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Abstract The aim of this study was to model and predict
seasonal ionospheric total electron content (TEC) using arti-
ficial neural network (ANN). Within this scope, GPS obser-
vations acquired from ANKR GPS station (Turkey) in 2015
were utilized to model TEC variations. Considering all data
for each season, training and testing data were set as 80%
and 10%, respectively, and the rest of the data were used to
estimate TEC values using extracted mathematical models
of ANN method. Day of Year (DOY), hour, F107 cm index
(solar activity), Kp index and DsT index (magnetic storm in-
dex) were considered as the input parameters in ANN. The
performances of ANN models were evaluated using RMSE
and R statistical metrics for each season. As a result of the
analyses, considering the prediction results, ANN presented
more successful predictions of TEC values in winter and au-
tumn than summer and spring with RMSE 3.92 TECU and
3.97 TECU, respectively. On the other hand the R value of
winter data set (0.74) was lower than the autumn data set
(0.88) while the RMSE values were opposite. This situation
can be caused by the accuracy and precision of data sets. The
results showed that the ANN model predicted GPS-TEC in
a good agreement for ANKR station.
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1 Introduction

Ionosphere, part of the upper atmosphere of Earth, is the
most complex environment and it is crucial for radio sig-
nal propagation through the Earth’s atmosphere. Total elec-
tron content (TEC) is among the key ionospheric parame-
ters and it is defined by the integral of electron density in
a column of 1 m? cross section along the signal transmis-
sion path. It changes depending on earth’s rotation, mag-
netic and solar activity, diurnal, monthly, seasonal and spa-
tial variation. For example, spatio-temporal changes in the
structure of ionosphere are usually calm in mid-latitude re-
gions compared to the equatorial region. Understanding the
behavior of spatial and temporal variations in TEC val-
ues is important for communication, GPS surveying, nav-
igation and space weather studies (Tulunay et al. 2006;
Belehaki et al. 2009; Inyurt et al. 2017). The changes in
ionospheric TEC, depending on seasonal variation, have
been monitored by many scientists for a long time. Guo
et al. (2015) investigated the ionospheric TEC changes be-
tween 1999 and 2013 and found that solar activity was the
major factor in TEC changes. The changing trend of TEC
was determined as —0.08 TECU per yea; however, over
the Arctic region this changing trend of TEC showed an
increase during these years. Yang et al. (2015) examined
GPS-TEC changes between 2000 and 2014, and found that
TEC change was significantly dependent on solar activity
and magnetic storm effect. Tariku (2015) also studied TEC
change in the low-latitude regions with low levels of solar
activity between 2008-2009 and the high level of solar ac-
tivity between 2012-2013. When the seasonal variation of
the average VTEC values for each hour was examined, it
was found that the maximum and minimum changes were in
the March equinox and June solstice periods, respectively. In
general, these findings are possible in both cases where the
level of solar activity is high and low.
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Themens and Jayachandran (2016) used ten GPS re-
ceivers of the Canadian High-Arctic Ionospheric Network
(CHAIN) to evaluate the performance of the IRI-2007
model. As a result of the study, TEC values, obtained from
GPS receivers in the study area, were underestimated espe-
cially maxima solar activity conditions during summer and
equinox periods. Moreover, it was observed that RMSE val-
ues reached up to 14 TECU in these periods. On diurnal
timescales, the variations in TEC values were found to be
underestimated by the IRI model, during equinox periods,
by up to 40% at sub-auroral latitudes and up to 70% in the
polar cap region. During the winter, diurnal variations were
overestimated by up to 40% in the sub-auroral region and
were underestimated within the polarcap by up to 80%.

Jee et al. (2014) examined GPS-TEC variations between
the years 1992 and 2010 including the last two solar mini-
mum periods through the TOPEX and JASON-1 satellites.
Although global daily mean TEC maps showed that TEC
differences were negligible between the two solar mini-
mum periods, systematic differences were observed between
—30% and 4+50% depending on local time, latitude and sea-
son. Deviations mainly stemmed from the relative effect of
reduced solar EUV production and reduced recombination
rate because of the thermospheric changes during the last so-
lar minimum period. Therefore, ionosphere should be mod-
eled precisely to monitor the changes caused by these fac-
tors effectively. Various approaches have been revealed for
the understanding of this complex layer. As stated above,
the ionosphere is affected by many factors which should be
considered in ionospheric modeling.

In recent years, artificial neural network (ANN) has be-
come an alternative method for modeling and forecasting
ionospheric TEC precisely (Hernandez-Pajares et al. 1997,
Cander 1998; Maruyama 2008; Habarulema et al. 2007,
Huang and Yuan 2014). ANN is one of the choices to fill
the gap and capture regional and global ionosphere mod-
eling using historical data of ionospheric TEC. Song et al.
(2018) showed that regional prediction of TEC was created
using neural networks (NNs) over China. 19 input parame-
ters which define causes of ionospheric variations were uti-
lized for modeling ionosphere using 43 permanent GPS re-
ceiver. As a result of the study, TEC values obtained from
the NN model presented good correlation with IRI-TEC and
they suggested that NN could be effectively used as an al-
ternative method for modeling the ionosphere. Tebabal et al.
(2018) studied on local TEC modeling and forecasting us-
ing NN. They designed NN using geomagnetic storm index,
solar activity index, time of day and day of the year for mod-
eling GPS-TEC obtained from two GPS receivers located in
low and mid-latitude regions between the period 2011 and
2014. The model prediction accuracy was evaluated for the
data of 2015. They stated that the model accuracy was well
for both stations. In the other part of the study, there was
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an attempt to forecast one day ahead TEC for both stations.
It was stated that the NN method might be applied for the
study of forecasting TEC values. Habarulema et al. (2007)
utilized the NN method for South African GPS derived TEC
using seasonal variation, diurnal variation, sunspot number
and magnetic activity index. Predicted TEC values were
compared with the TEC obtained from IRI-2001 and GPS-
TEC. As a conclusion, NN predicted GPS-TEC more accu-
rate than IRI-TEC at South African, but it was also stated
that more GPS data was required for representing the sea-
sonal variation of ionosphere accurately.

In this study, we utilized an ANN method to model
and predict the seasonal ionospheric variations in TEC val-
ues over ANKR station in Turkey. The TEC values for
the ANKR station were obtained for each season using the
Ciraolo et al. (2007) method and these values were used as
reference data in ANN. In the ANN model, TEC values were
considered as 80% training, 10% testing and 10% prediction
for each season. In Turkey, each season lasts 3 months (al-
most 90 or 92 days). Thus, in each season, 72 days (80%),
9 (10%) days and 9 (10%) days’ data were used in train-
ing, testing and prediction processes, respectively. Besides,
ANN was constructed using the parameters, namely Day of
Year (DOY), hour, F107 cm index (solar activity), Kp in-
dex and DsT index (magnetic storm index), as inputs. The-
oretical backgrounds of TEC retrieval and ANN method are
presented in the following sections.

2 TEC observation

GPS has become an important tool to monitor in real or near-
real time ionosphere model due to the high popularity of
GPS TEC observations for ionosphere research. Thus, the
GPS-TEC acquisition method has also gained considerable
importance. A signal from the satellite is exposed to many
effects until it reaches the receiver. The ionospheric effect
can be identified by the Egs. (1), (2), and (3) which are used
for GPS code and phase measurements.

Liagc=Li—Ly=11 — b +c(tp1 — Tr2)

C C
+ c(ts1 _TS2)+_N1,arc_ _Nl,arc+8 €))
1

Vi g
L1 arc is the ionosphere variable. Sub-indices (1,2) shows
GPS carriers. L and L, refer to other sub-indices, arc in-
dicates each continuous arc of carrier phase observations,
c is the speed of the light in vacuum, I; and [ iono-
spheric delay in length units at f; = 1575.42 MHz and
fr = 1227.60 MHz; tg, t5 are receiver and satellite hard-
ware biases; Ny, N, are integer carrier phase ambiguities;
¢ is observational noise along the with multipath. The iono-
spheric effect depends on the frequency and this dependency
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can be explained by Eq. (2).

STEC
STEC = Ly ac — BR — Bs — Carc — &L 3)

Where Bg = %(rRl —Tgy) and By = %(151 — Tgp) are satel-
lite and receiver differential code biases for carrier-phase

~

observations. 8 = « (# — #)N 0.1 m/TECU is a con-
1 2

stant value used to convert from meters to TECU. Cye =
ﬁNLm — ﬁNz,m is the carrier phase ambiguities in
ionospheric observable, g1 = % is the effect of noise and
multipath.

STEC is the integral of the electron density path between
satellite and receiver calculated from the differential delays
of pseudo-ranges and phases. STEC is converted to Verti-
cal total electron content (VTEC) using mapping function
single layer model (SLM) which assumes that electron den-
sity field is spherically symmetric. In order to obtain VTEC
observations from the GPS observations, we have processed
RINEX files according to STEC calibration method (Ciraolo
et al. 2007) with one-hour temporal resolution.

3 Artificial neural networks (ANN) method

Artificial neural networks (ANNs) are biologically designed
computational model constructed of many simple intercon-
nected elements called neurons associated with coefficients
which constitute the neural structure (Kisi et al. 2015). They
have been successfully used in many scientific fields by uti-
lizing the large-scale parallel local processing and dispersed
storage features available in the human brain (Al-Shammari
et al. 2016; Samadianfard et al. 2018). The ANNs can recog-
nize the underlying relationships between input and output
procedures and form a model among them (Kisi et al. 2016).
They are very effective in modeling and simulating linear
and nonlinear systems (Bilgili 2010; Bilgili et al. 2013;
Samadianfard et al. 2018).

In recent years, the ANNs have become useful and com-
petent modeling tools, especially for characterization pro-
cesses that are difficult to identify through physically or sta-
tistically determined equations (Samadianfard et al. 2018).
Various types of ANNs with different structures and differ-
ent learning algorithms can be developed in modeling and
simulating linear and nonlinear systems. The more com-
mon and commonly used architectures cover multi-layer
perceptron feed-forward networks (MLP) that are trained
using back-propagation (BP) training algorithms. Figure 1
presents a three-layered ANN which comprises layers i, j
and k, with the weights W;; and W;. As seen in this figure,
an MLP structure consists of an input layer that includes

/ Hidden layer
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N

Fig.1 A three-layered ANN structure (Mansouri et al. 2016)

input variables, hidden layer(s), and an output layer that in-
cludes output variable(s) (Kisi et al. 2016). In the structure
of artificial neural networks, each neuron has an adjustable
weight factor (w) and bias (b). Variables (inputs) from the
input layer of the network are multiplied by connection
weights and added by the biases. This situation results in the
collection of variables in the hidden layer of the network.
The adjusted parameters are then passed through an activa-
tion (transfer) function to obtain the output for this neuron.
The outputs produced from the first hidden layer become the
inputs to the output layer of the network (Kisi et al. 2015).
Randomly assigned initial weights are corrected in the train-
ing process in which the model outputs are compared with
the measured outputs and errors are back-propagated, and
the final weights are calculated by minimizing the errors
(Mansouri et al. 2016).

In the second and third layers, each neuron receives the
x input value calculated by the weighted sum of the outputs
from the previous layer. For example, y in the second layer
J can be calculated as (Mansouri et al. 2016):

I
Ypi = WijOpi +0; “

i=1

where 6; is the bias for neuron;, O,; the ith output of the
previous layer, W;; the weights between the first and second
layers. The y value is passed through a nonlinear activation
function and an output f(y) is obtained from each neuron in
the second and third layers. The commonly used activation
function (logistic function) is expressed as follows (Man-
souri et al. 2016):

f= &)

I+e”
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Table 1 Weights used in

Weights used in equations

equations

i wi; wo; w3; W4 ws; bias

1 0.2893 7.4741 —1.7265 —18.1529 6.5743 —1664.2157
2 6.4356 6.4343 2.1174 0.3722 7.9155 16.6788
3 —0.0269 0.8589 0.1348 0.0792 0.1736 —28.8374
4 0.0285 0.9920 —0.0090 —0.0084 —0.0074 —7.5788
5 0.0215 —0.4795 0.0096 —0.0028 0.0104 4.4370
1 0.0013 0.1168 —0.0023 0.0015 —0.0169 —0.3182
2 —0.0181 —0.0365 0.0247 —0.0729 0.2080 —17.6310
3 0.0583 0.8966 0.0058 0.0417 —0.0359 —22.1873
4 0.0085 —0.4132 0.0022 0.0032 0.0289 2.6519
5 0.0005 0.5309 —0.0009 0.0012 —0.0079 —2.5383
1 —4.1866 232.0061 —60.4976 48.5520 4.7392 425.0512
2 —0.0180 —0.0806 0.0216 0.0172 0.0280 1.2532
3 0.0126 —2.0615 0.0588 0.0208 —0.0044 4.5536
4 —0.0002 —0.1908 0.0004 0.0009 —0.0091 7.5108
5 0.0297 —1.0716 —0.0017 —0.0306 0.0097 —0.4010
1 —0.0009 0.6405 0.0075 0.0018 —0.0070 —8.4735
2 33.0050 231.0378 —127.2119 126.2313 —15.1706 —29.2968
3 0.0007 —1.8975 —0.0005 —0.0072 —0.0029 12.3016
4 —0.1043 0.4545 —0.0045 —0.0118 —0.0381 2.2216
5 0.0174 0.3114 0.0084 0.0037 —0.0147 —8.7861

After the training process, the assimilation of the network
can be seen as the output. The most appropriate learning
algorithm should be adopted to reduce errors in the train-
ing process. The learning algorithms for an MLP model are
based on thee BP technique. The main purpose of the BP
method is to reduce the number of network errors that can
be calculated (Wang et al. 2016).

N
e=0.5 Z(ak —1)? (6)

k=1

where N indicates the number of processors, o denotes the
network output in the kth processor and # is the target value.

Different training algorithms have been applied to min-
imize the error function, but the most widely used training
algorithms are the back-propagation algorithm. In this pa-
per, the Levenberg Marquardt (LM) algorithm was chosen
as the training process (Kisi et al. 2016). In BP, optimiza-
tion of the weights and biases is achieved through backward
propagation of the error during the training process. With
the ANN, the input and output values in the training data
set are compared. Thus, the values of the processing units
are changed to reduce the difference between the predicted
and the target values. The error vector used to set network
weights and biases is generated by the difference between
the predicted and target values. Several algorithms, such as
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Resilient Propagation (RP) and Levenberg-Marquardt (LM),
are used for training ANNs by considering BP (Kisi et al.
2015). The network topology is composed of neurons asso-
ciated with links and commonly structured in a number of
layers. The network topology is made up of neurons associ-
ated with the connections and usually structured in several
layers. Weighted input from the previous layer is received
and the outputs are then processed by each layer node with a
transfer function. Since the activation function is a sigmoid,
the data is usually scaled to lie within a constant range be-
tween 0 and 1 (Samadianfard et al. 2018).

Identification of an appropriate architecture for a neural
network for a certain problem is a necessary factor since
the network topology fully affects the complexity of calcu-
lations. In the present paper, the number of hidden neurons is
determined by different trials. The trial and error technique
starts with two hidden neurons at first. Then, the number
of neurons is increased by 1 to 20 in each trial. The avail-
able data is divided into two sets of training and testing and
this technique is continued until a significant increase in the
reduction of the estimation error is achieved. The model is
then validated by investigating the accuracy of the test data
set. Thus, the structure with the minimum estimation error is
determined as the resultant ANN model (Samadianfard et al.
2018).
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Table 2 Mathematical

x; = w1; (DOY) + wa; (H) + w3; (K ) + w4; (DsT) + ws; (F10.7) + we;

TECspring = —6.597(y1) — 11.174(y2) + 5.338(y3) + 24.976(y4) 4 30.419(y5) — 6.099

xi = w1; (DOY) + wo; (H) + w3i (Kp) + wa; (DsT) + ws; (F10.7) + we;

TECsummer = —1.361(y1) 4 20.829(y2) — 9.149(y3) 4+ 72.391(y4) — 9.895(ys) — 55.564

x; = w1; (DOY) + wo; (H) + w3; (K ) + wyg; (DsT) + ws; (F10.7) + we;

TEC Autumn = —143.994(y1) — 9.790(y7) + 7.541(y3) — 33.784(y4) + 46.385(ys) + 68.177

equations of ANN models for Model Equations
all seasons
Spring
1
Vi = Tre s
Summer
1
Vi = e
Autumn
1
Vi = Tew
Winter

R 1
Vi = Tre s

Xi = w1; (DOY) + wo; (H) + w3; (Kp) + w4; (DsT) + ws; (F10.7) + we;

TECwinter = —40.256(y1) 4+ 0.974(y2) — 12.741(y3) +29.112(y4) +29.827(ys) +21.211

4 Statistical metrics for performance
evaluation

In this study, Root Mean Square Error (RMSE), and correla-
tion coefficient (R) were used as statistical metrics for eval-
uating the performance of ANN models. The RMSE and R
can be calculated as follows:

N
1
RMSE= | Z;(Ymeasured i = Yomodeled j)? 7
]=

Z(Ymeasuredj — Ymeasured j)(Ymodeledj — Ymodeled j)

\/Z(Ymeasuredj - 7measured j)2 Z(Ymodeledj - ?modeled j)2

®)

where N is the number of the data set, and Ymeasured j and
Ymodeled j are the measured and modeled TEC values, re-
spectively. Besides, Y measured j and Y modeled ;j represent the
mean value of measured and modeled TEC values, respec-
tively.

5 Modeling and performance evaluation

The performance of ANN mainly depends on the network
structure setting. Therefore, parameters which affect iono-
sphere should be determined carefully. The ionosphere is
mainly affected by day-to-day, the hour of the day, solar
activity and magnetic storm. In this study, we constructed
an ANN with 5 input layers and 5 hidden layers to model
the TEC variation for each season. Input parameters were
defined as DOY, hour, F107 cm index (solar activity), Kp
index and DsT index (magnetic storm index). To implement
our ANN method, training, testing and prediction data sets

Fig.2 Structure of ANN Method used

were arranged as 80%, 10% and 10% for all seasons. Af-
ter training and testing the data sets with ANN, the weights
and biases for hidden and final output layers were extracted
and presented in Table 1. Then, the mathematical models
for all seasons were generated using these weights as seen
in Table 2. In addition, Fig. 2 shows the structure of the
ANN used in this study and it gives information about how
the mathematical equations were extracted using the weights
and biases in Table 1.

Training, testing and prediction results of ANN for all
seasons were presented in Fig. 3 in order to reveal the per-
formances of the ANN method. Considering the training re-
sults, ANN models for summer and autumn had higher ac-
curacies with RMSE 2.50 TECU and 2.67 TECU, respec-
tively, than the models acquired for spring and winter. For
all seasons, according to the derived results of the ANN
method, based on the training data set, the RMSE ranged
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from 2.50 TECU to 4.22 TECU, while the corresponding
range of 2.54-4.11 was obtained based on the testing data
set. For the testing data set, the highest ANN accuracy
was retrieved for autumn data set with RMSE 2.54 TECU
whereas the lowest accuracy was obtained from spring data
set with RMSE 4.11 TECU. After obtaining training and
testing results, ANN models for all seasons were extracted
using the weights in Table 1 and all models were presented
in Table 2. Based on the models in Table 2, TEC values for
the rest of the seasons (9 days) were predicted and the results
were evaluated as seen in Fig. 3. Considering the prediction
results, ANN predicted TEC values in winter and autumn
better than summer and spring with RMSE 3.92 TECU and
3.97 TECU, respectively. The testing results showed that
the ANN method performed the highest accuracy for au-
tumn data set; however, the prediction results revealed that
the highest accuracy was obtained from winter data set. For
the prediction results, the R value of winter data set (0.74)
was lower than the autumn data set (0.88) while the RMSE
values were opposite. This situation is most probably asso-
ciated with the accuracy and precision of the data sets. For
autumn data set, the precision between the predicted TEC
and real TEC was high; however, the accuracy of the results
was low, and the opposite situation existed for the predicted
winter data set. Moreover, it was observed that ANN mod-
els overestimated TEC values while predicting for spring,
summer and autumn data sets as seen in Fig. 3.

6 Discussion and conclusion

Watthanasangmechai et al. (2012) carried out the neural net-
work (NN) application for predicting TEC values in Thai-
land. Input parameters were defined as DOY, F10.7 cm and
hour for period 2005-2009. In order to determine the perfor-
mance of the NN, predicted TEC was compared with GPS-
TEC and IRI-2007 data using RMSE. Results showed that
the proposed NN can predict TEC quite well over Thai-
land. Tulasi Ram et al. (2018) applied ANN to obtain lo-
cal ionosphere model over low (Armi GPS station) and
mid-latitude (Ebre GPS station) locations and compared the
results with GPS-TEC. Their testing results presented the
RMSE as 6.003 TECU and 4.214 TECU, respectively. ANN
model had a good agreement for both stations located in low
and mid-latitude regions. Moreover, they also predicted 1 h
ahead of one day TEC and they reached promising results.
This work was carried out to model and predict seasonal
ionospheric variations at ANKR station (Turkey) in 2015
using the ANN method. The parameters (F10.7 cm, DsT,
Kp, DOY, hour) which impact the TEC data were taken as
the ANN inputs. Training, testing and predicted TEC data
were set as 80%, 10% and 10%, respectively. ANN mod-
els for summer and autumn data showed better performance

with RMSE 2.50 TECU and 2.67 TECU compared to spring
and winter months according to training results. Moreover,
RMSE ranged from 2.50 TECU to 4.22 TECU with regard
to all training results. Our testing RMSE results showed
changes between 2.54 TECU and 4.11 TECU. When these
results were compared to the study performed by Tulasi Ram
et al. (2018), it was clear that we obtained better testing re-
sults in our case study.

ANN’s accuracy demonstrated the best performance for
autumn season with RMSE 2.54 TECU and the worst perfor-
mance in spring season with RMSE 4.11 TECU for testing
data. Considering the prediction results, it was observed that
ANN gave better performance in winter and autumn than
summer and spring with RMSE 3.92 TECU and 3.97 TECU,
respectively. However, for the prediction results, the R value
of winter data set (0.74) was lower than the autumn data set
(0.88) while the RMSE values were opposite. For autumn
data set, the precision between the predicted TEC and real
TEC was high; however, the accuracy of the results was low,
and the opposite situation existed for the predicted winter
data set. Moreover, it was observed that ANN models over-
estimated TEC values while predicting for spring, summer
and autumn data sets. As a conclusion, considering all re-
sults, it was revealed that seasonal ionospheric modeling and
predicting could be successfully achieved using the ANN
method.

Publisher’s Note  Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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