006). A special set of solutions to these equations for
non-rotating spherically symmetric stars with mass-density
ρ = ρ(r) and flow field u = 0 is provided by the Lane-
Emden functions. The generalization of these equations to
include axi-symmetric rotations was by considered by Milne
(1923), Chandrasekhar (1938, 1967) and many others.

Another aspect of this problem relates to the emergence
of density pattern within a primordial interstellar gas. This
problem was considered first by Laplace in 1796 who con-
jectured that a primitive interstellar gas cloud may evolve
under the combined influence of gravity and rotation to
form a system of isolated rings which may in turn lead to
the formation of planetary systems (Woolfson 2000; Pren-
tice 1978; Matsumoto and Hanawa 1999; Prentice and Dyt
2003). Such a system of rings around a protostar has been
observed recently in the constellation Taurus (ALMA Part-
nership 2015).

It is obvious however that on physical grounds this prob-
lem should be treated within the context of General Relativ-
ity. The Einstein equations of General Relativity are highly
nonlinear (Milne 1923; Adler et al. 1975) and their solu-
tion presents a challenge that has been addressed by many
researchers (Adler et al. 1975; Stephani et al. 2003; Hein-
zle et al. 2003). An early solution of these equations is due
to Schwarzschild for the field exterior to a spherical star
(Schwarzschild 1916). However, interior solutions (inside
space occupied by matter) are especially difficult due to the
fact that the energy-momentum tensor is not zero. Static so-
lutions for this case were derived under idealized assump-
tions (such as constant density) by Tolman (1939), Adler
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(1974), Adler et al. (1975), Buchdahl (1959) and were ad-
dressed more recently in the lecture series by Gourgoul-
hon (2006) and the review by Paschalidis and Stergioulas
(2017), Stephani et al. (2003), Schwarzschild (1916), Weyl
(1918, 1919), Levi-Civita (1919), Matsumoto and Hanawa
(1999) (these references contain a lengthy list of publica-
tions on this topic). In addition various constraints were de-
rived for the structure of a spherically symmetric body in
static gravitational equilibrium (Tolman 1939; Oppenheimer
and Volkoff 1939; Buchdahl 1959; Adler 1974; Woolfson
2000). Interior solutions in the presence of anisotropy and
other geometries were considered also (Arik and Delice
2005; Kovetz 1969; Bayin 1982; Maurya et al. 2015). An
exhaustive list of references for exact solutions of the Ein-
stein equations appears in Adler et al. (1975), Stephani et al.
(2003).

Due to the complexity of the problem of stellar interi-
ors, which involves several concurrent physical processes,
we consider in this paper an idealized model based on Gen-
eral Relativity in which the star (or the interstellar gas cloud)
is polytropic and inquire about the mass density pattern
within the star under this assumption. This assumption im-
plies implicitly that some thermodynamic processes are on-
going within the star. These type of processes have been ig-
nored in some stellar models in General Relativity, e.g. the
interior Schwarzschild Solution.

For polytropic gas we have the following relationship be-
tween pressure p and density ρ

p = Aρα (1.1)

where α is the isentropy index and A is the isentropy coeffi-
cient. In the literature, when α = 1 the gas is considered to
be isothermal. However, when (and only when) α equals the
ratio of specific heats at constant pressure or specific heat at
constant volume, the gas is isentropic. For all other values
of α the gas is called polytropic. This marks finite heat ex-
changes within the fluid. However, one can consider a more
general functional relationship between p and ρ where both
α and A are dependent on r . The physical motivation for
these generalized polytropic relationships with A = A(r)

and/or α = α(r) is due the large spatial dimension of the
star (or the primordial cloud). Therefore it stands to rea-
son that variations in these constants make sense from a
physical point of view and these functional relationships are
more realistic than the ones with constant A and α. The spa-
tial dependence of these parameters might imply a change
in the intensity of the (thermodynamics) processes taking
place. In this paper, however, we restrict ourselves and con-
sider only functional relationships between p and ρ in which
only one of these parameters is dependent on r , viz. either
p = A(r)ρ(r)α where α is constant or p = Aρ(r)α(r) where
A is constant. These two position-dependent expressions for

the isentropy relationship represent different physical prop-
erties of the gas.

The plan of the paper is as follows: In Sect. 2 we review
the basic theory and equations that govern mass distribution
and the components of the metric tensor. In Sect. 3 we derive
an equation for the cumulative mass of the sphere as a func-
tion of r and use the Tolman-Oppenheimer-Volkoff (TOV)
equation to derive equations for the isentropy index and co-
efficient. We then prove that when these two parameters are
predetermined the mass density within the star cannot be
chosen arbitrarily. In Sect. 4 we address the stability of a
given mass distribution to small perturbations. In Sect. 5 we
present exact and numerical solutions for polytropic spheres
with predetermined mass density distribution and determine
their isentropy coefficients and stability. We summarize with
some conclusions in Sect. 6.

2 Review

In this section we present a review of the basic theory, fol-
lowing Chap. 14 in Adler et al. (1975).

The general form of the Einstein equations is

Rmn − 1

2
gmnR = −8πκ

c2
Tmn, m,n = 0,1,2,3, (2.1)

where Rmn and R are respectively the contracted form of the
Riemann tensor Rabcd and the Ricci scalar,

Rmn = Ra
man, R = Rm

m.

Tmn is the matter stress-energy tensor, κ is Newton’s gravi-
tational constant, c is the speed of light in a vacuum and gmn

is the metric tensor.
The general expression for the stress-energy tensor is

Tmn = ρumun + p

c2
(umun − gmn), (2.2)

where ρ(x) is the proper density of matter and um(x) is the
four vector velocity of the flow.

In the following we shall assume that ρ = ρ(r), p = p(r)

and a metric tensor of the form

gmn = c2eνdt2 − [
eλdr2 + r2(dφ2 + sin2 φdθ2)], (2.3)

where λ = λ(r), ν = ν(r) and r,φ, θ are the spherical coor-
dinates in 3-space.

When matter is static um = (u0,0,0,0) and Tmn takes the
following form,

Tmn =

⎛

⎜⎜
⎝

ρeν 0 0 0
0 p

c2 eλ 0 0
0 0 p

c2 r2 0
0 0 0 p

c2 r2 sin2 φ

⎞

⎟⎟
⎠ . (2.4)
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After some algebra (Adler et al. 1975; Tolman 1939; Oppen-
heimer and Volkoff 1939) one obtains equations for ρ, p, λ,
ν and M(r), where M(r) is the total mass interior to radius
r of the sphere. These are

dM

dr
= Br2ρ (2.5)

e−λ = 1 − 2M

r
(2.6)

eλ

r2
= 1

r2
− 1

4

[(
dν

dr

)2

− dν

dr

dλ

dr

]

+ 1

2r

(
dν

dr
+ dλ

dr

)
− 1

2

d2ν

dr2
(2.7)

C

c2
p = 1

r2
− e−λ

(
1

r2
+ 1

r

dν

dr

)
(2.8)

where

C = −8πκ

c2
, B = 4πκ

c2
.

In addition we have the Tolman-Oppenheimer-Volkoff
(TOV) equation which is a consequence of (2.5)–(2.8):

1

c2

dp

dr
= −M − Cr3p/2c2

r(r − 2M)

(
ρ + p

c2

)
. (2.9)

In the following we normalize c to 1; B remains −C
2 .

Assuming that M(r) is known we can solve (2.7) alge-
braically for λ and substitute the result in (2.8) to derive the
following equation for ν:

1

2

d2ν

dr2
+ 1

4

(
dν

dr

)2

− 1

2

(3M − r dM
dr

− r) dν
dr

r(2M − r)

− 3M − r dM
dr

r2(2M − r)
= 0. (2.10)

Although this is a nonlinear equation it can be linearized by
the substitution

dν

dr
= 2

du
dr

u
= d ln(u2)

dr
(2.11)

which leads to

d2u

dr2
− (3M − r dM

dr
− r)

r(2M − r)

du

dr
− 3M − r dM

dr

r2(2M − r)
u = 0. (2.12)

3 On the structure of isentropic stars

In this section we consider isentropic stars and derive gen-
eral analytic expressions for M(r), α(r) and A(r).

3.1 General equation for M(r)

Using the equations presented in the previous section one
can derive a single equation for M(r) for a polytropic star
where both A and α are functions of r :

p = A(r)ρα(r). (3.1)

To this end we substitute the barotropic relation (3.1) in (2.8)
to obtain

ρα(r) = c2

CA(r)

{
1

r2
− e−λ

(
1

r2
+ 1

r

dν

dr

)}
. (3.2)

Substituting (2.5) for ρ in (3.2), normalizing c to 1 and using
the fact that C = −2B it follows that

( dM(r)
dr

Br2

)α(r)

= − 1

2BA(r)

{
1

r2
−e−λ

(
1

r2
+ 1

r

dν

dr

)}
. (3.3)

Substituting (2.6) for λ in (3.3) and solving the result for dν
dr

yields

dν

dr
= −2

(
dM(r)

dr

Br2 )α(r)BA(r)r3 + M(r)

r(2M(r) − r)
. (3.4)

Differentiating this equation to obtain an expression for d2ν

dr2

and substituting in (2.10) leads finally to the following gen-
eral equation for M(r):

− 2r3−2α(r)B1−α(r)
(
2M(r) − r

)(dM(r)

dr

)α(r)

×
{
A(r)α(r)

d2M(r)

dr2
+ dM(r)

dr

×
[
A(r) ln

( dM(r)
dr

Br2

)
dα(r)

dr
+ dA(r)

dr

]}

+ 2r2−2α(r)B1−α(r)A(r)

(
dM(r)

dr

)α(r)+1

×
[
r
dM(r)

dr
+ M(r)

(
1 + 4α(r)

) − 2rα(r)

]

+ 2r5−4α(r)B2−2α(r)A(r)2
(

dM(r)

dr

)2α(r)+1

+ 2M(r)

(
dM(r)

dr

)2

= 0. (3.5)

This is a highly nonlinear equation but it simplifies con-
siderably when A(r) is a constant or α(r) is an integer. A so-
lution of this equation can then be used to compute the met-
ric coefficients using (2.6) and (3.4). With this equation it is
feasible to investigate the dependence of the mass distribu-
tion on the parameters α(r) and A(r).
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In view of the difficulty of obtaining analytic solutions
for (3.5) an alternative strategy should be used to investi-
gate the structure of polytropic stars. Thus if we start with
some analytic form of ρ then we can use (2.5) to com-
pute M(r). With this data it is straightforward to derive dif-
ferential equations for α(r) and A(r) using the TOV equa-
tion (2.9).

3.2 Equation for α(r) when A(r) is constant

If we let A(r) in (3.1) be constant and substitute p = Aρα(r)

in (2.9) we obtain after some algebra the following equation
for α(r).

Ar
(
2M(r) − r

)
ρ(r)α(r) ln

(
ρ(r)

)dα

dr

+ Arα(r)ρ(r)α(r)−1(2M(r) − r
)dρ

dr

− [
M(r) + ABr3ρ(r)α(r)

][
Aρ(r)α(r) + ρ(r)

] = 0.

(3.6)

3.3 Equation for A(r) when α(r) is constant

Following the same strategy as in the previous subsection
we obtain a differential equation for A(r)

r
(
2M(r) − r

)
ρ(r)α

dA(r)

dr

+ αA(r)r
(
2M(r) − r

)
ρ(r)α−1 dρ

dr

− [
M(r) + Br3A(r)ρ(r)α

][
A(r)ρ(r)α + ρ(r)

] = 0.

(3.7)

Thus in this setting (where ρ is predetermined) one can
use (3.6) or (3.7) to compute α(r) or A(r) by solving a first
order differential equation. Alternatively, (3.6) and (3.7) can
be converted to an equation for ρ by using (2.5). We can
then choose a functional form for either α(r) (and a constant
value for A in (3.6)) or A(r) (and a constant value for α in
(3.7)) to determine ρ subject to proper boundary conditions.
It follows then, under the tenets of General Relativity, that
the density of a polytropic star cannot be assigned arbitrarily.
The same follows from (3.5) when the functional form α(r)

and A(r) is predetermined.
Below we give several examples.

3.4 Equation for ρ when A(r) and α(r) are constant

Solving (3.7) algebraically for M(r) and substituting in
(2.5), we obtain after some algebra a rather complicated
equation for ρ(r) with A = A(r) and α constant. Therefore
we present only a special case of this equation in which both
are constant.

With both α(r) and A(r) constant, Eqs. (3.6) and (3.7)
collapse to the following. For brevity, we suppress the de-
pendence of M(r) and ρ(r) on r :

Aαr(2M − r)
dρ

dr
− ABr3ρ2(Aρα−1 + 1

)

− Mρ
(
A + ρ−α+1) = 0. (3.8)

Algebraically isolating M and substituting in (2.5) we obtain
the following equation for ρ:

A2
d2ρ

dr2
+ A12

(
dρ

dr

)2

+ A11
dρ

dr
+ A0 = 0 (3.9)

where

A2 = −Aαr2ρα
(
2A2Br2ρ2α + 2ABr2ρα+1 + Aρα + ρ

)
,

A12 = Ar2αρα−1(2A2Bαr2ρ2α + 2A2Br2ρ2α

− 4ABr2αρα+1 + 4ABr2ρα+1 + 2Aαρα

+ Aρα + (2 − α)ρ
)
,

A11 = Aαrρα
(
3A2Br2ρ2α + 6ABr2ρα+1

+ 3Br2ρ2 − 2Aρα − 2ρ
)
,

A0 = −Br2ρ
(
ρ3 + 3A3ρ3α + 7A2ρ2α+1 + 5Aρα+2).

In particular, when α = 1 and A is normalized to 1 (3.9)
reduces to

rρ
(
2Br2ρ + 1

)d2ρ

dr2
− 2r

(
Br2ρ + 1

)(dρ

dr

)2

+ 2ρ
(
1 − 3Br2ρ

)dρ

dr
+ 8Brρ3 = 0. (3.10)

This equation has an asymptotic solution for large r as
ρ(r) ≈ 1

r2 .
Similarly for A = 1 and α = 2 we obtain the following

equation for ρ(r)

2r(ρ + 1)
(
2Br2ρ2 + 1

)d2ρ

dr2

− 2r
[
2Br2ρ(3ρ − 2) + 5

](dρ

dr

)2

− 2
(
ρ(r) + 1

)[
3Br2ρ(ρ + 1) − 2

]dρ

dr

+ Brρ(ρ + 1)2(3ρ + 1) = 0, (3.11)

for which an exact solution has not been found.
In Fig. 1 we present the numerical solutions of these two

cases (α = 1 and α = 2, each with A = 1) by the red and
blue dashed lines, respectively. The boundary conditions on
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Fig. 1 ρ(r) for A = 1 with α = 1 and α = 2 (red and blue dashed lines)
and for A = r with α = 1 and α = 2 (magenta and green solid lines)

ρ are ρ(0.001) = 1 and ρ(0.995) = 5×10−3. These bound-
ary conditions are needed to avoid numerical singularities at
0 and 1.

Similarly, if we let A(r) = Dr where D is a constant, we
can derive the numerical solution for ρ = ρ(r). This solution
is shown by the magenta and green lines in Fig. 1 for the two
cases α = 1 and 2, respectively.

Similarly if we let A(r) = Dr (where D is a constant)
then for α = 1,2 we obtain for ρ in Fig. 1 the solid magenta
and green lines, respectively.

Thus we demonstrate that in the context of General Rela-
tivity the mass density distribution of a polytropic star with
A = A(r) and constant α cannot be assigned arbitrarily.

Using (3.6) and following the same steps described above
we can obtain similar equations to the case where α = α(r)

and A is constant.

4 Impact of perturbations

In this section we derive equations that assess the impact
of small perturbations in the cumulative mass profile on the
static cumulative mass distribution function M(r) of the star.
To this end we consider the two models that were discussed
in (3.6) and (3.7). We then apply these results to the models
discussed in the previous section.

To implement this objective we introduce a perturbation
to a star with initial cumulative mass distribution M0:

M(r) = M0(r) + εM1(r). (4.1)

Here the constant 0 < ε � 1 is called the perturbation
parameter. The mass configuration is considered to be sta-
ble if the perturbation mass function M1(r) has initial value
|M1(0)| � 1 and if |M1(r)| remains bounded and M(r) ≥ 0.

It will be considered unstable otherwise. To derive the equa-
tion that M1 satisfies we consider the two polytropic models
separately.

4.1 The case p = Aρα(r) with A constant

To simplify the presentation we shall assume that A = 1 and
B = 1. Substituting (4.1) in (3.5) and using (2.5) we ob-
tain to first order in ε the following differential equation for
M1(r):

[−2ZS(2M0 − r)α
]d2M1

dr2

+
{
−2SZ(2M0 − r)

(
1 + ln(ρ)

)
(α + 1)

−
[

2(2M0 − r)

((
r2ρ

)−1+α
S

d(r2ρ)

dr2
− 2ZR

)]
α2

+ 2R
(
r3Zρ + r

(
2
(
r2ρ

)2α
R − 2Z

) + 5ZM0
)
α

+ 2R
(
r3Zρ + Rr

(
r2ρ

)2α + ZM0 + r
(
r2ρ

)α+1)

+ 4r2M0ρ

}
dM1

dr

[(
−4ZS

d(r2ρ)

dr
+ 8Wr2−2α

)
α

− 4SW ln(ρ)
dα

dr
+ 2Wr2−2α + 2r4ρ2

]
M1 = 0 (4.2)

where

R = r2−2α, S = r3−2α, W =
(

dM0

dr

)α+1

,

Z =
(

dM0

dr

)α

.

4.2 The case p = A(r)ρα with α constant

For simplicity we treat here only the case α = 1. Following
the same steps as in the previous subsection we obtain

− Arρ(2M0 − r)
d2M1

dr2

+
[
r(r − 2M0)

(
2ρ

dA

dr
+ A

dρ

dr

)
+ 3ρ2Ar3(A(r) + 1

)

+ 2ρA(3M0 − r) + 2ρM0

]
dM1

dr

+ r2ρ

[(
−2r

dρ

dr
+ ρ

)
A − 2rρ

dA

dr
+ ρ

]
M1 = 0 (4.3)

where ρ is the density which corresponds to M0.
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5 Polytropic gas spheres and their stability

In the present section we solve (2.5) through (2.8) for poly-
tropic gas spheres. We present four solutions. The first is an
analytic solution of these equations while the others utilize
numerical computations. We consider the stability of these
solutions. The stability of the solution is calculated using
(4.3).

5.1 Polytropic sphere with analytic solution

For the present case we start by choosing a functional form
for the density ρ(r) and then solve (2.5) for M(r). Equa-
tion (2.6) becomes an algebraic equation for λ(r) while (2.7)
is a differential equation for ν(r). Substituting this result in
(3.2), one can compute the isentropy coefficient A(r) (or
isentropy index α(r)).

The following illustrates this procedure and leads to an
analytic solution for the metric coefficients.

Consider a sphere of radius R (where 0 < R ≤ √
2) with

the density function

ρ(r) = 1

4

R2 − r2

Br2
(5.1)

where B is the constant in (2.5). Using (2.5) with the initial
condition m(0) = 0 we then have for 0 ≤ r ≤ R

M(r) = R2r

4
− 1

12
r3. (5.2)

Observe that although ρ(r) is singular at r = 0 the total mass
of the sphere is finite. Furthermore, although the density
ρ(r) is infinite at r = 0, this singularity is easily removed
by introducing a lower bound 0 < r0 � 1 for the domain of
the function.

Using (2.6) yields

λ(r) = − ln

(
1 − R2

2
+ r2

6

)
. (5.3)

Substituting (5.2) into (2.12) we obtain a general solution
for ν(r) which is valid for R �= 1 and R �= √

2.

ν = 2 ln
(
C1rF (r)ω + C2rF (r)−ω

)
(5.4)

where

F(r) = 6 − 3R2 + √
6 − 3R2

√
6 − 3R2 + r2

r
,

ω =
√

2(R2 − 1)

R2 − 2
.

For R = 1 the solution is

ν = 2 ln

[
r

(
D1 + D2 arctanh

√
3

3 + r2

)]
. (5.5)

At r = 0 we have ν(0) = −∞ and the metric is singular at
this point. This reflects the fact that the density function (5.1)
has a singularity at r = 0 (but the total mass of the sphere is
finite). We observe that this singularity in ρ at r = 0 does not
correspond to any of those classified by Arnold et al. (1982).
This is due to the fact that none of the solutions presented in
Arnold et al. (1982) has a periodic structure.

To determine the constants D1 and D2 we use the fact
that at R = 1 the value of ν should match the classic
Schwarzschild exterior solution

eν(R) = 1 − 2M

R

and the pressure (see (2.8)) is zero. These conditions lead to
the following equations:

(
D1 + D2 arctanh

√
3

2

)2

− 2

3
= 0 (5.6)

3D1 + 3D2 arctanh

√
3

2
− 2

√
3D2 = 0. (5.7)

The solution of these equations is

D1 = −
√

2

6

(
3 arctanh

√
3

2
− 2

√
3

)
, D2 =

√
2

2
.

Using (2.8) we obtain the following expression for the pres-
sure

p = 1

C

{
D2

√
3(3 + r2)

3r2(D1 + D2 arctanh
√

3
3+r2 )

− 1

2

(
1

r2
+ 1

)}
.

Assuming that p(r) = A(r)ρ(r) we depict A(r) for this so-
lution in Fig. 2.

Note that trying to model this result by a relationship of
the form p(r) = Aρα(r) leads to discontinuities in the values
of α(r). For R = √

2 the differential equation for ν is

2
d2ν

dr2
+

(
dν

dr

)2

+ 24

r4
= 0. (5.8)

The solution of this equation is

ν = − ln(24) + 2 ln

[
r

(
E1 sin

√
6

r
+ E2 cos

√
6

r

)]
(5.9)

and applying the boundary conditions on ν and the pressure
at r = √

2 we find that

E1 = 2 sin(
√

3), E2 = 2 cos(
√

3).

If we assume that the relationship between the pressure and
the density is of the form p = Aρα(r) then α(r) exhibits sev-
eral local sharp peaks in the range 0 < r <

√
2 but is almost

zero otherwise.
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Fig. 2 A(r) for the mass distribution (5.2)

Fig. 3 M1(r) for M(r) in Eq. (5.2)

The plot for a perturbation M1(r) from the initial mass
distribution M0(r) in (5.2) is presented in Fig. 3. This fig-
ure demonstrates that (using Eq. (4.3)) the mass distribution
is stable to perturbations whose initial size M1(0) is of or-
der 10−3.

5.2 Spheres with oscillatory density functions

Here we discuss several examples of spheres with oscilla-
tory density functions and determine the appropriate poly-
tropic index (or coefficient) that describes these spheres. We
probe also for the stability of these mass configurations to
small perturbations.

Fig. 4 Solution of (3.6) for α(r) with ρ in (5.10)

5.2.1 Infinite sphere with exponentially decreasing density

Let

ρ(r) = e−r (D + cos r), 0 ≤ r ≤ ∞ (5.10)

where D = 1.1. The deviation of D from 1 is needed to
avoid ρ = 0 in (3.6)–(3.7). Otherwise these equations be-
come singular when ρ = 0.

It follows from (2.6) (with m(0) = 0) that

M(r) = B

{(
2D − 1

2

)
− e−r

2

[(
r2 − 1

)
cos(r)

− (r + 1)2 sin(r) + 2D
(
(r + 1)2 + 1

)]}
(5.11)

Observe that although the sphere is assumed to be of infi-
nite radius the mass density approaches zero exponentially
as r → ∞ and the total mass of the sphere is finite. Further-
more, although the analytical expression for ρ is singular at
r = 0, one can avoid this physical singularity by introduc-
ing a lower bound radius 0 < r0 � 1 for the domain of the
function ρ(r) with no physical impact on the solution.

Substituting these expressions in (3.6) with A = B = 1
and D = 1.1 and solving for α(r) we obtain Fig. 4. The
strong decline in α(r) for r > 0.5 is due to the exponential
decrease of ρ(r) with increasing r . If we substitute B = 1,
α = 1 and D = 1.1 in (3.7) we obtain Fig. 5 where A(r) has
a steep negative gradient as ρ(r) → 0.

The plot for a perturbation M1(r) from M0(r) that is
given by (5.11) is presented in Fig. 6 (using Eq. (4.3)). It
shows that the mass distribution remains stable to perturba-
tions whose initial size M1(0) is of order 10−5.
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Fig. 5 Solution of (3.7) for A(r) with ρ in (5.10)

Fig. 6 M1(r) for M(r) in Eq. (5.11)

5.2.2 Finite sphere with radial mass density having
ring-like structure

We consider a sphere of radius π with density function

ρ = sin2(kr)

k2r2
. (5.12)

From (2.5) with M(0) = 0 we then have

M(r) = B[2kr − sin(2kr)]
4k3

(5.13)

where the total mass M of the sphere is Bπ

2k2 .
Figure 7 depicts the solution of (3.6) for α(r) with A = 1,

B = 1 and k = 4. This figure exhibits a steep downward
slope in the value of α(r) beyond r = 0.8. This is due to
the density falling to 0 at r = π

4 . Figure 8 displays the solu-
tion of (3.7) for A(r) with α = 1 and the same values for B

Fig. 7 Solution of (3.6) for α(r) with ρ in (5.12)

Fig. 8 Solution of (3.7) for A(r) with ρ in (5.12)

and k. The sharp peaks in the values of A(r) in this figure are
a result of the oscillations in the mass density function ρ(r).

The plot for a perturbation M1(r) from M0(r) given by
(5.13) is presented in Fig. 9 (using the model defined by
Eq. (4.3)). It shows that the mass distribution remains stable
to perturbations whose initial size M1(0) is of order 10−5.

6 Conclusions

In this paper we considered the steady states of a spherically
symmetric protostar or interstellar gas cloud where general
relativistic considerations are taken into account. In addition
we considered the pressure and density, but not the temper-
ature, of the gas to be related polytropically, thereby remov-
ing the (implicit or explicit) assumption that it is isother-
mal. Two polytropic models for the gas were considered, the
first in the form p = Aρ(r)α(r) and the second in the form
p = A(r)ρ(r)α . Under these assumptions we were able to
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Fig. 9 M1(r) for M(r) in Eq. (5.13)

derive a single equation for the distribution of mass in the
interior of the sphere as a function of the radius r , and from
whose solution the corresponding metric coefficients can be
computed in straightforward fashion. Using the TOV equa-
tion we derived equations for α(r) and A(r). We proved
that when either α or A are constants the mass density of
the sphere cannot be chosen arbitrarily. We derived also an
equation for stability of these configurations to perturbations
in mass density.

Using several idealized models for the density within pri-
mordial gas clouds we were able to compute the appropri-
ate polytropic coefficient and index and thus gain new in-
sights about their thermodynamic structure. In particular we
showed that the mass distribution of a gas cloud with a ring-
like radial density distribution can be stable to perturbations.
The evolution of such ring-like structures in time (within the
framework of General Relativity) will be investigated in a
subsequent paper.

We conclude then that General Relativity can provide
new and deeper insights about the actual structure of stars
and primordial gas clouds and the emergence of ring-like
density patterns within these objects.

To our best knowledge these solutions represent a new
and different class of interior solutions to the Einstein equa-
tions which have not previously been explored in the litera-
ture.

Acknowledgement The authors are deeply indebted to Prof. A.J.R.
Prentice whose comments and input improved substantially the quality
of this paper.

Ethical Statement (COI) This paper complies with all the Ethical
Requirements for submission to the Journal “Astrophysics and Space
Science”. Signed: Mayer Humi.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

References

Adler, R.J.: A fluid sphere in general relativity. J. Math. Phys. 15, 727
(1974)

Adler, R., Bazin, M., Schiffer, M.: Introduction to General Relativity,
2nd edn. McGraw-Hill, New York (1975)

ALMA Partnership: Astrophys. J. Lett. 808, L3 (2015) (10 pages)
Arik, M., Delice, O.: Static cylindrical matter shells. Gen. Relativ.

Gravit. 37, 1395–1403 (2005)
Arnold, V.I., Shandarin, S.F., Zeldovich, Ya.B.: The large scale struc-

ture of the universe. Geophys. Astrophys. Fluid Dyn. 20, 111–130
(1982)

Bayin, S.S.: Anisotropic fluid spheres in general relativity. Phys. Rev.
D 26, 1262 (1982)

Buchdahl, H.A.: General relativistic fluid spheres. Phys. Rev. 116,
1027 (1959)

Chandrasekhar, S.: An Introduction to the Study of Stellar Structures.
University of Chicago Press, Chicago (1938)

Chandrasekhar, S.: Ellipsoidal figures of equilibrium-an historical ac-
count. Commun. Pure Appl. Math. 20, 251–265 (1967)

Gourgoulhon, E.: An introduction to relativistic hydrodynamics
(2006). arXiv:gr-qc/0603009

Heinzle, J.M., Rhor, N., Uggla, C.: Dynamical systems approach to rel-
ativistic spherically symmetric static perfect fluid models. Class.
Quantum Gravity 20, 4567–4586 (2003)

Humi, M.: Steady states of self gravitating incompressible fluid.
J. Math. Phys. 47, 093101 (2006) (10 pages)

Humi, M.: Patterns formation in a self-gravitating isentropic gas. Earth
Moon Planets 121, 1–12 (2018)

Kovetz, A.: Isentropic stars in general relativity. Astrophys. Space Sci.
4, 365–369 (1969)

Levi-Civita, T.: Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat.
28, 101 (1919)

Matsumoto, T., Hanawa, T.: Bar and disk formation in gravitationally
collapsing clouds. Astrophys. J. 521, 659–670 (1999)

Maurya, S.K., Gupta, Y.K., Jasim, M.K.: Relativistic modeling of
stable anisotropic super-dense star. Rep. Math. Phys. 76, 21–40
(2015)

Milne, E.A.: The equilibrium of a rotating star. Mon. Not. R. Astron.
Soc. 83, 118–147 (1923)

Oppenheimer, J.R., Volkoff, G.: On massive neutron cores. Phys. Rev.
55, 374–381 (1939)

Paschalidis, V., Stergioulas, N.: Rotating stars in relativity. Living Rev.
Relativ. 20, 7 (2017)

Prentice, A.J.R.: Origin of the solar system. Earth Moon Planets 19,
341–398 (1978)

Prentice, A.J.R., Dyt, C.P.: A numerical simulation of supersonic tur-
bulent convection relating to the formation of the Solar system.
Mon. Not. R. Astron. Soc. 341, 644–656 (2003)

Schwarzschild, K.: Uber das Gravitationsfeld eines Massenpunktes
nach der Einsteinschen Theorie. Sitz.ber. K. Preuss. Akad. Wiss.
7, 189–196 (1916)

Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.:
Exact Solutions of Einstein’s Field Equations, 2nd edn. Cam-
bridge University Press, Cambridge (2003)

Tolman, R.C.: Static solutions of Einstein field equations for spheres
of fluids. Phys. Rev. 55, 364 (1939)

Weyl, H.: Ann. Phys. 54, 117 (1918)
Weyl, H.: Ann. Phys. 59, 185 (1919)
Woolfson, M.: The origin and evolution of the solar system. Astron.

Geophys. 41, 12 (2000)

http://arxiv.org/abs/arXiv:gr-qc/0603009

	Structure of polytropic stars in General Relativity
	Abstract
	Introduction
	Review
	On the structure of isentropic stars
	General equation for M(r)
	Equation for alpha(r) when A(r) is constant
	Equation for A(r) when alpha(r) is constant
	Equation for rho when A(r) and alpha(r) are constant

	Impact of perturbations
	The case p=Arhoalpha(r) with A constant
	The case p=A(r)rhoalpha with  alpha constant

	Polytropic gas spheres and their stability
	Polytropic sphere with analytic solution
	Spheres with oscillatory density functions
	Inﬁnite sphere with exponentially decreasing density
	Finite sphere with radial mass density having ring-like structure


	Conclusions
	Acknowledgement
	Ethical Statement (COI)
	References


