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Abstract We propose a variant of residual networks
(ResNets) for galaxy morphology classification. The variant,
together with other popular convolutional neural networks
(CNNs), is applied to a sample of 28790 galaxy images
from the Galaxy Zoo 2 dataset, to classify galaxies into five
classes, i.e., completely round smooth, in-between smooth
(between completely round and cigar-shaped), cigar-shaped
smooth, edge-on and spiral. Various metrics, such as accu-
racy, precision, recall, F1 value and AUC, show that the pro-
posed network achieves state-of-the-art classification perfor-
mance among other networks, namely, Dieleman, AlexNet,
VGG, Inception and ResNets. The overall classification ac-
curacy of our network on the testing set is 95.2083% and the
accuracy of each type is given as follows: completely round,
96.6785%; in-between, 94.4238%; cigar-shaped, 58.6207%;
edge-on, 94.3590% and spiral, 97.6953%. Our model al-
gorithm can be applied to large-scale galaxy classification
in forthcoming surveys, such as the Large Synoptic Survey
Telescope (LSST) survey.
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1 Introduction

Galaxies have various shapes, sizes and colors. To under-
stand how the morphologies of galaxies relate to the physics
that create them, galaxies need to be classified. Thus galaxy
morphology classification is a key step in studying galaxy
formation and evolution. In 1926, Edwin Hubble first pro-
posed the “Hubble Sequence” using visual inspection with
fewer than 400 galaxy images (also called the “Hubble Tun-
ing Fork”), and classified galaxies into three basic types: el-
liptical, spiral and irregular (Hubble 1926; Sandage 2005).
The “Hubble Sequence” is still in use today. For a long
time, astronomers have used the visual inspection to clas-
sify galaxies and update the Hubble’ classification scheme.
During recent decades, large scale surveys such as the Sloan
Digital Sky Survey (SDSS) have resulted in a tremendous
amount of galaxy images. The classification of this enor-
mous quantity of images by astronomers is not only time
consuming but also an impossible mission.

Then, the Galaxy Zoo project, which attempted to solve
the problem, was launched (Lintott et al. 2008, 2010).
Galaxy Zoo 1 with a dataset comprising one million SDSS
galaxy images, invited a large number of citizen scientists
to provide basic morphological information and identify if
a galaxy was “spiral”, “elliptical”, “a merger”or “star/don’t
know” (Lintott et al. 2008). The project was a huge success,
and the million galaxy images were annotated within several
months. Then, Galaxy Zoo 2 (Willett et al. 2013), Galaxy
Zoo: Hubble (Willett et al. 2016), and Galaxy Zoo: Cosmic
Assembly Near-Infrared Deep Extragalactic Legacy Survey
(CANDELS) (Simmons et al. 2016) were launched. Unfor-
tunately, these approaches cannot keep up with the pace of
data growth. Thus, astronomers have turned their sights to
an automatic classification method.

Galaxy morphology classification using machine learn-
ing methods has played an important role in the past 20
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years. Artificial neural networks (ANNs), Naive Bayers, de-
cision tree and locally weighted regression have been ap-
plied in galaxy classification on relatively small datasets
in early work (Naim et al. 1995; Owens et al. 1996;
Bazell and Aha 2001; De La Calleja and Fuentes 2004).
De La Calleja and Fuentes (2004) found that the accuracy
dropped from 95.66% to 56.33% when classifying galax-
ies into 2 classes to 5 classes, respectively. Banerji et al.
(2010) used ANNs to assign galaxies to 3 classes with sev-
eral input parameters, e.g., colors, shapes, concentration and
texture. Gauci et al. (2010) used decision tree and fuzzy
logic algorithms to classify galaxy morphology based on
the designed photometric parameters and spectral parame-
ters. Ferrari et al. (2015) measured galaxy morphological
parameters, including concentration, asymmetry, smooth-
ness, the Gini coefficient, moment, entropy and spirality
to automatically classify galaxies using linear discriminant
analysis (LDA). Other recent galaxy classification methods
(Orlov et al. 2008; Huertas-Company et al. 2011; Polsterer
et al. 2012) all require feature extraction, which requires
careful human design. It is well known that the perfor-
mance of classification depends on the choice of data rep-
resentation, called feature engineering (LeCun et al. 2015).
Feature engineering needs domain expertise and is time-
consuming.

During the past three years, galaxy morphology classifi-
cation using deep learning algorithms has received increas-
ingly more attention. Deep learning models are composed
of multiple nonlinear layers to learn data representations,
these layers are directly fed with raw data and automatically
learn the data representations (Bengio et al. 2013; LeCun
et al. 2015). After multiple nonlinear transformations, the
representations of the higher layers are abstract and bene-
ficial for discrimination and classification. Deep convolu-
tional neural networks (CNNs) have become the dominant
approach for image classification tasks. With the availabil-
ity of a large number of Galaxy Zoo labelled dataset, some
studies have yielded good results. For the first time, Diele-
man et al. (2015) used a 7-layer CNN to classify galaxy mor-
phology classification, exploiting the translation of galaxy
images and rotation invariance. Then, Huertas-Company
et al. (2015) used the Dieleman model to classify high
redshift galaxies in the 5 CANDELS fields. Hoyle (2016)
used CNNs to estimate the photometric redshift of galax-
ies. Kim and Brunner (2016) presented a star-galaxy classi-
fication framework similar to VGG (Simonyan and Zisser-
man 2014). Recently, CNNs have been applied to find strong
gravitational lenses in the Kilo Degree Survey (Petrillo et al.
2017). In addition, Aniyan and Thorat (2017) used CNNs
to classify radio galaxies into Fanaro-Riley Class I (FRI),
Fanaro-Riley Class II (FRII) and bent-tailed radio galax-
ies.

In this study, we propose a modified residual network
(ResNet) for galaxy morphology classification. We selected

28790 galaxy images from the Galaxy Zoo 2 dataset and
used five forms of data augmentation to enlarge the number
of our training samples in data preprocessing to avoid over-
fitting. The variant we proposed combines the advantages
of the Dieleman model (Dieleman et al. 2015) and residual
networks. In addition, we implemented several other popu-
lar CNN models, including Dieleman, AlexNet (Krizhevsky
et al. 2012), VGG (Simonyan and Zisserman 2014), Incep-
tion (Szegedy et al. 2015; Ioffe and Szegedy 2015; Szegedy
et al. 2016, 2017) and ResNets (He et al. 2016a,b) and sys-
tematically compared the classification performance of our
model with these CNN models. As expected, we demon-
strate that our model achieves state-of-the-art performance.
Furthermore, to understand what the CNNs learn, we visu-
alized the filter weights and feature maps to provide a qual-
itative empirical analysis.

This paper is organized as follows. We introduce the
dataset selection in Sect. 2. Section 3 describes deep learn-
ing models and CNNs. Section 4 contains the data prepro-
cessing pipeline, data augmentation, the proposed ResNet
and training tips. Section 5 presents the results and analy-
sis of our network and other CNN models. Finally, we draw
conclusions and future work in Sect. 6.

2 Dataset

The galaxy images in this study are drawn from Galaxy
Zoo-the Galaxy Challenge,1 which contain 61578 JPG color
galaxy images with probabilities such that each galaxy is
classified into different morphologies. Each image is 424 ×
424 × 3 pixels in size taken from the Galaxy Zoo 2 main
spectroscopic samples from SDSS DR7.2 The morphologi-
cal classification vote fractions are a modified version of the
weighted vote fractions in the Galaxy Zoo 2 project.3 The
classification vote fractions have a high level of agreement
and an authoritative basis with professional astronomers
(Willett et al. 2013), and the data have been used in stud-
ies of galaxy formation and evolution (Land et al. 2008;
Schawinski et al. 2009; Bamford et al. 2009; Willett et al.
2015).

In this study, clean samples are selected that match a
specific morphology category with an appropriate thresh-
old (Willett et al. 2013), which depends on the number of
votes for a classification task considered to be sufficient. For
example, to select the spiral, the cuts are the combination
of ffeatures/disk ≥ 0.430, fedge-on,no ≥ 0.715, and fspiral,yes ≥
0.619. These thresholds are considered conservative for the

1https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge.
2http://www.sdss.org/.
3https://www.galaxyzoo.org/.
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Table 1 Clean samples selection in Galaxy Zoo 2. The clean galaxy
images are selected from Galaxy Zoo 2 data release (Willett et al.
2013), in which thresholds determine well-sampled galaxies. More-
over, for Table 1 they are called clean samples. Thresholds depend on

the number of votes for a classification task considered to be suffi-
cient. As an example, to select the spiral, cuts are the combination of
ffeatures/disk ≥ 0.430, fedge-on,no ≥ 0.715 and fspiral,yes ≥ 0.619

Class Clean sample Tasks Selection Nsample

0 Completely round smooth T01 fsmooth ≥ 0.469 8434

T07 fcompletely round ≥ 0.50

1 In-between smooth T01 fsmooth ≥ 0.469 8069

T07 fin-between ≥ 0.50

2 Cigar-shaped smooth T01 fsmooth ≥ 0.469 578

T07 fcigar-shaped ≥ 0.50

3 Edge-on T01 ffeatures/disk ≥ 0.430 3903

T02 fedge-on,yes ≥ 0.602

4 Spiral T01 fsmooth ≥ 0.469 7806

T02 fedge-on,no ≥ 0.715

T04 fspiral,yes ≥ 0.619

Table 2 Number of galaxy images in each morphological class in each
set. The numbers 0, 1, 2, 3 and 4 represent completely round, in-
between, cigar-shaped, edge-on and spiral, galaxy classes, respectively

Type 0 1 2 3 4 Total

Training set 7591 7262 520 3513 7025 25911

Testing set 843 807 58 390 781 2879

Data set 8434 8069 578 3903 7806 28790

selection of clean samples in Willett et al. (2013). By this
means, we assign galaxy images to five classes, i.e., com-
pletely round smooth, in-between smooth (between com-
pletely round and cigar-shaped), cigar-shaped smooth, edge-
on and spiral. In practice, all thresholds are derived from
Willett et al. (2013) except that the thresholds of smooth
galaxies are relaxed from 0.8 to 0.5, and for full details refer
to Willett et al. (2013). Table 1 shows the clean sample se-
lection criterion for every class. The 5 classes of galaxies are
referred to as 0, 1, 2, 3 and 4, each containing a sample of
8434, 8069, 578, 3903 and 7806 images, respectively. Fig-
ure 1 shows the galaxy images randomly selected from the
dataset, and each row represents a class. From top to bottom,
their labels are 0, 1, 2, 3 and 4.

The dataset reduces to 28790 images after filtering and is
then divided into a training set and a testing set at a ratio of
9:1. Thus, there are 25911 images for the training set to train
our model, and the remaining 2879 images are used for the
testing set to evaluate our model. The training and testing
sets have the same distribution. Table 2 gives the number of
galaxy images in each morphological class of the training
and testing sets, and Fig. 2 reproduces the dataset graphi-
cally.

3 Deep convolutional neural networks

Deep learning models are composed of multiple layers to
automatically learn data representations from the raw data,
which are capital for classification, localization, detection,
and segmentation without feature extraction (LeCun et al.
2015). Deep CNNs have played an important role in deep
learning (Goodfellow et al. 2016) and have become the dom-
inant approach in image classification. In this section, we
briefly introduce ANNs and CNNs, especially ResNets.

3.1 Artificial neural networks

ANNs are composed of simple adaptive interconnected units
that can simulate biological nervous systems as interactions
in response to real-world objects (Kohonen 1988). Figure 3
shows a simple feedforward neural network, which is com-
posed of an input layer, a hidden layer and an output layer.
Formally, xl

i , x
l+1
j are defined as the i-th neuron of l-th layer

and the j -th neuron of (l + 1)-th layer, and wl
ij , bl

j are de-
fined as weights and the bias of the l-th layer, respectively.
Then, the outputs of the l-th layer are xl+1

j :

xl+1
j = f

(∑
i∈Nl

(
wl

ij x
l
i + bl

j

))
(1)

where Nl is the number of l-th layers and f is the activation
function. Activation functions have many types, such as the
popular rectified linear unit (ReLU) (Nair and Hinton 2010),
f = max(0, x), sigmoid, tanh, leaky ReLU, and exponential
linear unit (ELU).

Then, we let ŷ = (ŷ1, ŷ2, . . . , ŷk, . . . , ŷm) be the output
of the network and y = (y1, y2, . . . , yk, . . . ym) be the de-
sired output and we define a cost function �(ŷ, y). In the
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Fig. 1 Example galaxy images
from the dataset. Each row
represents a class. From top to
bottom, their Galaxy Zoo 2
labels are completely round
smooth, in-between smooth,
cigar-shaped smooth, edge-on
and spiral. They are referred to
as 0, 1, 2, 3 and 4

Fig. 2 Galaxy samples counts

classification task, cross entrophy can be selected as the cost
function. In particular, in binary classification, the cross en-
tropy can be defined as

�(ŷ, y) = −y log ŷ − (1 − y) log(1 − ŷ) (2)

Fig. 3 Schematic of a feed forward neural network

where y ∈ {0,1}, ŷ ∈ [0,1]. Then, we compute the cross en-
tropy of all training data. To minimize the cross entropy, we
use stochastic gradient descent (SGD) to update the weights
and bias until the loss function converges:

wl
n+1 = wl

n − η
∂�

∂wl
n

(3)
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bl
n+1 = bl

n − η
∂�

∂bl
n

(4)

where η is the learning rate. Of course, in practice, we use
minibatch SGD instead of all data SGD to save training time
when seeking a local optimal solution.

3.2 Convolutional neural networks

CNNs or ConvNets (Cun et al. 1989) are designed to pro-
cess multiple arrays data, for example, image data. CNNs
have been very successful in practical applications. A clas-
sical layer of a CNN consists of three stages. In the first
stage, the layer performs several convolutions. Then, a non-
linear activation function such as ReLU is applied. Finally,
a pooling function modifies the output of the layer (Good-
fellow et al. 2016). CNNs generally contain convolutional
layers, pooling layers and fully connected layers.

Convolutional layers Convolution is a specialized type of
linear operation. Discrete convolution can be viewed as mul-
tiplication by a matrix. Convolutional layers can be com-
puted by

xl
j = f (�i∈Mj

xl−1
i × kl

ij + bl
j ) (5)

where l is the number of layers, f is the activation func-
tion, usually ReLU, k represents the convolutional kernel,
Mj represents the receptive field and b is the bias.

Pooling layers (also called subsampling) Pooling can be
achieved by taking the average (average pooling) or the
maximum (max pooling) value within a rectangular neigh-
bourhood of pixels. For an image, subsampling can reduce
the image sizes.

Fully connected layers Fully connected layers are usually
followed by the last pooling layer or the convolutional layer,
and every neuron in fully connected layers is connected to
all the neurons in the upper layers.

Generally, CNNs have sparse connectivity, parameter
sharing and equivariant representation, which represent
three important ideas.

Deep CNNs have brought about a series of breakthroughs
in image classification. CNNs are becoming increasingly
deeper, from 8 layers (Krizhevsky et al. 2012), 16/19 lay-
ers (Simonyan and Zisserman 2014), 42 layers (Szegedy
et al. 2016), to 152 layers (He et al. 2016a). In order to train
deeper networks, some new techniques have been adopted,
such as ReLU (Nair and Hinton 2010), dropout (Srivas-
tava et al. 2014), graphics processing units (GPUs), data
augmentation (Krizhevsky et al. 2012), and batch normal-
ization (BN) (Ioffe and Szegedy 2015). Currently, CNN
models have developed several versions, primarily includ-
ing AlexNet (Krizhevsky et al. 2012), VGG (Simonyan and

Fig. 4 Residual learning: a building block

Zisserman 2014), Inception (Szegedy et al. 2015; Ioffe and
Szegedy 2015; Szegedy et al. 2016, 2017), ResNets (He
et al. 2016a,b) and DenseNet (Huang et al. 2016).

3.3 Residual Networks

Deep ResNets are reported in He et al. (2016a,b), which
can deepen the networks up to thousands of layers and can
achieve state-of-the-art performance. In this section, we pro-
vide a brief description of ResNets.

He et al. (2016a) proposed a deep residual learning
framework: let the layers try to learn a residual mapping
instead of the directly desired underlying mapping of a
few stacked layers. Figure 4 shows a residual building
block. Let the desired underlying mapping be H(xl), and
let the stacked nonlinear layers fit the mapping of F(xl) =
H(xl) − xl . This is a residual framework. The formulation
F(xl) = H(xl) − xl can be written as H(xl) = F(xl) + xl ,
and F(xl) + xl can be realized by feeding forward the neu-
ral networks with a “short connection” (Fig. 4); this process
skips one or more layers and performs identity mapping. Fi-
nally, their outputs are added to the outputs of the stacked
layers. A residual unit can be expressed as follows:

xl+1 = f
(
h(xl) + F(xl,Wl)

)
(6)

where xl and xl+1 are the input and output of the l-th unit,
respectively. In addition, F is a residual function. For ex-
ample, Fig. 4 has two layers, F = W2σ(W1x) in which σ

denotes ReLU and the biases are omitted to simplify the no-
tation. Additionally, h(xl) = xl and f is a ReLU function.

There are two types of residual building blocks in He
et al. (2016a) as shown in Fig. 5. The basic residual unit
(Fig. 5, left) contains two layers, namely, 3 × 3, 3 × 3 con-
volutions. To decrease the training time and network param-
eters, a modified residual unit is presented as Fig. 5 (right),
which is called a “bottleneck” building block. The “bottle-
neck” building block uses 3 layers instead of 2 layers and
they are 1 × 1, 3 × 3, 1 × 1 convolutions, where the 1 × 1
convolutional layers can both decrease and increase the di-
mensions.
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Fig. 5 A deeper residual function F. Left: a building block as in Fig. 4
for ResNet-34. Right: a “bottleneck” building block for ResNet-50/
101/152/200. Reproduced from Fig. 5 in He et al. (2016a)

In He et al. (2016b), both h(xl) and f are identity map-
ping functions, where the signal could be directly propa-
gated from one unit to other units, in both forward and back-
ward passes. The residual unit can be redefined as:

xl+1 = xl + F(xl,Wl) (7)

He et al. (2016b) also adopted “preactivation”, where
“BN-ReLU-Conv” replaced the traditional “Conv-BN-
ReLU”. This is called ResNet V2, which is much easier to
train and exhibits better performance than ResNet V1 (He
et al. 2016a). ResNets have many versions, such as ResNet-
50/101/152/200 with, deeper layers up to 1001 layers.

4 Approach

In the previous section, we introduced the theory of ResNets.
In this section, we describe our framework including data
preprocessing, data augmentation, scale jittering, network
architecture, and implementation details.

4.1 Preprocessing

From the dataset, the images are composed of large fields
of view with the galaxy of interest in the center. Therefore,
it is necessary to crop the image in the first step. In prac-
tice, we crop from the center of the image to a range scale
S = [170,240] in the training set for every image (as ex-
plained later). This strategy allows all the main informa-
tion to be contained in the center of the image, eliminates
considerable noise, such as other secondary objects, and re-
duces the dimensions of the images by almost a quarter for
faster training. The complete preprocessing procedure is il-
lustrated in Fig. 6.

Then, the image is resized to 80 × 80 × 3 pixels, which is
just dimension reduction and is easy to compute using a lim-
ited computing source. Next, a random cropping operation
is carried out, which increases the size of the training set by
a factor of 256. The size of the image drops to 64 × 64 × 3
pixels. Next, the image is randomly rotated by 0◦, 90◦, 180◦,
and 270◦ because of the rotation invariance of galaxy im-
ages and then is randomly horizontally flipped. Brightness,
contrast, saturation and hue adjustments are applied to the
image and the last step is image whitening. The abovemen-
tioned process describes the whole preprocessing pipeline in
training. After those steps, images (64 × 64 × 3 pixels) will
be used as input to the network when training.

At testing time, the preprocessing procedure does not
include random cropping, rotation, horizontal flipping and
optical distortion. After center cropping to a fixed value
Q = {180,200,220,240} (as explained later), the image is
resized to 80 × 80 × 3 pixels and then center cropping is
performed again, thus, the size of the image is 64 × 64 × 3
pixels. The last step is still image whitening, and the images
will be used as input to the networks when testing.

Fig. 6 Preprocessing procedure. The original image is first cen-
ter cropped to a range scale S = [170,240] in training set (Q =
{180,200,220,240}in testing set). For example, the spiral galaxy
(GalaxyID: 237308) is cropped to 220×220×3 pixels, then resized to

80 × 80 × 3 pixels, randomly cropped to 64 × 64 × 3 pixels, randomly
rotated 0◦, 90◦, 180◦, 270◦, and randomly horizontally flipped. After
optical distorting and image whitening, it (64×64×3 pixels) becomes
the input of networks
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4.2 Data augmentation

To avoid overfitting, data augmentation is a common and
effective way to reduce overfitting. Because of our limited
training data, data augmentation can enlarge the number of
training images. We use five different forms of data augmen-
tation.

Scale jittering is the first form of data augmentation. Dur-
ing the training time, we crop the images to a range scale
S = [170,240], which is called multi-scale training images
because of the S random value. Because different images
can be cropped to different sizes and even the same images
can be cropped to different sizes at different iterations, it
is beneficial to consider data augmentation during training.
This approach can be seen as training set augmentation by
scale jittering.

Random cropping is carried out from 80 × 80 × 3 pixels
to 64×64×3 pixels, which increases the size of the training
set by a factor of 256. Rotating training images by 0◦, 90◦,
180◦, and 270◦ can enlarge the size of the training set by a
factor of 4. A horizontal flipping is a doubling of training
images.

The first four forms of data augmentation are affine trans-
formations, which entail very little computation and these
transformations are completed on the CPU before training
on the central processing unit (CPU). Brightness, contrast,
saturation and hue adjustment are the same in Krizhevsky
et al. (2012), which are optical distortion for data augmen-
tation.

4.3 Scale jittering

Scale jittering is derived from Simonyan and Zisserman
(2014), in which the images of the input are cropped from
multiscale training images and fixed multiscale testing im-
ages.

Training scale jittering Let set S be multiscale training
(we also refer to S as the training scale), where each train-
ing image is individually rescaled by randomly sampling S

from a certain range [Smin, Smax] (we use Smin = 170 and
Smax = 240). Thus, different images can be cropped to dif-
ferent sizes, and even the same images can be cropped to
different sizes at different iterations, which greatly enlarge
the number of training sets and effectively avoid overfitting.
This process can be seen as training set augmentation by
scale jittering.

Testing scale jittering Let set Q be fixed multiscale testing
(we also refer to Q as the testing scale). In practice, we use
Q = {180,200,220,240} when testing, which makes our
models achieve better performance.

4.4 Network architecture

Our model is a variant of ResNets V2 (He et al. 2016b). As
Sect. 3.3 describes, deep ResNets always seek increasingly
deeper layers. Therefore, ResNets are very thin and high.
Recent research shows that such deep ResNets encounter the
risk of diminishing feature reuse, which train very slowly
and need too much time (Zagoruyko and Komodakis 2016).
We propose a network specially designed for a galaxy by
trying to decrease the depth and widen the ResNets. Our
overall architecture of the network is depicted in Fig. 8 and
Table 3.

We adopt full preactivation residual units, as shown in
Fig. 7. A “bottleneck” building block (Fig. 5, right) pre-
sented in He et al. (2016a) is used, namely, a combination
of 1 × 1, 3 × 3, and 1 × 1 convolutions, for example, 1 × 1,
m × k convolution, 3 × 3, m × k convolution, 1 × 1, n × k

convolution, where m, n denotes the number of channels and
k is the widening factor. The full preactivation includes the
standard “BN-ReLU-Conv”operation. In addition, we add a
dropout after the 3 × 3 convolution whereas ResNet V2 (He
et al. 2016b) did not use a dropout to prevent coadaptation
and overfitting. The residual unit is defined as

xl+1 = xl + W3σ
(
W2σ

(
W1σ(xl)

))
. (8)

Here, xl and xl+1 are the input to and output of the l-th unit,
respectively; σ denotes the BN and ReLU; and W1, W2, W2

represent 3 convolutional kernels. The dropout is placed af-
ter the W2 operation and the biases are omitted to simplify
the notations.

Table 3 Architecture of our model for galaxy in this study. Residual
units are shown in brackets. where k is the widening factor, and N

denotes the number of blocks in the group (We use k = 2, N = 2, which
means our network is 26 layers in total). Downsampling is performed
by the last layers in groups conv2, conv3 and conv4 with a stride of 2

Layer name Output size Depth

Conv 1 64 × 64 6 × 6,64

Max-pooling 32 × 32 2 × 2, stride 2

Conv 2 16 × 16

⎡
⎢⎣

1 × 1,64 × k

3 × 3,64 × k

1 × 1,256 × k

⎤
⎥⎦ × N

Conv 3 8 × 8

⎡
⎢⎣

1 × 1,128 × k

3 × 3,128 × k

1 × 1,512 × k

⎤
⎥⎦ × N

Conv 4 4 × 4

⎡
⎢⎣

1 × 1,256 × k

3 × 3,256 × k

1 × 1,1024 × k

⎤
⎥⎦ × N

Conv 5 4 × 4

⎡
⎢⎣

1 × 1,512 × k

3 × 3,512 × k

1 × 1,2048 × k

⎤
⎥⎦ × N

Avg-pooling 1 × 1 4 × 4, 5 − d, softmax
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Fig. 7 Full preactivation
residual unit in our study. m, n

denotes the number of channel,
k is the widening factor. We use
1 × 1, 3 × 3, and 1 × 1
convolutions and the standard
“BN-ReLU-Conv”

Then, considering our network architecture (Fig. 8 and
Table 3), the size of the input to the network is 64 × 64 × 3
pixels. First, 64 kernels of size 6 × 6 × 3 with a stride of
1 are implemented, which is derived from Dieleman et al.
(2015) and proven to be optimal. After the first convolu-
tional layer, a maximum pooling of size 2×2 with a stride of
2 is connected. The size of the output of the image becomes
32 × 32 × 64.

The output of maximum pooling is fed to 4 convolutional
groups: conv2, conv3, conv4 and conv5. Each group has 2
residual blocks. For example, in convolutional group 2, there
are 2 residual blocks: 1 × 1, 64 × 2 (128 channels) convolu-
tion, 3×3,64×2 (128 channels) convolution, 1×1, 256×2
(512 channels) convolution; 1 × 1,64 × 2 (128 channels)
convolution, 3×3, 64×2 (128 channels) convolution, 1×1,
256×2 (512 channels) convolution with a stride of 2, which
perform downsampling. Group3, group4 and group 5 are the
same, except for the last layer of group 5, which does not
perform downsampling. Downsampling is performed in the
last layers in groups conv2, conv3 and conv4 with a stride
of 2.

The dashed shortcuts of Fig. 8 decrease the dimensions.
The contributions of 1 × 1 convolutional layers are reduc-
ing the dimensions at first and then increasing dimensions
to reduce the parameters of the model and speed up train-
ing. The last layer is the global average-pooling layer with
a 4 × 4 kernel, and the size of the output of average pooling
is 1 × 1 × 4096. Finally, a 5-way fully connected layer is
implemented with softmax.

where k is the widening factor and N denotes the num-
ber of blocks in the group. After hundreds of attempts, we
finally use k = 2, N = 2 in practice. Therefore, our network
includes 26 layers, including 26.3 M parameters. The 26-
layer network achieves the best performance regarding ac-
curacy and other metrics.

Fig. 8 Our network architecture for Galaxy in this study. where k is the
widening factor. The dashed shortcuts decrease dimensions. Table 3
shows more details

From our network architecture, some tips are concluded:
the first convolutional layer adopts a relatively large convo-
lution filter of 6 × 6; the convolutional layers mostly have
1 × 1 and 3 × 3 convolutions. The advantages of 1 × 1
convolutions have been described. The advantages of small
3×3 filters were demonstrated in (Simonyan and Zisserman
2014), which can decrease the number of parameters of the
model and achieve a better performance. The feature maps
in each group are the same except for the last layer of each
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convolutional group (conv2, conv3 and conv4). The feature
map size is halved, and the number of filters is doubled.

4.5 Implementation details

We use minibatch gradient descent with a batch size of 128
and a Nesterov momentum of 0.9. The initial learning rate
is set to 0.1, then decreases by a factor of 10 at 30k and
60k iterations, and we stop training after 72k iterations. The
weight decay is 0.0001, the dropout probability value is 0.8
and the weights are initialized as in He et al. (2015). We
adopt BN before activation and convolution, following He
et al. (2016b).

Our implementation is based on Python, Pandas, scikit-
learn (Pedregosa et al. 2012) and scikit-image (Van Walt
et al. 2014), and TensorFlow (Abadi et al. 2016). It takes
approximately 31.5 hours to train a single network with
an NVIDIA Tesla K80 GPU. Our code is available at
https://github.com/Adaydl/GalaxyClassification.

5 Results and discussion

In this section, we describe 7 types of classification per-
formance metrics: accuracy, precision, recall, F1, confusion
matrix (CM), receiver operating characteristic (ROC) and
area under an ROC curve (AUC). Then, we show the re-
sults of our model and systematically compare the perfor-
mance of our model with other popular CNN models, such
as Dieleman, AlexNet, VGG, Inception and ResNets. Ulti-
mately, we visualize the filters and feature maps.

5.1 Classification performance metrics

To assess the performance of our classification models, we
present 7 types of classification performance metrics: accu-
racy, precision, recall, F1, CM, ROC and AUC. They are
defined as follows:

Accuracy ŷi is the predicted value of the i-th sample and yi

is the corresponding true value. Then, the fraction of correct
predictions over nsamples is defined as:

Accuracy(yi, ŷi) = 1

nsamples

nsamples−1∑
i=0

1(ŷi = yi). (9)

Precision, recall and & F1 (Ceri et al. 2013) Given the num-
ber of true positive (TP), false positive (FP), true negative
(TN) and false negative (FN), we define the following:

P = T P

T P + FP
. (10)

R = T P

T P + FN
, (11)

F1 = 2PR

P + R
. (12)

Confusion matrix (CM) An entry CMij (i, j = 1,2, . . . ,

nsamples) is defined as the number of the true class i,that is
predicted to class j .

ROC & AUC A ROC curve plots the true positive rate (TPR)
against the false positive rate (FPR) for every possible clas-
sification threshold. AUC is the area under the ROC curve.
The closer the AUC is to 1, the better the classification per-
formance is.

5.2 Classification results and discussion

In this section, we summarize the results of our models on 7
types of classification performance metrics and compare the
results of our model with other popular CNNs.

Table 4 shows precision, recall and F1 values of our
model for each class on testing set. The numbers 0, 1,
2, 3 and 4 represent completely round, in-between, cigar-
shaped, edge-on and spiral galaxy classes, respectively. The
average precision, recall and F1 of the 5 galaxy classes of
our model are 0.9512, 0.9521 and 0.9515. respectively. The
completely round achieves the best precision of 0.9611. The
spiral achieves the best recall of 0.9782 and the best F1
value of 0.9677. On the whole, the results for the completely
round, the in-between, the edge-on and the spiral are excel-
lent. Those for the cigar-shaped images are not excellent.
This result is due to the small number of cigar-shaped im-
ages for training.

The CM of our model for each class on the testing
set is shown in Table 5. The column represents the true
label and the row represents the prediction label. Conse-
quently,815 completely round, 762 in-between, 34 cigar-
shaped, 368 edge-on and 763 spiral are classified correctly.
Therefore, the accuracies of the 5 galaxy types are as fol-
lows: completely round, 96.6785%; in-between, 94.4238%;
cigar-shaped, 58.6207%; edge-on, 94.3590% and spiral,
97.6953%. For teh completely round, 29 are incorrectly

Table 4 Precision, Recall and F1 of our model for each class on testing
set

Class Precision Recall F1

0 0.9611 0.9634 0.9622

1 0.9561 0.9431 0.9495

2 0.7234 0.5862 0.6476

3 0.9412 0.9485 0.9448

4 0.9573 0.9782 0.9677

Average 0.9512 0.9521 0.9515

https://github.com/Adaydl/GalaxyClassification
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Table 5 Confusion matrix of our model for each class on testing set.
The column represents true label and row represents prediction label

0 1 2 3 4

0 815 21 0 0 10

1 29 762 0 0 17

2 0 4 34 18 2

3 0 3 12 368 5

4 4 7 1 5 763

classified as in-between. Obviously, intuition suggestions
that since completely round and in-between classes are sim-
ilar, they are easily misclassified. Notably, 4 completely
round are misclassified as spiral, perhaps due to faint images
photographed from far distances. Additionally, 12 cigar-
shaped classes are misclassified as edge-on and 18 edge-on
classes are misclassified as cigar-shaped, where the number
of misclassifications is greater than that of the others. We
presume that this behaviour occurs due to the similarity of
the cigar-shaped and edge-on classes, which is very surpris-
ing.

Figure 9 shows the ROC curve of our model for the 5
classes of galaxies in the testing set. Each color represents
a class. The closer the TPR is to 1 and the FPR is to 0, the
better the curve prediction, namely, the closer the curve is
to the upper left corner, the better it predicts. From Fig. 9,
the ROC curve of each class performs well, and the edge-on
demonstrates the best predictions and the cigar-shaped ex-
hibits a relatively poorer prediction, which occurs due to the
small number of cigar-shaped images. The average AUC of
our model is 0.9823, which shows that the overall prediction
performance of our model is excellent.

Table 6 summarizes the test accuracy of different meth-
ods at multiple test scales. Our results are based on aver-
age values of the maximum values of 10 runs at each test
scale. Recent research shows that scale jittering at testing
time can obtain a better performance (Simonyan and Zis-
serman 2014). Our model obtains the best results with a
94.6875% accuracy. Table 6 shows that the Dieleman model
works well with a 93.8800% accuracy, although only a 7-
layer CNN was used. Clearly, our model designed specif-

Fig. 9 ROC curve of our model for 5 classes galaxies on testing set.
Each color represents a class

ically for galaxy images while the other networks, such
as AlexNet, VGG, Inception, and ResNets, are designed
for ImageNet, however, they demonstrate excellent perfor-
mance because of their good generalization performance.
For example, AlexNet is an 8-layer CNN that won first
place in the ImageNet LSVRC-2012. Here, it achieves a
91.8230% accuracy due to its use of a relatively large fil-
ter (11 × 11 convolution). VGG-16 achieves a 93.1336%
accuracy and uses many small 3 × 3 filters. Inception im-
plemented here is Inception V3, which includes 42 layers
with carefully designed inception modules, and achieves a
94.2014% accuracy. ResNet-50 is implemented as pre-act-
ResNets and obtains a 94.0972% accuracy.

Table 7 summarizes the test accuracy, precision, recall,
F1 and AUC of different methods. Our results are based on
the maximum values of 10 runs of each testing scale. No-
tably, the accuracy results are better than the results indi-
cated in Table 6 because they are obtained by selecting the
maximum values of 10 runs of each testing scale instead
of the average values of the maximum values of 10 runs of
each testing scale. Our model achieves the best accuracy of
95.2083% at a single testing scale. Because the fatal flaw
of accuracy as a measure in a multiclass task is that it de-
pends on the number of samples in the majority class, we
also adopt average precision, recall, F1 and AUC to mea-

Table 6 Test accuracy of
different methods at multiple
testing scales. Our results are
based on average values of the
maximum values of 10-time
runs of each testing scale. The
bold entries highlight the best
results

Model Image side Accuracy (%)

Train(S) Test(Q)

Dieleman (Dieleman et al. 2015) [170,240] 180, 200, 220, 240 93.8800

AlexNet (Krizhevsky et al. 2012) [170,240] 180, 200, 220, 240 91.8230

VGG (Simonyan and Zisserman 2014) [170,240] 180, 200, 220, 240 93.1336

Inception (Szegedy et al. 2016) [170,240] 180, 200, 220, 240 94.2014

ResNet-50 (He et al. 2016b) [170,240] 180, 200, 220, 240 94.0972

Ours [170,240] 180, 200, 220, 240 94.6875
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Table 7 Test accuracy,
precision, recall, F1 and AUC of
different methods. Our results
are based on the maximum
values of 10-time runs of each
testing scale. The bold entries
highlight the best results within
each column

Model Accuracy (%) Precision Recall F1 AUC

Dieleman (Dieleman et al. 2015) 94.6528 0.9455 0.9465 0.9456 0.9793

AlexNet (Krizhevsky et al. 2012) 92.2569 0.9207 0.9226 0.9215 0.9809

VGG (Simonyan and Zisserman 2014) 93.6458 0.9348 0.9365 0.9353 0.9846

Inception (Szegedy et al. 2016) 94.5139 0.9447 0.9451 0.9448 0.9852

ResNet-50 (He et al. 2016b) 94.6875 0.9458 0.9469 0.9461 0.9823

Ours 95.2083 0.9512 0.9521 0.9515 0.9823

Fig. 10 Filter weights learned
on every convolutional layer.
From top to bottom, they are
filter weights of 4 convolutional
layers. From left to right, they
are filter weights visualization
of different channels on certain
convolutional layer. Brackets
show the number of filters, the
size of filters and channels
visualized

sure the classification performance. Our model obtains the
best average precision of 0.9512, the best average recall of
0.9521 and the best average F1 of 0.9515. Inception achieves
the best average AUC of 0.9852. On the whole, our model
is excellent and achieves state-of-the-art performance.

5.3 Filters and feature maps visualization

Neural networks are always known as “black boxes”. Since
we want to visualize what the CNN learns, we visualize fil-

ter weights and feature maps and then provide a qualitative
empirical analysis (Zeiler and Fergus 2014; Yosinski et al.
2015). For easy understanding, we visualize a simple CNN,
7 layers in total, including 4 convolutional layers (6 × 6, 32
filters, 5 × 5, 64 filters, 3 × 3, 128 filters, and 3 × 3, 128
filters, respectively) and 3 fully connected layers.

Figure 10 shows the features that the filter weights learn
in every convolutional layer. The first layer filters detect
the different galaxy edges, corners, etc. from the origi-
nal pixels, abd then the edge are used to detect simple
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Fig. 11 Activations of each
layer on a smooth galaxy
(GalaxyID: 909652). From top
to bottom, left to right, they are:
input image after whitening;
activations on the Conv 1,
Pooling 1, Conv 2, Pooling 2,
Conv 3, Conv 4 and Pooling 4.
Brackets show the number of
feature maps and the size of
feature maps

Fig. 12 Similar to Fig. 11 but
for an edge-on galaxy
(GalaxyID: 416412)

shapes, such as a bar or an ellipse, in second layer filters.
Next these shapes are used to detect more advanced fea-
tures in high-level layer filters. More invariant representa-
tions are learned with increasing layers. From Fig. 10, dif-
ferent filters also learn different color information, mainly
red and blue that might correspond to the color of galaxy
itself, such as a red elliptical galaxy and or a blue spiral
galaxy.

Figure 11 shows the activation of each layer on a smooth
galaxy (GalaxyID: 909652). In the first layer, some feature
maps recognize the intermediate core of the galaxy, and
some recognize the background. In high layers, feature maps
recognize the abstract blobs with a combination of high-
level features, e.g., in the fourth convolutional layer. After
pooling layers, the differentiability of each feature map is
stronger, which is the exact expectation of the classification
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Fig. 13 Similar to Fig. 11 but
for a spiral galaxy (GalaxyID:
237308)

model. These interesting phenomena can also be found in
Fig. 12 and Fig. 13.

6 Conclusions

In this paper, we propose a variant of ResNets for galaxy
morphology classification. We classify 28790 galaxies into
5 classes, namely, completely round smooth, in-between
smooth (between completely round and cigar-shaped), cigar-
shaped smooth, edge-on and spiral using the Galaxy Zoo
2 dataset. In data preprocessing, a complete preprocessing
pipeline is presented and five forms of data augmentation
are adopted to avoid overfitting, especially the scale jittering
approach that vastly enlarges the number of training images.

The advantage of our network is combining the Diele-
man model with ResNets, in which we try to decrease
the depth and widen the ResNet. We use a “bottleneck”
residual unit with full preactivation “BN-ReLU-Conv”. To
avoid overfitting, we use dropout after a 3 × 3 convolu-
tion. Our network has 26 layers with 26.3 M parameters.
We perform a systematic comparison between our model
and other popular CNNs in deep learning, such as Diele-
man, AlexNet, VGG, Inception and ResNets. Our model
achieves the best classification performance, with an overall
accuracy on the testing set of 95.2083% , while the accura-
cies of the 5 galaxy types are completely round, 96.6785%;
in-between, 94.4238%; cigar-shaped, 58.6207%; edge-on,
94.3590% and spiral, 97.6953%. The average precision, re-
call, F1 and AUC of our model are 0.9512, 0.9521, 0.9515

and 0.9823, respectively. From the CM, we find that 12
cigar-shaped classes are misclassified as edge-on and 18
edge-on are misclassified as cigar-shaped, where the num-
ber of misclassifications is greater than that of others. We
believe that this occurs due to the similarity of cigar-shaped
and edge-on classes, which is very surprising. The Diele-
man model also works well, and the average accuracy is
94.6528% because it is specially designed for galaxy im-
ages. Although AlexNet, VGG, Inception and ResNets are
designed for ImageNet, they all achieve excellent perfor-
mance with accuracies of 92.2569%, 93.6458%, 94.5139%
and 94.6857%, respectively, because of their good general-
ization.

By visualizing filter weights and feature maps, we at-
tempt to understand what the CNN model learns. For in-
stance, the first layer filters detect the different galaxy edges,
corners, etc., from the original pixels, and then edges are
used to detect simple shapes, such as a bar or an ellipse,
in the second layer filters. Next these shapes are utilized to
detect more advanced features in the high-level layer filters.
We also find that different filters also learn different color in-
formation, mainly red and blue, which might correspond to
the color of the galaxy itself, such as a red elliptical galaxy
or a blue spiral galaxy. Regarding the activations of each
layer on a galaxy image, some feature maps recognize the
intermediate core, some recognize the background part in
the first layer, and feature maps recognize the abstract blobs
with a combination of high-level features in the higher lay-
ers. Additionally, after pooling layers, the differentiability of
each feature map is stronger, which is the exact expectation
of the classification medel.
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In the future, large-scale surveys, such as the Dark En-
ergy Survey (DES) and the LSST survey, billions of galaxy
images will be obtained, and our algorithms can be applied
to automatically classify galaxies and achieve state-of-the-
art performance.

In future work, we focus on a much more fine-grained
galaxy morphology classification. We plan to train our
model on a larger and higher quality galaxy dataset. Ul-
timately, more advanced algorithms in deep learning will
merge with galaxy morphology classification.
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