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Abstract In this work we have obtained some families
of relativistic anisotropic compact stars by solving of Ein-
stein’s field equations. The field equations have been solved
by suitable particular choice of the metric potential eλ and
embedding class one condition. The physical analysis of this
model indicates that the obtained relativistic stellar structure
for anisotropic matter distribution is physically reasonable
model for compact star whose energy density of the order
1015 g/cm3. Using the Tolman-Oppenheimer-Volkoff equa-
tions, we explore the hydrostatic equilibrium and the sta-
bility of the compact stars like PSR J1614-2230, 4U 1608-
52, SAX J1808.4-3658, LMC X-4, RX J1856-37, Vela X-1,
4U 1820-30, EXO 1785-248, PSR J1903+327, 4U 1538-52,
SMC X-1, Her X-1 and Cen X-3. We also estimated the mass
and radius of such compact stars.
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1 Introduction

The non-zero anisotropy is an important component in rel-
ativistic stellar systems in the absence of an electric field.
Bowers and Liang (1974) highlighted the anisotropic sphere
in general relativity. There has been many work done the
physical related to anisotropic pressure. Dev and Gleiser
(2002, 2003) have discussed that pressure anisotropy influ-
ence the mass, structure and physical properties of compact
sphere. Also it was shown by Herrera and Santos (1997)
that the effect of anisotropy in pressure. They have proposed
physical mechanism in low and very high density system for
astrophysical compact objects. Böhmer and Harko (2006)
derived upper and lower limits for the basic physical pa-
rameters viz. mass-radius ratio, anisotropy, redshift and to-
tal energy for arbitrary anisotropic general relativistic matter
distributions in the presence of cosmological constant. They
have shown that anisotropic compact stellar type objects can
be much more compact than the isotropic ones, and their
radii may be close to their corresponding Schwarzschild
radii.

Anisotropy in fluid pressure usually arise due to pres-
ence of mixture of different types of fluids, magnetic field
or external field, rotation, existence of super-fluid, viscos-
ity and phase transitions etc. Ruderman (1972) has stud-
ied the stellar models and argued that the nuclear matter
at very high densities of the order 1015 g/cm3 may have
anisotropic features and their interactions are relativistic.
The paper of many authors (Maurya and Gupta 2013; Mau-
rya et al. 2015) suggest that the anisotropic is a crucial com-
ponent in the description of dense objects with nuclear mat-
ter. Here we would like to mention that Mak and Harko
(2003), and Sharma et al. (2001) suggest that anisotropy is a
sufficient condition in the study of dense nuclear matter with
strange star. In fact, several kinds of literature (Bhar 2015;
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Bhar et al. 2016; Maurya et al. 2015; Singh et al. 2016b;
Singh and Pant 2016a, 2016b; Singh et al. 2016c; Flanagan
and Hinderer 2008; Abbott et al. 2018; Sennett et al. 2017;
Rahaman et al. 2010) can be referred to understand the ef-
fects of the anisotropy on the relativistic compact stellar
system. In a more widely context, charged self-gravitating
anisotropic fluid spheres have been extensively investigated
in general relativity. In an earlier work De Leon (1993) ob-
tained two new exact analytical solutions to Einstein’s field
equations for a static fluid sphere with anisotropic pres-
sures. Many studies show that the Einstein field equations
play an important role in gravitational matter and relativis-
tic compact star such as neutron stars, gravastar, dark en-
ergy star, black holes and quark stars. Neutron stars and
white dwarfs are in hydrostatic equilibrium so that inside the
star gravity is balanced by degenerate pressure, as described
mathematically by the Tolman-Oppenheimer-Volkoff equa-
tion (Tolman 1939; Oppenheimer and Volkoff 1939). A de-
tailed study specifically shows that the model actually cor-
responds to strange stars in terms of their mass and radius.
Models with a matter tensor containing anisotropy have
been discussed by Maurya et al. (2016a) using the func-
tional form of the pressure anisotropy proposed by Lake
which is consistent with physical requirements for astro-
physical applications. Maurya et al. (2017a) further sug-
gested pressure anisotropy proposed by Lake, to discuss
the probability of having anisotropy is considerably higher
in compact stars due to the relativistic interaction among
the particles and throughout the region, to conserve any
uniform motion they become too random. These investiga-
tions have been completed by considering an anisotropic
internal configuration that has been handled by the met-
ric assumption by utilizing embedding class one condition.
Many authors (Elebert et al. 2009; Abubekerov et al. 2008;
Rawls et al. 2011; Demorest et al. 2010; Guver et al. 2010)
estimated the masses for the stars SAX J1808.43658, Her
X-1, 4U 1538-52, Cen X-3, SMC X-4, PSR J1614-2230, 4U
1608-52, LMC X-4, RX J1856-37, Vela X-1, EXO 1785-
248, PSR J1903+327 and 4U 1820-30. Many authors (Ele-
bert et al. 2009; Abubekerov et al. 2008; Rawls et al. 2011;
Demorest et al. 2010; Guver et al. 2010) estimated the
masses for the stars SAX J1808.43658, Her X-1, 4U 1538-
52, Cen X-3, SMC X-4, PSR J1614-2230, 4U 1608-52,
LMC X-4, RX J1856-37, Vela X-1, EXO 1785-248, PSR
J1903+327 and 4U 1820-30.

In this work we have obtained a new anisotropic com-
pact star model by solving embedding class one condi-
tion in static spherical space time. There are two types of
solutions of the Karmarkar condition one is the interior
Schwarzschild (1916), which has invalid causality condition
and other is cosmological. Recently, many relativistic so-
lutions for anisotropic fluid have been found. The following
authors Singh et al. (2016a, 2016b), Singh and Pant (2016a),

Maurya et al. (2016b, 2017b, 2018) have chosen the gener-
ating metric component in a polynomial form, while others
Bhar et al. (2017), Bhar (2017), Singh et al. (2017) have cho-
sen generating metric function in a rational form. The expo-
nential generating metric components are taken by follow-
ing researchers Maurya et al. (2016a, 2017c). Recent study,
the authors Kumar et al. (2018, 2018), Kumar and Gupta
(2013, 2014) have investigated the isotropic interior solu-
tions of gravitational field equation which are satisfying the
required physical conditions inside the star. In our work we
assume a very specific form of metric potential with hyper-
bolic function. This is acceptable with physical condition in
astrophysical model. Arising solutions can be used to de-
scribe a physically reasonable astrophysical matter distribu-
tion. We have also analyzed all physical features in details
and provided sample figures to support our data. We have
discuss the basic field equations with Karmakar condition in
Sect. 2, the field equations have been solved by assuming
a physically reasonable new form of the metric potential in
Sect. 3. The Sect. 4 is focused on matching conditions be-
tween interior and exterior space time regions. In Sect. 5 we
discuss stability of the model. Finally Sect. 6 contains the
conclusion part.

2 Einstein’s field equations and Karmarkar
condition

Let us consider the static spherically symmetric anisotropic
distribution of matter in curvature coordinates, described by
Schwarzschild line element

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2 θdφ2) + eν(r)dt2 (1)

where λ(r) and ν(r) are the functions of radial coordi-
nate only. Now assuming the interior matter distribution is
anisotropic in nature and correspondingly the energy mo-
mentum tensor can be expressed as

Tμν = (ρ + pr)uμuν − ptgμν + (pr − pt)χμχν (2)

where the vectors uμ and χμ represent four-velocity and the
unit space like vector in the radial direction with −uμuμ =
χμχμ = 1. ρ,pr and pt represents the matter density, ra-
dial and transverse pressure of the matter distribution re-
spectively.

The Einstein tensor for this space time is

Rμν−1

2
Rgμν = −κTμν (3)

where κ = 8πG

C4 . Here we assume the relativistic geometrized
units G = c = 1, Eqs. (1) and (3) reduce to Einstein’s field
equations as follows

8πpr = ν′

r
e−λ − (1 − e−λ)

r2
(4)
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8πpt =
(

ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r

)
e−λ (5)

8πρ = λ′

r
e−λ + (1 − e−λ)

r2
(6)

where ‘′’ prime denotes the differentiation with respect to
the radial coordinate r .

Using Eqs. (4) and (5) we get the anisotropic factor


 = 8π(pt − pr)

= e−λ

(
ν′′

2
− λ′ν′

4
+ ν′2

4
− ν′ + λ′

2r

)
+ (1 − e−λ)

r2
(7)

If the metric (1) satisfies the Karmarker condition (1948)

R1414 = R1212R3434 + R1224R1334

R2323
(8)

with R2323 �= 0 (Pandey and Sharma 1981), it represents em-
bedding class-one space-time.

For Eq. (8), the line elements of Eq. (1) leads to a follow-
ing differential equation

ν′′

ν′ + ν′ = λ′eλ

eλ − 1
(9)

Now integrating Eq. (9), we get the following relation be-
tween ν and λ

eν =
(

A + B

∫ √(
eλ − 1

)
dr

)2

(10)

where A and B are constants of integration. Using Eq. (10)
in Eq. (7), we get

8π
 = ν′

4eλ

[
2

r
− λ′

eλ − 1

][
ν′eν

2B2r
− 1

]
(11)

Here 
 = (pt −pr). It will be attractive in nature if pt > pr

and repulsive if pt < pr .

3 A well behaved anisotropic solution of
embedding class one

Now to finding the anisotropic solution, let us assume the
metric potential grr as follows

eλ = 1 + a2r2csch2(br2 + C
)

(12)

where a �= 0, b �= 0 or C �= 0. If a = b = C = 0, then re-
duced space time is not a space time of class one (Pandey
and Sharma 1981). As Bhar (2017) suggested, for all well-
behaved model, the metric function eλ should be monoton-
ically increasing and satisfy the conditions eλ(0) = 1 and
((eλ)′)r=0 = 0. It is observed that our metric function eλ is

increasing function and satisfy the above mentioned condi-
tions. This implies that eλ, given by Eq. (12), is physically
acceptable.

Solving Eqs. (10) and (12), we get the metric potential eν

as

eν =
[
A + Ba

2b
ln

(
e(br2+C) − 1

e(br2+C) + 1

)]2

(13)

Using Eqs. (12) and (13), in Eqs. (4), (5), (6) and (7), we
obtain the expression of energy density (ρ) radial pressure
(pr), tangential pressure (pt ) and anisotropic factor (
) as,

8πρ = 1

1 + a2r2csch2(br2 + C)

×
[

2a2[sinh(br2 + C) − 2br2 cosh(br2 + C)]
sinh3(br2 + C) + a2r2 sinh(br2 + C)

+ a2csch2(br2 + C
)]

(14)

8πpr = 1

1 + a2r2csch2(br2 + C)

×
[

4aBe(br2+C)

(e2(br2+C) − 1)[A + Ba
2b

ln( e(br2+C)−1
e(br2+C)+1

)]

− a2csch2(br2 + C
)]

(15)

8π


= 
1(r)


2(r)

×
[2ae2(br2+C)[A + Ba

2b
ln( e(br2+C)−1

e(br2+C)+1
)] − e2(br2+C) + 1

[A + Ba
2b

ln( e(br2+C)−1
e(br2+C)+1

)]

]

(16)

pt = pr + 
 (17)

where


1(r) = 2ae2(br2+C)
(
a2r2csch2(br2 + C)

+ 2br2 cosh(br2 + C)
)
,


2(r) = (
e2(br2+C) − 1

)2(1 + a2r2csch2(br2 + C)
)

× (
sinh

(
br2 + C

) + a2r2csch2(br2 + C
))

4 Boundary conditions

It is necessary that the interior solution should connect
smoothly with vacuum exterior Schwarzschild solution
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which is given by

ds2 = −
(

1 − 2M

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2)

+
(

1 − 2M

r

)
dt2 (18)

Using Eqs. (1) and (18) at the boundary r = R we get

e−λ = 1 − 2M(R)

R
(19)

eν = 1 − 2M(R)

R
(20)

pr(R) = 0 (21)

From Eqs. (19)–(21), we get

A

B
=

4ebR2+C − a2

2b
csch2(bR2 + C)(e2(bR2+C) − 1) ln( e(bR2+C)−1

e(bR2+C)+1
)

acsch2(bR2 + C)(e2(bR2+C) − 1)

(22)

A = 1
√

1 + a2R2csch2(bR2 + C)
− Ba

2b
ln

(
e(bR2+C) − 1

e(bR2+C) + 1

)

(23)

Now differentiating Eqs. (14)–(17) we get the density and
pressure gradient as

8π
dρ

dr
= f1(r)

[
f2(r)

f3(r)
+ a2csch2(br2 + C

)]

+ 1

1 + a2r2csch2(br2 + C)

×
[
f3(r) × f4(r) − f2(r) × f5(r)

f3(r)2

− 4a2br cosh(br2 + C)

sinh3(br2 + C)

]
(24)

8π
dpr

dr
= f1(r)

[
4aBe(br2+C) − a2csch2(br2 + C)f6(r)

f6(r)

]

+ 1

1 + a2r2csch2(br2 + C)

×
[
f7(r) − f8(r)

f6(r)2
− 4a2br cosh(br2 + C)

sinh3(br2 + C)

]

(25)

8π
d


dr
= H1(r)H4(r)(H2(r)G3(r) + H3(r)G2(r))

(H1(r)H4(r))2

− H2(r)H3(r)(H1(r)G4(r) + H4(r)G1(r))

(H1(r)H4(r))2

(26)

dpt

dr
= dpr

dr
+ d


dr
(27)

where

f1(r) = 2a2r(2br2 cosh(br2 + C) − sinh(br2 + C))

sinh3(br2 + C)(1 + a2r2csch2(br2 + C))2

f2(r) = 2a2[sinh
(
br2 + C

) − 2br2 cosh
(
br2 + C

)]

f3(r) = sinh3(br2 + C
) + a2r2 sinh

(
br2 + C

)

f4(r) = −4abr
(
cosh

(
br2 + C

) − br2 sinh
(
br2 + C

))

f5(r) = 2br cosh
(
br2 + C

)[
3 sinh2(br2 + C

) + a2r2]

+ 2a2r sinh
(
br2 + C

)

f6(r) = (
e2(br2+C) − 1

)[
A + Ba

2b
ln

(
e(br2+C) − 1

e(br2+C) + 1

)]

f7(r) = 8abrf6(r),

f8(r) = 8are2(br2+C)

[
2be(br2+C)

×
[
A + Ba

2b
ln

(
e(br2+C) − 1

e(br2+C) + 1

)]
+ a

]

H1(r) = (
e2(br2+C) − 1

)2[2a2r2 + sinh2(br2 + C
)

+ a4r4csch2(br2 + C
)]

H2(r) = 2ae(br2+C)
(
a2r2 + br2 sinh 2

(
br2 + C

))

G1(r) = 8bre2(br2+C)
(
e2(br2+C) − 1

)[
2a2r2

+ sinh2(br2 + C
) + a4r4csch2(br2 + C

)]

+ G3(r)

G3(r) = 4
(
e2(br2+C) − 1

)2[
a2r + br sinh 2

(
br2 + C

)

+ a4r3csch
(
br2 + C

)(
1 − br2 coth

(
br2 + C

))]

G2(r) = 2ae(br2+C)
[
2
(
a2r + br sinh 2

(
br2 + C

))(
br2 + 1

)

+ 4b2r3 cosh 2
(
br2 + 1

)]

H3(r) = 2ae(br2+C)

[
A

B
+ a

2b
ln

(
e(br2+C) − 1

e(br2+C) + 1

)]

− e2(br2+C) + 1,

H5(r) = 2are(br2+C)

e2(br2+C) − 1

H4(r) =
[

A

B
+ a

2b
ln

(
e(br2+C) − 1

e(br2+C) + 1

)]

G5(r) = 4abre(br2+C)H4(r) − 4bre2(br2+C)

+ 2ae(br2+C)H5(r)
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Fig. 1 Variation of radial pressure (Pr = 8πpr left), transverse pres-
sure (Pt = 8πpt right) and density (D = 8πρ bottom) with respect
to fractional radius (r/R). For plotting this figure the numerical val-
ues of constants are as follows: (i) a = 0.086, C = 1, b = −0.0013
for S1 (Her X-1), (ii) a = 0.095, C = 1, b = −0.00104 for S2 (4U
1538-52), (iii) a = 0.094, C = 1, b = −0.0012 for S3 (SAX J1808.4-
3658), (iv) a = 0.095, C = 1, b = −0.0014 for S4 (SMC X-1), (v) a =

0.102, C = 1, b = −0.0012 for S5 (LMC X-4), (vi) a = 0.09, C = 1,
b = −0.0098 for S6 (EXO 1785-248), (vii) a = 0.165, C = 1, b =
−0.0025 for S7 (RX J1856-37), (viii) a = 0.107, C = 1, b = −0.0011,
for S8 (Cen X-3), (ix) a = 0.095, C = 0.85, b = −0.00077 for S9
(PSR J1903+327), (x) a = 0.096, C = 0.85, b = −0.00106 for S10
(4U 1608-52), (xi) a = 0.099, C = 0.85, b = −0.00072 for S11 (Vela
X-1) and (xii) a = 0.099, C = 0.9, b = −0.0012 for S12 (4U 1820-30)

5 Stability analysis of the compact star
model

5.1 Causality condition

Anisotropic fluid stellar model will be physically accept-
able, if the velocity of sound will be less than the veloc-
ity of light. By the causality condition the radial and trans-
verse velocity of sound is less than 1, this implies that

0 < Vr =
√

dpr

dρ
< 1, 0 < Vt =

√
dpt

dρ
< 1. In Fig. 4 we ob-

serve that velocity of sound lies within the expected range.
Now we use the concept of cracking proposed by Herrera
(1992) to determine the stability of anisotropic star model
under the radial perturbations and Abreu et al. (2007) proved
that the region of an anisotropic star model is potentially sta-
ble if the radial velocity of sound is greater than the trans-
verse velocity of sound.

The velocity sound can be obtained as

V 2
i = dpi

dρ
(28)

From Fig. 4, it is clear that the radial velocity of sound is
greater than the transverse velocity of sound through inside
the model which conform that our model is stable.

5.2 Tolman-Oppenheimer-Volkoff (TOV) equations

In this section, we examine equilibrium stage of the stel-
lar model under the gravitational force, hydrostatics force
and anisotropic force which can be described by general-
ized TOV (Tolman 1939; Oppenheimer and Volkoff 1939)
as

−MG(ρ + pr)

r2
e

λ−ν
2 − dpr

dr
+ 2

r
(pt − pr) = 0 (29)

where MG is the effective gravitational mass given by:

MG = 1

2
r2ν′e(ν−λ)/2 (30)

Plugging the value of MG in Eq. (29), we get

−ν′

r
(ρ + pr) − dpr

dr
+ 2

r
(pt − pr) = 0 (31)
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Fig. 2 Variation of metric
potentials eν (top left) and eλ

(top right) and anisotropy
(
 = pt − pr , bottom) with
respect to fractional radius
(r/R). For plotting this figure,
we have employed the same
values of the constants
mentioned in Fig. 1

Fig. 3 Variation of (Pr/D left)
and (Pt/D right) with respect to
fractional radius (r/R). For
plotting this figure, we have
employed the same values of the
constants mentioned in Fig. 1

The above equation can be expressed into three different
components gravitational force (Fg), hydrostatic force (Fh)

and anisotropic force (Fa) which are defined as:

Fg = −ν′

r
(ρ + pr) (32)

Fh = −dpr

dr
(33)

Fa = 2

r
(pt − pr) (34)

Figure 5 shows the behavior of the generalized TOV equa-
tions. We observe from this figure that the gravitational force
(Fg) is dominating in nature and counterbalanced by the
joint action of hydrostatic force (Fh) and anisotropic force
(Fa) which gives that the system attains a static equilibrium.

5.3 Energy conditions

The anisotropic fluid sphere should satisfy the following
three energy conditions, (i) null energy condition (NEC),
(ii) weak energy condition (WEC) and (iii) strong energy
condition (SEC). For satisfying the above energy conditions
the following inequalities (Maurya et al. 2016b) must hold
simultaneously inside the fluid sphere

Null energy condition (NEC): ρ ≥ 0
Weak energy condition (WECr): ρ − pr ≥ 0
Weak energy condition (WECt): ρ − pt ≥ 0
Strong energy condition (SEC): ρ − pr − 2pt ≥ 0

Using these inequalities we can easily justify the nature of
energy conditions for the specific stellar configuration as
shown in Fig. 6 that are satisfied for our proposed model.
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Fig. 4 Variation radial velocity
of sound V 2

r (top left),
transverse velocity of sound V 2

t

(top right), V 2
r − V 2

t (bottom
left) and V 2

t − V 2
r (bottom

right) with respect to fractional
radius (r/R). For plotting this
figure, we have employed the
same values of the constant
mentioned in Fig. 1

5.4 Adiabatic index and redshift

For stability of an anisotropic fluid sphere the adiabatic in-
dex γ should be grater than 4/3 which was proposed by
(Heintzmann and Hillebrandt 1975). The relativistic adia-
batic index γ is given

γi = ρ + pi

pi

dpi

dρ
(35)

Figure 7 shows that γ > 4/3 everywhere within the pro-
posed model.

The gravitational redshift of the stellar configurations
given by

z = e
−ν
2 − 1 (36)

which should be non-negative inside the stellar interior. The
profile of gravitational redshift is plotted in Fig. 7 (bottom),
which monotonically decreasing in nature and non-negative.

6 Conclusion

In this model we have obtained a new anisotropic compact
star model in class one space-time. Here we have intro-

duced a new type of grr metric potential which is regular and
monotonic increasing from center of the star see Fig. 2 (left).

From Eq. (13), we observe that eν = (A + Ba
2b

ln( eC−1
eC+1

))2

is singularity free and positive at origin (see Fig. 2(right))
and the functions Pr

D
and Pt

D
are monotonically decreasing

(see Fig. 3). The central and surface densities have the or-
der of 1015 gm/cm3 and 1014 gm/cm3 respectively which
is given in Table 2. This implies that our model is realis-
tic astrophysical compact star model and it is compatible
with following relativistic stars PSR J1614-2230, 4U 1608-
52, SAX J1808.4-3658, LMC X-4, RX J1856-37, Vela X-1,
4U 1820-30, EXO 1785-248, PSR J1903+327, 4U 1538-
52, SMC X-1, Her X-1 and Cen X-3. In this work ra-
dial pressure pr = Prc

4

8πGR2 dyne/cm2, tangential pressure

pt = Pt c
4

8πGR2 dyne/cm2 and density ρ = Dc2

8πGR2 gm/cm3.
The present model following features hold

1. The energy density, radial and transverse pressure of the
stars are positive, finite and monotonically decreasing ev-
erywhere inside the star (Fig. 1). Also the radial pressure
is vanishes at surface of the star and central pressure has
the order of 1035 dyne/cm2.

2. The radial and transverse velocity of sound in our model
satisfies the causality condition i.e. V 2

r , V 2
t < 1. Also we
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Fig. 5 Variations of gravitational, hydrostatic and anisotropic forces
acting on the system with respect to fractional radius (r/R). For
plotting this figure the numerical values of constants are as follows:
(i) a = 0.086, C = 1, b = −0.0013 for Her X-1 (1st row left),
(ii) a = 0.095, C = 1, b = −0.00104 for 4U 1538-52 (1st row right),
(iii) a = 0.094, C = 1, b = −0.0012 for SAX J1808.4-3658 (2nd row
left), (iv) a = 0.095, C = 1, b = −0.0014 for SMC X-1 (2nd row
right), (v) a = 0.102, C = 1, b = −0.0012 for LMC X-4 (3rd row left),

(vi) a = 0.09, C = 1, b = −0.0098 for EXO 1785-248 (3rd row right),
(vii) a = 0.165, C = 1, b = −0.0025 for RX J1856-37 (4rh row left),
(viii) a = 0.107, C = 1, b = −0.0011, for Cen X-3 (4rh row right),
(ix) a = 0.095, C = 0.85, b = −0.00077 for PSR J1903+327 (5th row
left), (x) a = 0.096, C = 0.85, b = −0.00106 for 4U 1608-52 (5th
row right), (xi) a = 0.099, C = 0.85, b = −0.00072 for Vela X-1 (6th
row left) and (xii) a = 0.099, C = 0.9, b = −0.0012 for 4U 1820-30
(6th row right)
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Fig. 5 (Continued)

Fig. 6 Variation of energy
conditions with respect to
fractional radius (r/R). For
plotting this figure, we have
employed the same values of the
constant mentioned in Fig. 1

see that radial velocity of sound is greater than the trans-
verse velocity of sound see in Fig. 4.

3. We consider the generalized TOV equation for describing
the equilibrium condition subject to gravitational (Fg),
hydrostatic (Fh) and anisotropic forces (Fa), respectively
and we observe from Fig. 5 that gravitational force is

balanced by the joint action of hydrostatic and electric
forces to attain the required stability of the model. How-
ever, the effect of electric force is less than the hydrostatic
force.

4. The energy conditions i.e. null energy condition (NEC),
weak energy condition (WEC), and strong energy condi-
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Fig. 7 Variation of adiabatic
constants (γi ) and redshift with
respect to fractional radius
(r/R). For plotting this figure,
we have employed the same
values of the constant
mentioned in Fig. 1

Table 1 Numerical values of
parameters for compact star
candidates

Compact star M (M�) R (km) M/R a (km−1) b (km−2) C

Her X-1 0.85 0.81 0.15475 0.086 −0.0013 1

4U 1538-52 0.87 7.866 0.16314 0.095 −0.00104 1

SAX J1808.4-3658 0.9 7.951 0.1669 0.094 −0.0012 1

SMC X-1 1.04 8.301 0.1847 0.095 −0.0012 1

LMC X-4 1.29 8.831 0.2154 0.102 −0.0014 1

EXO 1785-248 1.3 10 0.2166 0.09 −0.0098 1

RX J1856-37 0.9663 6 0.2375 0.165 −0.0025 1

Cen X-3 1.49 9.178 0.2394 0.107 −0.0011 1

PSR J1903+327 1.667 9.438 0.2605 0.095 −0.0007 0.85

4U 1608-52 1.74 9.3 0.2694 0.096 −0.00106 0.85

Vela X-1 1.77 9.56 0.2730 0.099 −0.00072 0.85

4U 1820-30 1.58 9.1 0.2501 0.099 −0.0012 0.9

tion (SEC) are satisfying for our anisotropic models (see
Fig. 6).

5. The value of adiabatic index γr and γt for our model are
greater than 4/3 at all interior point inside the star Fig. 7
which reconfirms the stability of our model.

6. We observe from Fig. 7 that the redshift is monoton-
ically decreasing outward. However, it is maximum at
the center and minimum at the boundary of the compact
star. According to Böhmer and Harko (2006) the red-
shift must satisfy the condition Z ≤ 5. From Fig. 7, it
is clear that the redshift of our models are in good agree-
ment.

7. We compare our proposed compact star model with
the observed data of different realistic objects. For this
purpose we have calculated the physical parameters
a, b,C,R, M(M�) and M/R (see Table 1).

7 Two generating function of anisotropic
solution for embedding class one solution

The algorithm for generating all possible static spherically
symmetric anisotropic fluid solutions of the Einstein field
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Table 2 Energy density and
central pressure for different
compact star candidates for the
above parameter value of
Table 1

Compact star Central density (gm/cm3) Surface density (gm/cm3) Central pressure (dyne/cm2)

Her X-1 0.8702 × 1015 6.864 × 1014 0.6706 × 1035

4U 1538-52 0.1059 × 1015 7.312 × 1014 0.7417 × 1035

SAX J1808.4-3658 1.036 × 1015 7.41 × 1014 0.8062 × 1035

SMCX-1 1.055 × 1015 7.475 × 1014 1.013 × 1035

LMC X-4 1.21 × 1015 7.225 × 1014 1.385 × 1035

EXO 1785-248 0.9438 × 1015 5.679 × 1014 1.109 × 1035

RX J1856-37 3.172 × 1015 1.637 × 1014 4.138 × 1035

Cen X-3 1.355 × 1015 7.075 × 1014 1.832 × 1035

PSR J1903+327 1.601 × 1015 6.785 × 1014 2.373 × 1035

4U 1608-52 1.648 × 1015 7.313 × 1014 2.852 × 1035

Vela X-1 1.738 × 1015 6.707 × 1014 2.852 × 1035

4U 1820-30 1.493 × 1015 7.367 × 1014 2.228 × 1035

equations in terms of two generating functions has been al-
ready proposed Herrera et al. (2008) as:

eλ = 2(r)e

∫ [ 4+2r22(r)

r2(r)
]dr

r6[−2
∫
(
(r)(1+�(r)r2)e

∫ [ 4+2r22(r)

r2(r)
]dr

r8 )dr + F ]
(37)

where F is a constant while (r) and �(r) are generating
functions which can be determined as

(r) =
[
ν′r + 1

2r

]
(38)

�(r) = 8π(pt − pr) = 8π
(r) (39)

Therefore the above two generating functions (r) and
�(r) for the present embedding class one solution for
anisotropic matter distribution are given as (using Eqs. (16),
(13), (38) and (39)):

(r) =
[

2arbBebr2+C

(e2(br2+C) − 1)[2Ab + aB ln( e2(br2+C)−1
e2(br2+C)−1

)]
+ 1

r

]
(40)

8π
 = 2ae2(br2+C)(a2r2csch2(br2 + C) + 2br2 cosh(br2 + C))

(e2(br2+C) − 1)2(1 + a2r2csch2(br2 + C))(sinh(br2 + C) + a2r2csch2(br2 + C))

×
[2ae2(br2+C)[A + Ba

2b
ln( e(br2+C)−1

e(br2+C)+1
)] − e2(br2+C) + 1

[A + Ba
2b

ln( e(br2+C)−1
e(br2+C)+1

)]

]
(41)

These two generating functions, Eqs. (40) and (41), can pro-
vide a general embedding class one solution for anisotropic
matter distribution.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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