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Abstract The stellar equilibrium and collapse, including
mainly white dwarfs, neutron stars and super massive stars,
is an interplay between general relativistic effects and the
equation of state of nuclear matter. In the present work,
we use the Chandrasekhar criterion of stellar instability by
employing a large number of realistic equations of state
(EoSs) of neutron star matter. We mainly focus on the criti-
cal point of transition from stable to unstable configuration.
This point corresponds to the maximum neutron star mass
configuration. We calculate, in each case, the resulting com-
pactness parameter, β = GM/c2R, and the corresponding
effective adiabatic index, γcr. We find that there is a model-
independent relation between γcr and β. This statement is
strongly supported by the large number of EoSs, and it is
also corroborated by using analytical solutions of the Ein-
stein field equations. In addition, we present and discuss the
relation between the maximum rotation rate and the adia-
batic index close to the instability limit. Accurate obser-
vational measurements of the upper bound of the neutron
star mass and the corresponding radius, in correlation with
present predictions, may help to impose constraints on the
high density part of the neutron star equation of state.
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1 Introduction

The discovery of the in-spiraling and coalescence of a bi-
nary neutron star system (GW170817), by the Laser Inter-
ferometer Gravitational-wave Observatory (LIGO, VIRGO)
(on 17th August 2017), opened a new window to exploring
the neutron star equation of state at high densities (Abbott
et al. 2017a,b). In particular, just after the mentioned discov-
ery, a significant effort was made in constraining the upper
as well as the lower limit of the maximum neutron star mass
and the corresponding radius. In any case, one of the main
ingredients is the compactness of the neutron star, which is
expected to play an important role in the stability and dy-
namics processes of neutron stars. It is well known that the
maximum mass, which corresponds to the most compact
configuration, is the border between the stable–unstable
configuration. Very useful and robust information can be
gained by studying this extreme case.

The stability of relativistic stars has been studied exten-
sively in the past (Chandrasekhar 1964a,b; Friedman and
Stergioulas 2013; Glendenning 2000; Haensel et al. 2007;
Harrison et al. 1965; Shapiro and Teukolsky 1983; Wein-
berg 1972; Zeldovich and Novikov 1978) while various
approaches have been used in order to treat this problem
(Bardeen et al. 1966). In particular, firstly one can solve the
Tolman–Oppenheimer–Volkoff (TOV) (Oppenheimer and
Volkoff 1939; Tolman 1939) equations (which provide the
equilibrium configuration) for either numerically derived
equation of state or trying to find analytical solutions. In
any case, both of the solutions lead to an infinite number
of configurations. Secondly, one possibility is the use of the
criterion of Chandrasekhar (1964a,b) in order to identify, in
each case, the stable configuration as well as the interface
between stable and unstable configuration.
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Moreover, at a given density, there is an important param-
eter, called the adiabatic index, which in particular charac-
terizes the stiffness of the equation of state (Harrison et al.
1965; Haensel et al. 2007; Misner et al. 1973; Bludman
1973a,b; Ipser 1970; Glass and Harpaz 1983; Lindblom and
Detweiler 1983; Hiscock and Lindblom 1983; Gaertig and
Kokkotas 2009). The instability criterion of Chandrasekhar
(1964a,b) strongly depends on this parameter (adiabatic in-
dex). One of the main motivations of the present work is to
examine the possibility to impose constraints on the realistic
neutron star equations of state via the instability condition of
Chandrasekhar.

In particular, we employ an extended group of realistic
equations of state based on various theoretical nuclear mod-
els. The abbreviated names of these equations of state are:
MDI (Madappa et al. 1997; Moustakidis and Panos 2009),
NLD (Gaitanos and Kaskulov 2013, 2015), HHJ (Heisel-
berg and Hjorth-Jensen 2000), Ska, SkI4 (Chabanat et al.
1997; Farine et al. 1997), HLPS (Hebeler et al. 2013),
SCVBB (Sharma et al. 2015), BS (Balberg and Shapiro
2000), BGP (Bowers et al. 1975), W (Walecka 1974), DH
(Douchin and Haensel 2001), BL (Bombaci and Logoteta
2018), WFF1,WFF2 (Wiringa et al. 1988), APR (Akmal
et al. 1998) and PS (Pandharipande and Smit 1975). All
of them satisfy, at least marginally, the observed limit of
M = 1.97 ± 0.04 M� (PRS J1614-2230, Demorest et al.
2010) and M = 2.01 ± 0.04 M� (PSRJ0348+0432, Anto-
niadis et al. 2013). Actually, at the moment, the most robust
constraints on the neutron star equations of state are based
on the measurements of the lower bound of the maximum
neutron star mass. Strictly speaking, the suggested equations
of state, which do not reproduce the higher measurement of
neutron star mass, must be excluded.

It is also well known that the rapidly rotating neutron
stars can be used in order to determine the equation of state
(see Ref. (Haensel et al. 2007) and the references therein). In
particular, the maximum rotating frequency fmax (Keplerian
frequency) depends both on the gravitational mass Mmax and
the EoS. Until this moment, the fastest known pulsar, PSR
J1748-244ad, is rotating with a frequency of 716 Hz (Hes-
sels et al. 2006). While the theoretical predicted values for
fmax are much more higher than 716 Hz, there is a lack of
neutron stars rotating faster than this value. This is an open
problem and obviously additional theoretical assumptions
must be made in order to solve it.

In the present work we concentrate on the dependence
of the effective critical adiabatic index to the compactness
of neutron star, for each equation of state. We mainly fo-
cus on the interface between stable and unstable configu-
ration which corresponds to the maximum-mass configura-
tion. This region is very important, since it is directly re-
lated with the high density part of the neutron star equa-
tion of state. Moreover, we propose an additional method

to constrain the equations of state with the help of accurate
measurements of the maximum neutron star mass and/or
compactness. Finally, we make an effort to relate the maxi-
mum rotating frequency fmax with the critical adiabatic in-
dex and the bulk properties corresponding to the maximum-
mass configuration of a non-rotating (static) neutron star (in-
cluding the maximum mass Mstat

max, the corresponding radius
Rstat

max and the compactness parameter βstat
max) so as to indicate

how observational measurements of highly rotating neutron
stars may impose constraints on the EoS.

The article is organized as follows: In Sect. 2 we present
the TOV equations, the Chandrasekhar instability criterion,
the definition of the relevant adiabatic indices and we briefly
present four relevant analytical solutions of the TOV equa-
tions. In Sect. 3 we briefly discuss the maximum rotating
frequency in connection with the maximum-mass configu-
ration. The results are presented and discussed in Sect. 4.
Section 5 contains the concluding remarks of the study. Ap-
pendix contains relevant analytical approximations for the
critical adiabatic index.

2 The stability criterion and the adiabatic
indices

The starting point for determining the mechanical equi-
librium of neutron star matter is the well-known Tolman–
Oppenheimer–Volkoff (TOV) equations (Glendenning 2000;
Oppenheimer and Volkoff 1939; Shapiro and Teukolsky
1983; Tolman 1939). This set of differential equations de-
scribes the structure of a neutron star. For a static spherical
symmetric system, the metric reads as follows (Glendenning
2000; Shapiro and Teukolsky 1983):

ds2 = −eν(r)c2dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

and the corresponding TOV equations take the form

dP (r)

dr
= −GE(r)M(r)

c2r2

(
1 + P(r)

E(r)

)

×
(

1 + 4πP (r)r3

M(r)c2

)(
1 − 2GM(r)

c2r

)−1

, (2)

dM(r)

dr
= 4πr2

c2
E(r). (3)

By introducing a realistic EoS for the neutron star (e.g. a de-
pendence on the form P = P(E)) we solve numerically the
TOV equations. Of course, one can try to find analytical so-
lutions of the TOV equations. However, it is worth pointing
out that using the analytical solutions, although each one of
them describes equilibrium configurations, is not sufficient
to tell us if it corresponds to stable ones (Tolman 1939);
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this is the case also for any numerical solution. Straight-
forwardly speaking, any unstable solution is not of physical
interest.

Chandrasekhar, in order to solve the instability prob-
lem, introduced a criterion for dynamical stability based on
the variational method (Chandrasekhar 1964a). To be more
specific, the averaged adiabatic index is defined as follows
(Merafina and Ruffini 1989; Moustakidis 2017; Negi and
Durgapal 2001):

〈γ 〉 =
∫ R

0 e(λ+3ν)/2γ (r) P

r2 ( d
dr

(r2e−ν/2ξ(r)))2dr
∫ R

0 e(λ+3ν)/2 P

r2 ( d
dr

(r2e−ν/2ξ(r)))2dr
, (4)

and the effective critical adiabatic index by

γcr =
[
−4

∫ R

0
e(λ+ν)/2r

(
dP

dr

)
ξ2dr

+
∫ R

0
e(λ+ν)/2

(
dP

dr

)2
r2ξ2

P + E dr

− 8πG

c4

∫ R

0
e(3λ+ν)/2P(P + E)r2ξ2dr

]

×
(∫ R

0
e(λ+3ν)/2 P

r2

(
d

dr

(
r2e−ν/2ξ

))2

dr

)−1

. (5)

The Chandrasekhar stability condition leads to the inequal-
ity

〈γ 〉 ≥ γcr, (6)

while the case 〈γ 〉 = γcr corresponds to the onset of the
instability (Merafina and Ruffini 1989; Moustakidis 2017).
According to Eqs. (4) and (5) the averaged and the criti-
cal adiabatic indices are functional of the function ξ(r) as
well as of the compactness parameter β . In particular, the la-
grangian displacement away from equilibrium has the form
ζ(r) = ξ(r)e−iσ t , where σ is the pulsation frequency of the
oscillations. It is obvious from the lagrangian displacement
that σ 2 can take both positive and negative values. To be
more specific, a positive value of σ 2 corresponds to sta-
ble configuration while a negative to unstable one (Chan-
drasekhar 1964a; Kokkotas and Ruoff 2001; Merafina and
Ruffini 1989). It is worth pointing out that the stability con-
dition (6) expresses a minimal and not just an external prin-
ciple (Chandrasekhar 1964a). Moving on to the trial func-
tions that appear in Eqs. (4) and (5), it is widely known that
there are infinite numbers of them. However, the most fre-
quently used are the following (where the names mentioned
in the paper have also been indicated):

ξ(r) = reν/2, (TF-1) (7)

ξ(r) = reν/4, (TF-2) (8)

ξ(r) = r
(
1 + a1r

2 + a2r
4 + a3r

6)eν/2, (TF-3) (9)

ξ(r) = r. (TF-4) (10)

Now, considering an adiabatic perturbation, the adiabatic in-
dex γ is defined as follows (Chandrasekhar 1964a; Merafina
and Ruffini 1989):

γ ≡ P + E
P

(
∂P

∂E

)

S

=
(

1 + E
P

)(
vs

c

)2

S

, (11)

where the derivation is performed at constant entropy S.
Moreover, (vs/c)S = √

(∂P/∂E)S is the speed of sound in
units of speed of light. The speed of sound is an important
quantity, related directly with the stiffness of the equation of
state, and plays a significant role in the maximum-mass con-
figurations. In general, since the adiabatic index is a func-
tion of the baryon density, exhibits radial dependence and
consequently, provides local information for each neutron
star configuration. Its values vary from 2 to 4 in most of the
neutron stars’ equations of state (Haensel et al. 2007). In
the specific case of a polytropic equation of state, the adi-
abatic index is a constant. The effective adiabatic indices,
〈γ 〉 and γcr, in contrast to γ (Eq. (11)) have a global char-
acter. Both of them are directly related with the neutron star
equation of state as well as with the strength of the gravita-
tional field (see also Bludman 1973a,b; Herrera et al. 1989;
Chan et al. 1994; Ipser 1970; Merafina and Ruffini 1989;
Moustakidis 2017; Negi and Durgapal 1999, 2001; Sharif
and Yousaf 2015; Yousaf and Bhatti 2016).

Chandrasekhar, using the Schwarzschild constant-density
interior solution (see below for more details as regards this
analytical solution), found that in the Newtonian limit the
stability is ensured when (Chandrasekhar 1964a)

〈γ 〉 ≥ γcr = 4

3
+ 19

42
2β. (12)

He employed the approximation that the adiabatic index γ

is a constant throughout the star (Chandrasekhar 1964a). In
addition, Chandrasekhar (1964a), in the framework of the
post-Newtonian approximation using relativistic polytropes,
found the relation

γcr = 4

3
+ C

(
Pc

Ec

)
, (13)

where C = 1.8095,2.2615,2.4968,2.6325 corresponds to
the polytropic index n = 0,1,2,3, respectively, and Pc , Ec

are the central values of pressure and energy density. It
should be noted that the ratio Pc/Ec can also be mentioned
as a relativistic index and is closely related with the com-
pactness β (see the extended discussion in Sect. 4). Similar
results have also been found by Tooper in a series of papers
(Tooper 1964, 1965). Moreover, Bludman (1973a,b) studied
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the stability of general relativistic polytropes and provided
the formula

γcr � 4

3
+ 1.73

(
Pc

Ec

)
− 0.31

(
Pc

Ec

)2

. (14)

It is worth extending all these previous studies in order to
examine the dependence of γcr on the compactness param-
eter βmax (as well as on the ratio Pc/Ec) close to the insta-
bility limit, which corresponds to the maximum-mass con-
figuration. Although the study concerning the Newtonian or
post-Newtonian case is universal, meaning that for low vales
of β (β 	 1) the dependence of γcr is almost insensitive
to the details of the EoS, this is not the case for high val-
ues of β . In this case the structure of a neutron star and the
corresponding values of γcr are very sensitive on the EoS.
Since, especially for high values of the densities, the uncer-
tainty on pressure–energy dependence is appreciable, we ex-
pect an influence on the values of γcr. In view of the above,
we conclude that possible constraints on βmax may impose
constraints on the high density behavior of the neutron star
equations of state.

We can also study the stability of the equilibrium config-
uration by using the general properties of the central den-
sity as well as those of the mass–radius relation (Weinberg
1972). In this case, the configuration is stable when the in-
equality dM/dEc > 0 holds. Actually, this condition, due
to its simplicity, has been used extensively in the literature.
However, it needs to be noted that this condition is just nec-
essary but not sufficient and consequently, it is weak com-
pared to the criterion (6).

Now we will briefly discuss four analytical solutions
of the TOV equations. In the case of the Schwarzschild
constant-density interior solution (hereafter called uniform),
the density is constant throughout the star (Schutz 1985;
Weinberg 1972). The physical realization of the Tolman
VII solution has been studied in detail in Raghoonundun
and Hobill (2015). In this solution causality is ensured for
β < 0.2698. However, useful information and predictions
are taken when applied for even higher values of β (see
for example Lattimer and Prakash 2001; Moustakidis 2017;
Lattimer and Prakash 2005; Sotani and Kokkotas 2018).
The Buchdahl solution (Buchdahl 1959, 1967) is applica-
ble only for low values of the compactness (β ≤ 0.2). Ac-
tually, it forms a bridge which connects the Newtonian and
post-Newtonian limits with the relativistic one (Lattimer and
Prakash 2001; Moustakidis 2017; Papazoglou and Mous-
takidis 2016). The Nariai IV solution (Nariai 1950, 1951,
1999), although being very complicated, provides useful in-
sight because it is one of the physically interesting solutions.

In general, the selected solutions exhibit realistic behav-
ior and can be used as a guide to establish some univer-
sal approximations. In particular, while the unrealistic uni-
form solution has been used by Chandrasekhar (1964a) in

order to prove his famous expression (12), its main draw-
back is the infinite value of the speed of sound. In the case
of Tolman VII solution, useful information and predictions
are taken when applied for high values of β . Thus, Lattimer
and Prakash (2005) have demonstrated, using the Tolman
VII solution, that the largest measured mass of a neutron
star establishes an upper bound to the energy density of ob-
servable cold matter. Moreover, while in the Nariai IV solu-
tion the causality was ensured for β < 0.2277, its extension
for higher values was applied successfully (Lattimer and
Prakash 2005; Moustakidis 2017; Papazoglou and Mous-
takidis 2016).

3 Maximum mass and maximum rotation
frequency

It is well known that rotation increases the maximum mass
(Mstat

max) of a corresponding stationary neutron star. In this
case, we face two extreme configurations: a) maximum mass
M rot

max and b) maximum rotation frequency fmax (known as
Kepler frequency) (Haensel et al. 2007). These configura-
tions do not coincide but since they are very close to each
other (with high accuracy) we do not differentiate them.
Moreover, it was found that the maximum frequency can
be expressed, with high accuracy, in terms of mass and ra-
dius of the non-rotating configuration with the maximum
mass (see Haensel et al. 2007 and the references therein).
A precise formula which relates fmax with the maximum
mass Mstat

max and the compactness parameter βstat
max of the static

maximum-mass configuration was found by Haensel et al.
(1999, 2016) and Lasota et al. (1996),

fmax � 15.125 β
3/2
max(1 + 1.6164βmax)

(
M�

Mstat
max

)
kHz. (15)

It is worth to point out the strong dependence of fmax on
βstat

max and consequently, via the adiabatic index, on the high
density dependence area of the EoS. The above expression
can be used to constrain an absolute lower bound of the max-
imum frequency of rigid rotation (for example by measuring
the upper bound on the surface red-shift of a non-rotating
neutron star) and consequently to impose useful constraints
on the EoS and vice versa.

4 Results and discussion

We employ a large number of published realistic equations
of state for neutron star matter based on various theoreti-
cal nuclear models. We calculate both the effective aver-
aged and the critical adiabatic indices for each configura-
tion. Mainly, we are interested in the maximum mass, the
corresponding radius, the ratio Pc/Ec and the corresponding
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Fig. 1 Mass–radius trajectories for the selected EoSs

compactness β for each case. For each configuration we de-
termine 〈γ 〉 and γcr. The onset of instability is found from
the equality 〈γ 〉 = γcr. The corresponding compactness pa-
rameter, is denoted as βmax.

There is also a second criterion, which defines the stabil-
ity limit according to the equality dM/dEc = 0, providing
an additional value of β for the maximum-mass configura-
tion. Now, in general, since 〈γ 〉 and γcr are functionals of
the trial function ξ(r), we expect that the calculated values
of β , for the two methods, will not coincide. In these cases,
we will consider as the most optimal trial function ξ(r) the
one that produces values of β as close as possible to the sec-
ond method. In particular, we found that the trial function (7)
(indicated by TF-1) is the optimal one, leading to an error,
in most of the cases, of less than 1%.

In Fig. 1 the radius–mass relation is drawn using the se-
lected EoSs. One can see that the majority of the EoSs re-
produce the recent observation of two-solar masses neutron
stars. It is obvious that the various predictions cover a wide
range of the maximum neutron star masses and the corre-
sponding radii.

In Fig. 2 we display the dependence of γcr as a function
of the compactness parameter β for all the employed EoSs
by using the optimal trial function (7). The results of the four
analytical solutions have also been included for comparison.
The blue dots correspond to all configurations with neutrally
stable equilibrium as results of the equality 〈γ 〉 = γcr. These
configurations correspond to the ones with the largest pos-
sible central density reachable for stable configuration of
a given mass. In the case of the Tolman VII solution, the
results using the trial function TF-1 (7) have also been in-
cluded. In this case, the onset of instability is indicated by
the red star and corresponds to β = 0.3475 and γcr = 3.85.
It is remarkable that the use of the Tolman VII solution,
leads to results very close to the predictions by using re-
alistic equations of state. The other two analytical solutions

Fig. 2 The critical adiabatic index, γcr, as a function of the com-
pactness parameter β , for the selected EoSs (using the trial function
TF-1 (7)). The results of the four analytical solutions, using for consis-
tency the trial function TF-1 (7), have also been included for compari-
son (for more details see text). The blue dots correspond to the onset of
instability as a result of the equality 〈γ 〉 = γcr. The onset of instability
for the Tolman VII solution is indicated by a red star (for the TF-1)

(Buchdahl’s and Nariai IV), in each case, lead to a stable
configuration (Moustakidis 2017). The uniform solution is
always used as a guide for a stable configuration mainly for
low values of the compactness β (see Eq. (12)).

The most distinctive feature in Fig. 2 is the remarkable
unanimity of all equations of state and consequently the oc-
currence of a model-independent relation between γcr and
βmax, at least for any stable configuration. The above find-
ing is clearly expected for low values of the compactness β

(since all equations of state converge for low values of the
density). However, at high densities of the equations of state,
where there is a considerable uncertainty, this result was not
obvious. In any case, as a consequence of the convergence,
both for low and high values of the compactness, the major-
ity of the points indicate the onset of the instability located
in the mentioned trajectory. In particular, we found that the
simple expression

γcr(β) = y0 + A1e
β/t1 (16)

reproduces very well the numerical results due to the use of
realistic equations of state. Equation (16) is the relativistic
expression for the critical value of the adiabatic index and
can be considered as the relativistic generalization of the
post-Newtonian approximation (12). The parametrization is
provided in Table 1.

The results of the analytical solutions, in each case, can
be parameterized according to the expression (see details in
Table 1)

γcr(β) = y0 + A1e
β/t1 + A2e

β/t2 . (17)
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Table 1 The parametrization of the analytical formulas (16), (17) and (18) is using realistic equations of state as well as four analytical solutions
(using the trial function TF-1 (7)). The case called Realistic EoS reproduces the averaged results of the realistic equations of state

Solution y0 A1 t1 A2 t2 γ0 C1 C2

Realistic EoS 1.23333 0.10425 0.11007

Tolman VII 1.18654 0.14938 0.15293 0.00011 0.03731 1.32055 2.45877 −0.36691

Buchdahl 1.04258 0.28285 0.27558 0.00792 0.07695 1.33344 2.25592 −1.28137

Nariai IV 1.13470 0.20200 0.16781 0.00015 0.04016 1.33094 2.68839 −0.45055

Uniform 1.18955 0.14587 0.17682 0.00009 0.04140 1.32743 1.94115 −0.08660

Obviously, there is a small deviation between the results of
the realistic equations of state and the analytical solutions
of Tolman VII, Nariai IV and Buchdahl. It is worth notic-
ing that the Tolman VII solution reproduces very well the
numerical results, especially for high values of the compact-
ness. In general, analytical solutions lead to lower values
of the adiabatic index γcr, compared to the realistic EoS.
In particular, the uniform solution provides the lower limit
for γcr, especially for high values of the compactness and
close to the instability limit. However, the general trend is
similar and useful insight can be gained concerning the re-
liability of analytical solutions. The stable configurations,
independently of the equation of state, correspond to a uni-
versal relation between γcr and β . One can safely conclude
that γcr is an intrinsic property of neutron stars (likewise the
parameter β) which reflects the relativistic effects on their
structure. In particular, γcr exhibits a linear dependence with
β in the Newtonian and post-Newtonian regime but a more
complicated behavior in the relativistic regime (see also the
appendix).

Actually, the above finding may help to impose con-
straints to the equation of state of neutron star matter. For ex-
ample, the accurate and simultaneous observation of a pos-
sible maximum neutron star mass and the corresponding ra-
dius will constrain the maximum value of the compactness
and consequently the maximum value of the adiabatic index
γcr. In any case, insight may be gained by the use of Eq. (16)
with the parametrization given in Table 1 (realistic EoS).

In order to clarify further the effects of the trial functions
ξ(r) on the results, we present Fig. 3. In particular, in Fig. 3
we display the dependence of the critical adiabatic index,
γcr, which corresponds to the onset of instability (γcr=〈γ 〉
at this point), as a function of the compactness parameter
βmax using the selected trial functions (7), (8), (9) and (10).
With regard to the trial function (9), we use the parametriza-
tion a1 = 1/10R2, a2 = 1/5R4 and a3 = 3/10R6. The most
distinctive feature, in this case, is the occurrence of an al-
most linear dependence (in the region under study, e.g. on
the maximum-mass configuration) between the adiabatic in-
dex and the compactness βmax. Obviously, the use of the trial
function ξ(r) affects mainly the values of γcr (for the same
βmax) but not the linear dependence.

Fig. 3 The critical adiabatic index γcr as a function of the compactness
parameter β for the selected EoSs. The points correspond to the onset
of instability for the four selected trial functions ξ(r)

Fig. 4 The critical adiabatic index, γcr, as a function of the com-
pactness parameter β , for the selected EoSs, using the trial function
TF-1 (7) (squares) and the optimal trial function (OTF) in each EoS
(dots). Equation (16) (the parametrization is provided in Table 1) which
reproduces the numerical results corresponding to the trial function (7)
is also included

Moreover, in Fig. 4 we display the γcr, as a function of
the compactness parameter β , for the selected EoSs, using
the trial function TF-1 (7) and the optimal trial function
(OTF) in each EoS, which corresponds to the one with the
smallest error. Equation (16), which reproduces the numer-
ical results corresponding to the trial function (7), is also
included. Obviously, using the optimal trial function (OTF)
in each EoS the rearrangement of the results becomes more
ordered. However, the deviation of using the trial function
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Fig. 5 (a) The critical adiabatic
index, γcr, as a function of the
ratio Pc/Ec for the selected
EoSs (the dots correspond to the
onset of instability in each case)
and for the trial function TF-1
(7). The results of the four
analytical solutions have also
been included for comparison,
(b) the γcr as a function of the
maximum mass, Mmax, for the
EoSs, (c) the γcr as a function of
the radius, Rmax, corresponding
to Mmax for the selected EoSs,
and (d) the ratio Pc/Ec as a
function of the compactness
parameter, β , for the selected
EoSs, while the results of the
four analytical solutions have
also been included for
comparison

TF-1 (which is the optimal one in the most of the cases) is
negligible.

In Fig. 5(a) we display the dependence of γcr on the ratio
Pc/Ec (which corresponds to the maximum-mass configu-
ration). The symbols correspond to the results originating
from the use of realistic equations of state while the results
of the four analytical solutions have also been included for
comparison. In general, in the case of realistic equations of
state, γcr is an increasing function of the ratio Pc/Ec with-
out obeying specific formulas. However, we found that the
expression

γcr = γ0 + C1

(
Pc

Ec

)
+ C2

(
Pc

Ec

)2

(18)

reproduces very well the numerical results of the analytical
solutions. The parameters γ0, C1, C2 are displayed in Ta-
ble 1. In Fig. 5(b) the dependence of γcr is displayed with
respect to Mmax. In Fig. 5(c) we plot γcr as a function of the
radius corresponding to the maximum-mass configuration,
Rmax. Obviously, in these cases, the dependence is almost
random and consequently is unlikely to impose constraints
from these kind of correlations.

It is known that for low values of β (in the framework
of Newtonian and post-Newtonian approximation) there is a
very simple and universal linear correlation between β and
the ratio Pc/Ec. In particular, in the case of the analytical so-
lutions of the TOV equations (uniform, Tolman VII, Buch-
dahl’s and Nariai IV) we get in each case, by employing a

Taylor expansion, the approximated simple relation

Pc

Ec

� β

2
. (19)

Moreover, in the case of the Newtonian limit e.g. using
the Lane–Emden equation with the polytropic equation of

state P = K(E/c2)Γ = K(E/c2)1+ 1
n (Shapiro and Teukol-

sky 1983) we found

Pc

Ec

= β

2
F(ξ0, n), (20)

where F(ξ0, n) is a function of ξ0 (where θ(ξ0) = 0)
and the polytropic index n. More precisely, we found
that for n = 0,0.5,1,1.5,2,3,4 (correspondingly Γ =
∞,3,2,5/3,3/2,4/3,5/4) the function is F(ξ0, n) = 1,

0.97,1,1.077,1.204,1.709,3.332, respectively. In conclu-
sion, for 0 < n < 2 we get F(ξ0, n) � 1.

Since it is worth examining this dependence in the rel-
ativistic limit, we display in Fig. 5(d) the dependence of
Pc/Ec with respect to the compactness parameter βmax.
Firstly, we can see that quantities originating from the use
of realistic EoSs obey a general trend. A similar trend is ob-
tained by employing the analytical solutions (Moustakidis
2017). In particular, the Tolman VII and Nariai IV solu-
tions reproduce very well the results of realistic calculations.
Consequently, the Tolman VII solution may by used as a
guide for an almost universal dependence between Pc/Ec

and βmax. That is, in the critical point between stable and
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Fig. 6 The maximum rotating
frequency fmax for the selected
EoSs, as a function: (a) of the
critical adiabatic index, γcr, (b)
of the compactness parameter
βstat

max, which corresponds to the
static maximum-mass
configuration, (c) of the static
maximum mass Mstat

max and (d) of
the radius Rstat

max, which
corresponds to the static
maximum-mass configuration

unstable configuration. Moreover, this correlation may help
to constrain the maximum value of the ratio Pc/Ec and, con-
sequently, the maximum density in the universe with the
help of accurate measurements of the maximum value of the
compactness.

To be more specific, from recent observations of the
GW170917 binary system merger, a method to constrain
some neutron stars properties was proposed (Bauswein et al.
2017). In particular, they found that the radius Rmax of the
non-rotating maximum-mass configuration must be larger
than 9.6+0.15

−0.04 km. Almost simultaneously, Margalit and Met-
zger (Margalit and Metzger 2017), combining electromag-
netic and gravitational-wave information on the binary neu-
tron star merger GW170817, constrain the upper limit of
Mmax according to Mmax ≤ 2.17M�. The combination of
the two suggestions leads to an absolute maximum value of
compactness equal to βmax = 0.333+0.001

−0.005. The use of this
value with the help of Figs. 2 and 5(d) will impose con-
straints both on the maximum values of the index γcr and
the ratio Pc/Ec. According to Eq. (16), a constraint on the
γcr can be imposed, γcr,max = 3.381+0.020

−0.095, correspondingly
to βmax. Moreover, a large number of realistic equations of
state must be excluded. Some previous and recent efforts to
constrain the compactness of neutron stars have been pro-
vided in Alsing et al. (2018), Chen and Piekarewicz (2015),
Hambaryan et al. (2017), Miller and Lamb (1998), Raven-
hall and Pethick (1994), Rosso et al. (2017).

In Fig. 6(a) we display the dependence of the maxi-
mum rotating frequency on the critical adiabatic index (it

is worth indicating, in order to avoid any confusion, that
in the present study Mstat

max, Rstat
max and βstat

max correspond to
Mmax, Rmax and βmax, respectively). Obviously, while fmax

is an increasing function of γcrit, the correlation is not so
restrictive. However, the most important finding (see also
Fig. 6(b)) is the derivation of an absolute lower upper bound
of the maximum rotation rate close to the value of 1460 Hz.
The observation of neutron stars rotating with a spin f >

1460 Hz will exclude a number of the selected EoSs. In
Fig. 6(b) we display also the dependence of fmax on βstat

max,
while in Fig. 6(c) the dependence of fmax on the mass which
corresponds to the static maximum-mass configuration is
provided. In this case, the dependence is random. However,
the dependence of fmax on the radius, which corresponds
to the static maximum-mass configuration, exhibits a more
restrictive dependence. In particular, fmax is a decreasing
function of Rstat

max, i.e. the maximum rotation rate is expected
to be observed in small sized neutron stars.

We expect that in the near future, the detectability of ra-
dio pulsars will be appreciably increased due to the Square
Kilometer Array (SKA) (Bourke et al. 2015). In particular,
the SKA is expected to increase the number of measured
neutron stars masses by a factor of, at least, 10 and, in this
way, to help constraining the existing EoSs (Watts et al.
2016). Information about the radius of neutron stars can also
be gained by radio observations through measurements of
the moment of inertia. Moreover, the two telescopes Ad-
vanced LIGO and VIRGO will be able to detect gravitational
waves from the late in-spiraling of binary neutron stars sys-



Constraints on the equation of state from the stability condition of neutron stars Page 9 of 10 52

tems, which are also sensitive to the EoS. These two tele-
scopes are expected to achieve uncertainties of 10%, or less,
in radius for the closest detected binaries (Watts et al. 2016).
The discovery of a neutron star rotating very fast would im-
pose strong constraints on the EoS. According to the most
reliable scenario, the formation of very rapid rotating neu-
tron stars is via spin-up due to accretion. Consequently, the
study of X-ray and radio waves will help to confirm the the-
ory that accretion could spin-up stars, close to the instability
limit. In this case, we will be able to gain rich information
about the neutron stars structure and about the bulk prop-
erties, and to impose robust constraints on the EoSs (Watts
et al. 2016).

5 Concluding remarks

We suggested a new method to constrain the neutron star
equation of state by means of the stability condition intro-
duced by Chandrasekhar (1964a). We found that the pre-
dicted critical adiabatic index, as a function of the compact-
ness, for most of the equations of state considered here (al-
though they differ considerably at their maximum masses
and in how their masses are related to the radii) satisfies a
universal relation. In particular, the exploitation of these re-
sults leads to a model-independent expression for the critical
adiabatic index as a function of the compactness. Equation
(16) (with the specific parametrization given in Table 1) re-
produces very well this relation. The above finding may be
added to the rest of approximately EoS-independent rela-
tions (Breu and Rezzolla 2016; Maselli et al. 2017; Raven-
hall and Pethick 1994; Silva et al. 2016; Silva and Yunes
2018; Yagi and Yunes 2013a,b, 2017; Yagi et al. 2014).
These universal relations break the degeneracies among as-
trophysical observations and lead to a variety of applica-
tions. We also found that observations of high rotating neu-
tron stars may help to impose useful constraints on the EoSs,
by using the dependence of the maximum frequency on
the compactness parameter corresponding to the maximum-
mass configuration of a non-rotating neutron star and con-
sequently on the adiabatic index (instability limit). We state
that additional theoretical and observational measurements
of the bulk neutron star properties close to the maximum-
mass configuration will help to impose robust constraints on
the neutron star equation of state or, at least, to minimize the
numbers of proposed EoSs.
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Appendix

The numerical integration of the integrals related with the
definition of 〈γ 〉 and γcr can easily be performed. However,
following this procedure it is difficult to perceive the final re-
sults. Actually, this is easy only in some approximated cases,
e.g. in the Newtonian and post-Newtonian limit. In the fol-
lowing, we try to generalize the finding of Chandrasekhar
(1964a) to even higher values of the compactness where
the relativistic effects become important. The expression of
the critical adiabatic index, with the help of the TOV equa-
tions (2), (3), using the trial function ξ(r) = reν/2 (in order
to be consistent with the pioneering work of Chandrasekhar
(1964a)), and, performing a Taylor expansion inside the in-
tegrals in each case, we found for the uniform and the Tol-
man VII solution that (see also Merafina and Ruffini 1989)

γcr(β) = 4

3
+ 38

42
βP(β) (21)

where, for the uniform solution, P(β) takes the form

Puniform(β) = 1+2.13β +4.65β2 +10.22β3 +O
(
β4) (22)

and for the Tolman VII solution:

PTolman(β) = 1.19 + 2.93β + 7.34β2 + 19.36β3 +O
(
β4).

(23)

Obviously, the approximation (21), using Eq. (22), to a lin-
ear term, confirms the Chandrasekhar expression (12). The
above expressions are good approximations for β < 0.2.
However, they fail for higher values of β and consequently
additional terms must be included. In particular, γcr in-
creases very fast for β > 0.25 due to the strong effects of
general relativity.
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