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Abstract An investigation of the ion acoustic nonlinear pe-
riodic (cnoidal) waves in a magnetized plasma with positive
ions having anisotropic thermal pressure and Maxwellian
electrons is carried out. The Korteweg-de Vries equation
for the wave potential is derived via a reductive perturbation
technique and its cnoidal wave solution is obtained. The ef-
fect of various relevant plasma parameters like ion pressure
anisotropy and obliqueness of field on the characteristics of
ion acoustic nonlinear periodic wave structures is investi-
gated in detail. The present investigation could be useful
in space and astrophysical plasma systems having ion pres-
sure anisotropy, particularly, in the magnetosphere and near
Earth magnetosheath.

Keywords Cnoidal waves · KdV equation · Ion pressure
anisotropy

1 Introduction

The anisotropic behavior of plasmas in a collisionless
medium arises primarily due to a strong magnetic field, i.e.,
the characteristics of the plasma generally differs in parallel
and perpendicular directions to the magnetic field (Baumjo-
hann and Treumann 1997). Such anisotropies in plasmas are
well described by the Chew-Goldberger-Low (CGL) theory
(Chew et al. 1956) which was initially due to Chew, Gold-
berger and Low in 1956. The applicability of this theory is
restricted to the condition that no coupling occurs between
the perpendicular and parallel degrees of freedom (Parks
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1991). To study the anisotropies in plasmas, two separate
energy equations are needed to calculate the ion pressure
i.e., the parallel ion pressure p‖ and perpendicular ion pres-
sure p⊥ relative to the field. The isotropic plasma situation
exists because of the strong coupling between the parallel
ion pressure and perpendicular ion pressure owing to the
wave-particle interactions (Choi et al. 2007; Denton et al.
1994). The anisotropy situation in space plasmas might be
due to the plasma convection which gives rise to magnetic
compression and/or expansion in the direction of the mag-
netic field lines. The magnetic compression and expansion
may, respectively, result in an increase in the perpendicu-
lar temperature T⊥ (relative to magnetic field) of the parti-
cles and a decrease in the parallel temperature T‖ (Denton
et al. 1994), i.e., T‖ �= T⊥. In recent past, there are numerous
investigations concerning the nonlinear electrostatic waves
highlighting the effect of anisotropic ion pressure (see e.g.,
Choi et al. 2007; Adnan et al. 2014a,b; Manesh et al. 2017).

In recent past a great deal of attention has been paid to
the study of nonlinear periodic (cnoidal) waves (Khater et al.
2005; Tiwari et al. 2007; Prudskikh 2012, 2014; Kaladze and
Mahmood 2014; Kaladze et al. 2012; Singh et al. 2018; Ur-
Rehman and Mahmood 2016; Ur-Rehman et al. 2017, 2018)
due to their wide ranging applications in diverse areas of
physics. One of these applications includes the nonlinear ion
transport caused by a periodic ion acoustic wave (Ichikawa
1979). The cnoidal waves are basically worked out in terms
of Jacobi-elliptical function such as cn, sn, and dn. Kauschke
and Schlüter (1991) noticed that the nonlinear periodic sig-
nals detected at the edge of plasma in their experiment
can be described in a befitting manner through the cnoidal
waves. Konno et al. (1979) were the first who explored the
ion acoustic cnoidal wave solution of the Korteweg-de Vries
(KdV) equation in electron-ion (e-i) plasma. Later Yadav
et al. (1994) used the reductive perturbation approach to in-
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vestigate ion-acoustic nonlinear periodic waves in a magne-
tized plasma involving warm adiabatic ions and two temper-
ature electron species. The dynamics therein are modeled by
a KdV equation. Despite the extensive recent research work
on cnoidal waves, the study of cnoidal waves in the presence
of anisotropic ion pressure has not yet been explored, to the
best of our knowledge. We have therefore undertaken an in-
vestigation of ion acoustic cnoidal waves and studied their
dynamics in terms of intrinsic relevant plasma parameters.

In this article, we aim to explore the propagation char-
acteristics of ion acoustic cnoidal waves in anisotropic mag-
netized plasmas characterized by Maxwellian electrons. The
paper at hand is organized as follows: The model equations
are laid out in Sect. 2. In Sect. 3, we derive the KdV equation
by using the reductive perturbation technique. The cnoidal
wave solution of the KdV equation is given in Sect. 4. Sec-
tion 5 is devoted to the numerical analysis, while the main
conclusions have been summarized in Sect. 6.

2 The model and governing equations

We are modeling ion acoustic nonlinear periodic (cnoidal)
waves propagating in a magnetized plasma composed of
warm ions and Maxwellian distributed electrons. The ions
are assumed as inertial exhibiting pressure anisotropy rel-
ative to the external magnetic field. We assume that the
plasma is immersed in a strong external magnetic field B =
B0ẑ, where ẑ is the unit vector in the z-direction. The set of
equations governing the dynamics of ion fluid are:

∂n

∂t
+ �∇ · n�v = 0 (1)

∂ �v
∂t

+ (�v · �∇)�v = −Ze

m
�∇φ + Ze

mc
(�v × B0ẑ) − 1

mn
�∇ · ˜P (2)

Here n, v, Z, φ and ˜P stand for ion density, ion velocity,
ionic charge state, the electrostatic potential, and ion pres-
sure tensor, respectively with e is electric charge and m is
the ion mass. In the presence of strong magnetic field, the
plasma becomes anisotropic and the pressure tensor splits
into parallel and perpendicular components relative to the
external magnetic field. Thus, ˜P take the form (Chew et al.
1956; Denton et al. 1994):

˜P = p⊥Î + (p‖ − p⊥)b̂b̂ (3)

where b̂ is the unit vector in the direction of the external
magnetic field and Î is the unit tensor. According to the CGL
theory, the perpendicular and parallel ion pressures can be
written as (Bittencourt 2004)

p⊥ = p⊥0

(

n

n0

)

and p‖ = p‖0

(

n

n0

)3

(4)

While for isotropic situation p⊥ = p‖ and thus �∇ · ˜P = ∇p.
At equilibrium, the parallel and perpendicular ion pressures
(viz., p‖0 and p⊥0) are defined respectively as

p‖0 = n0T‖ and p⊥0 = n0T⊥ (5)

Electrons are assumed to follow the Maxwellian distribution
and the electron density is thus given by

ne = ne0 exp

(

eφ

Te

)

(6)

The system is closed via Poisson’s equation

∇2φ = 4πe(ne − n) (7)

2.1 Scaled evolution equations

For analytical convenience, the set of Eqs. (1), (2), (6) and
(7) can be cast into a dimensionless form by making use of
the appropriate normalizing quantities:

∂n

∂t
+ ∂

∂x
(nvx) + ∂

∂y
(nvy) + ∂

∂z
(nvz) = 0 (8)

∂vx

∂t
+

(

vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

vx

= −∂φ

∂x
+ �vy − p2

n

∂n

∂x
(9)

∂vy

∂t
+

(

vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

vy

= −∂φ

∂y
− �vx − p2

n

∂n

∂y
(10)

∂vz

∂t
+

(

vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

vz

= −∂φ

∂z
− p1n

∂n

∂z
(11)

The Poisson’s equation in normalized form is

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= eφ − n (12)

Here the ion number density n, the ion fluid velocity v

and the electrostatic wave potential φ are normalized by
the equilibrium number density n0, the ion-acoustic speed
Cs = √

Te/m and eφ/Te, respectively. The space variable
(x) and time variable (t) have been normalized by the ion
Debye length λD = √

Te/4πn0e2 and inverse ion plasma
frequency ω−1

pi = √

me/4πn0e2, respectively. In the above
equations, we have defined the dimensionless parameters
� = �i

ωpi
, p1 = 3p‖0

n0Te
and p2 = p⊥0

n0Te
, where � is the normal-

ized ion gyro-frequency with �i = eB0
mc

, while p1 and p2
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are respectively the normalized ion parallel and perpendicu-
lar pressures (scaled via the thermal pressure). We have also
used ∇ = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z, while vx, vy and vz are
the ion fluid velocity along x, y and z axis, respectively.

3 Derivation of KdV equation

We shall investigate the ion acoustic nonlinear periodic
waves, namely, ion acoustic cnoidal waves in anisotropic
magnetized e-i plasma with Maxwellian electron distribu-
tion. We use the reductive perturbation method (Yadav and
Sayal 2009) involving a stretching of the spatial and tempo-
ral coordinates in terms of an infinitesimal parameter ε as

ξ = ε1/2(lxx + lyy + lzz − St) and τ = ε3/2t (13)

where S is the ion excitation speed interpreted as phase ve-
locity of the nonlinear wave (to be determined later), and
lx, ly and lz are the direction cosines along x, y and z axis
respectively, such that l2

x + l2
y + l2

z = 1. Accordingly, the de-
pendent variables are expanded about their equilibrium val-
ues in a power series in ε as;

n = 1 + εn1 + ε2n2 + ε3n3 + · · ·
φ = εφ1 + ε2φ2 + ε3φ3 + · · ·
vx = ε3/2vx1 + ε2vx2 + ε5/2vx3 + · · ·
vy = ε3/2vy1 + ε2vy2 + ε5/2vy3 + · · ·
vz = εvz1 + ε2vz2 + ε3vz3 + · · ·

(14)

Substituting Eqs. (13) and (14) into Eqs. (8) to (12) and col-
lecting terms of lowest orders in ε, we obtain

n1 = lz

S
vz1 = l2

z

S2 − l2
zp1

φ1 (15)

vz1 = lz

S
φ1 + p1lz

S
n1 + C1(τ ) (16)

vy1 = lx

�

∂φ1

∂ξ
+ p2lx

�

∂φ1

∂ξ
(17)

vx1 = − ly

�

∂φ1

∂ξ
− p2ly

�

∂φ1

∂ξ
(18)

and

n1 = φ1 (19)

where C1(τ ) is the constant of integration and is the function
of τ only. Combination of Eqs. (15) and (19) result in the
following expression for phase velocity:

S = lz
√

1 + p1 (20)

Fig. 1 The contour plot of phase velocity S of ion acoustic excitations
versus parallel ion pressure p1 and propagation angle θ

From Eq. (20) it is clear that phase velocity S depends on
lz (lz = cos θ , where θ is the angle between the directions
of the wave propagation vector k and the external magnetic
field B0) and parallel ion pressure p1. We also note that the
phase velocity is independent of B0, and the perpendicular
ion pressure p2. Importantly, the phase velocity vanishes for
θ = π/2, i.e., the propagation of ion acoustic excitations is
not possible for this particular case. For parallel propaga-
tion (i.e., by setting θ = 0) and for cold-ion limit, we re-
cover the earlier result of Konno et al. (1979). The effect
of anisotropic ion pressure p1, and propagation angle θ on
the phase velocity of ion acoustic waves is shown in Fig. 1.
Since the phase velocity is directly proportional to lz, that
is why the phase speed increases with propagation angle θ ,
while an increase in phase speed is seen with increasing val-
ues of p1.

The next highest order of ε gives the following set of
equations;

∂n1

∂τ
− S

∂n2

∂ξ
+ lx

∂vx2

∂ξ
+ ly

∂vy2

∂ξ
+ lz

∂(n1vz1)

∂ξ
+ lz

∂vz2

∂ξ

= 0 (21)

∂vz1

∂τ
− S

∂vz2

∂ξ
+ lzvz1

∂vz1

∂ξ

= −lz
∂φ2

∂ξ
− p1lz

(

n1
∂n1

∂ξ
+ ∂n2

∂ξ

)

(22)

�vy2 = −S
∂vx1

∂ξ
(23)

�vx2 = S
∂vy1

∂ξ
(24)

n2 = φ2 + φ2
1

2
− ∂2φ1

∂ξ2
(25)
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Using Eqs. (21)–(25) along with the first order results, one
can eliminate second order terms (i.e., n2, v2, and φ2) re-
sulting in the KdV equation

∂φ

∂τ
+ aφ

∂φ

∂ξ
+ C1lz

∂φ

∂ξ
+ b

∂3φ

∂ξ3
= 0 (26)

where the nonlinear coefficient a and dispersion coefficient
b have been defined as

a = 3S2 − l2
z (1 − p1)

2S
(27)

b = S

2�2

[

(1 + p2)
(

1 − l2
z

) + �2

S2
l2
z

]

(28)

Interestingly, both the nonlinear and dispersion coefficients
are functions of lz, p1, p2, and �. In Eq. (26) we have re-
placed φ1 by φ.

4 Cnoidal wave solution

To get the steady state solution of Eq. (26), let us define
a traveling wave transformation of the form η = ξ − v0τ ,
where v0 is the velocity of the nonlinear structure in co-
moving frame. Implication of this transformation transforms
Eq. (26) into the following form

−(v0 − C1lz)
d

dη
φ + aφ

d

dη
φ + b

d3

dη3
φ = 0 (29)

Double integration of (29) results in the following equation

1

2

(

dφ

dη

)2

+ W(φ) = 0 (30)

where W(φ) is the Sagdeev potential given by

W(φ) = a

6b
φ3 − u

2b
φ2 + ρφ − 1

2
E2 (31)

where u = v0 − C1lz, while ρ and 1
2E2 are the constants of

integration. Additionally ρ and E are the charge density and
electric field, respectively, when φ vanishes. By using the

initial conditions φ(0) = α, and dφ(0)
dη

= 0, we can find

E2 = a

3b
α3 − u

b
α2 + 2ρα (32)

Substituting Eqs. (31) and (32) in Eq. (30), and after factor-
ization, we obtain the following equation,

(

dφ

dη

)2

= a

3b
(α − φ)(φ − β)(φ − γ ) (33)

where β and γ are defined as

β = 3

2

[

u

a
− α

3
+

√

1

3
(b1 − α)(α − b2)

]

(34)

γ = 3

2

[

u

a
− α

3
−

√

1

3
(b1 − α)(α − b2)

]

(35)

In above Eqs. (34) and (35), we have defined

b1,2 = u

a
± 2

√

u2

a2
− 2bρ

a
(36)

The following inequalities should be satisfied to find the
nonlinear periodic (cnoidal) wave solution, b2 ≤ α ≤ b1 or
b1 ≤ α ≤ b2. From Eqs. (30) and (33), the velocity of the
cnoidal wave in terms of roots α,β and γ is

u = a

3
(α + β + γ ) (37)

The cnoidal wave solution of Eq. (30) in terms of Jacobi
elliptic function is given by (Yadav et al. 1994)

φ(η) = β + (α − β)cn2(Dη,m) (38)

where cn stands for the Jacobi elliptic function. The modu-
lus m (0 < m ≤ 1) and the parameter D in terms of the three
zeros (i.e., α, β and γ ) of the Sagdeev potential are defined
as

m2 = α − β

α − γ
(39)

D =
√

a

12b
(α − γ ) (40)

From (30), we find the initial condition φ(0) = α for η = 0.
For the plasma model under consideration, we have a

b
> 0,

and thus the real numbers α, β and γ are adjusted in such a
way that α > β ≥ γ and β ≤ φ ≤ α must hold. The ampli-
tude A and wavelength λ of the ion-acoustic cnoidal waves
are defined as

A = α − β (41)

and

λ = 4

√

3b

a(α − γ )
K(m) (42)

where K(m) is the complete elliptical integral of the first
kind. When ρ = 0 and E = 0, then β = γ = 0, so that
m → 1, the cnoidal wave solution may then approach the
solitary wave solution, i.e.,

A = α = 3u

a
= φ0 (43)

and

D =
√

a

12b
α =

√

u

4b
= 1

w
(44)
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In the limit m → 1, the Jacobi elliptical function trans-
forms to secant hyperbolic function, that is cn(Dη,1) =
sech(Dη), therefore, Eq. (38) becomes

φ(η) = φ0 sech2
(

η

w

)

(45)

where the peak amplitude φ0 and width w of ion-acoustic
solitary pulses, are given by

φ0 = 3u

a
and w =

√

4b

u

5 Numerical analysis

In order to carry out numerical study of ion acoustic cnoidal
wave structures, we recall that the nonlinear coefficient a

and dispersion coefficient b appearing in (26) are explicit
function of various relevant plasma parameters (viz., p1, p2,
and lz). It is important to point out that the nonlinear and dis-
persion coefficients strongly affect the structural properties
of the ion acoustic cnoidal wave. It is therefore tempting to
investigate the effect of each of these parameters separately
on the behavior of ion acoustic cnoidal wave structures.

To examine the effect of anisotropic parallel pressure p1,
we depict the variation of Sagdeev potential W(φ) versus
φ for different values of p1, while keeping lz and � fixed.
It is seen that W(φ) �= 0, at φ = 0, for ion acoustic cnoidal
waves, shown via the dashed, dotted and dotdashed curves.
We observe that increasing values of p1 leads to a reduc-
tion of the depth of Sagdeev potential, and, importantly,
also of the amplitude of the associated cnoidal waves. How-
ever, it is also noticed from Fig. 2(a) that the Sagdeev po-
tential W(φ) (represented via the solid curve with ρ = 0,
and E = 0) corresponding to solitary pulses becomes zero
at φ = 0. In Fig. 2(b) we have shown the phase curves using
Eqs. (30) and (31) for the same set of parameters as used in
Fig. 2(a). The inner bounded curves show the ion acoustic
cnoidal waves while the black solid outer curve represents
the solitary pulses separatrix. We also find that the ampli-
tude and width of the ion acoustic cnoidal waves decrease
as p1 increases.

In Fig. 3(a), we have examined the effect of oblique-
ness of propagation angle as manifested via lz(= cos θ) on
Sagdeev potential W(φ) for given values of other plasma pa-
rameters. It is noticed that W(φ) �= 0, at φ = 0, for cnoidal
waves, shown via the dashed, dotted and dotdashed curves.
The Sagdeev potential and the corresponding cnoidal pulses
are amplified with decreasing θ . Again we may remark that
when ρ = 0, and E = 0, we obtain the solid curve for the
Sagdeev potential W(φ) corresponding to the soliton struc-
tures for which W(φ) = 0 at φ = 0. In Fig. 3(b) we display
the phase curves by plotting dφ

dη
versus φ for the varying val-

ues of θ . As the obliqueness increases, the amplitude of the

Fig. 2 Variation of (a) W(φ) versus φ and (b) phase curves of ion
acoustic cnoidal waves (dashed, dotted and dotdashed curves) for dif-
ferent values of p1. Dashed curve: p1 = 0.2, dotted curve: p1 = 0.3,
dotdashed curve: p1 = 0.4 with u = 0.3, � = 0.3, ρ = 0.02, lz = 0.96,
p2 = 0.1, and E = 0.007. The black (solid) curve with p1 = 0.3, ρ = 0
and E = 0 is for solitary waves

cnoidal waves decreases. Here it is pointed out that the dy-
namical behavior of ion-acoustic cnoidal waves is different
than ion-acoustic solitary waves.

To demonstrate the effect of anisotropic ion pressure p1

on ion acoustic nonlinear periodic waves, we have shown
the variation of cnoidal wave solution φ versus η for dif-
ferent values of p1(= 0.2,0.3,0.4) (where we have con-
sidered a fixed value of all other plasma parameters). It is
clearly seen that higher values of anisotropic ion pressure
p1 leads to smaller amplitude ion acoustic cnoidal waves
(see Fig. 4). To get more physical insight into the behavior
of ion acoustic cnoidal wave structures in the presence of
ion pressure anisotropy, we consider three different cases,
namely p1 > p2, p1 < p2 and p1 = p2 = 0 (see Fig. 5).
It is obvious that the ion parallel pressure p1 bears signif-
icant effect on the characteristic behavior of ion acoustic
wave structures as compared to its perpendicular counter-
part (p2). We also see that including the ion thermal pres-
sure (in the warm ion model) gives rise to smaller amplitude
ion acoustic cnoidal waves. Finally Fig. 6 depicts the plot
of φ versus η for varying values of θ (keeping all other pa-
rameters fixed). In contrast to the ion acoustic solitary waves
(see Adnan et al. 2014a), it is found that lower values of θ

(i.e., increased values of lz = cos θ ) gives larger amplitude
ion acoustic cnoidal wave profiles.
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Fig. 3 Variation of W(φ) versus φ and (b) phase curves of ion acoustic
cnoidal waves (dashed, dotted and dotdashed curves), for different val-
ues of lz . Dashed curve: lz = 0.94, dotted curve: lz = 0.96, dotdashed
curve: lz = 0.98 with u = 0.3, � = 0.3, ρ = 0.02, p1 = 0.2, p2 = 0.1,
and E = 0.007. The black solid curve with lz = 0.94, ρ = 0 and E = 0
is for solitary waves

Fig. 4 Variation of φ versus η for different values of p1. Dashed curve:
p1 = 0.2, dotted curve: p1 = 0.3, dotdashed curve: p1 = 0.4 with
u = 0.3, � = 0.3, ρ = 0.02, lz = 0.96, p2 = 0.1, and E = 0.007

It is instructive to note that we have used the numerical
values of p1 and p2 which lies in the limits of T‖ and T⊥
described in Seough et al. (2013). We have used the data
from reference (Denton et al. 1994) while dealing with the
ion pressure anisotropy cases.

6 Conclusions

To conclude, we have studied the characteristics of ion
acoustic nonlinear periodic (cnoidal) waves in a magnetized

Fig. 5 Variation of φ versus η for u = 0.3, � = 0.3, ρ = 0.02,
lz = 0.96, and E = 0.007 with p1 > p2 (dashed curve); p2 > p1 (dot-
ted curve); and p1 = p2 = 0 (dotdashed curve)

Fig. 6 Variation of φ versus η for different values of lz . Dashed curve:
lz = 0.94, dotted curve: lz = 0.96, dotdashed curve: lz = 0.98 with
u = 0.3, � = 0.3, ρ = 0.02, p1 = 0.2, p2 = 0.1 and E = 0.007

plasma consisting of warm anisotropic ions and inertialess
electrons obeying Maxwellian distribution. Through the re-
ductive perturbation technique, Korteweg-de Vries (KdV)
equation is derived which admits a cnoidal wave solution.
It has been found that the KdV equation admits only posi-
tive potential nonlinear periodic wave structures in the given
plasma system. Through numerical analysis, it was shown
that the amplitude and width of the ion acoustic cnoidal
waves decreases as the parallel pressure p1 is increased.
It has been noticed that increased values of the oblique-
ness (i.e., the angle between the directions of wave propa-
gation and the external magnetic field, B0) result in smaller
amplitude ion acoustic cnoidal wave profiles. It was ob-
served that the ion parallel pressure p1 bears significant ef-
fect on the characteristic behavior of ion acoustic cnoidal
wave structures as compared to its perpendicular counterpart
(p2). Moreover, it has also been pointed out that the ion-
acoustic cnoidal waves behave quite differently from ion-
acoustic solitary waves.

It may be added, for the sake of rigor, that the present
work is primarily inspired by a series of magnetosheath ob-
servations made by instruments involving two spacecraft,
namely AMPET/CCF and AMPET/IRM, as mentioned in
Denton et al. (1994), and somewhat by the work of Seough
et al. (2013). We, therefore, anticipate that our theoretical
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results may provide a good qualitative description of the
cnoidal wave structures observed in various space and as-
trophysical environments possessing strong magnetic fields
with ion pressure anisotropy. In particular, such anisotropic
situation can be found in the magnetosphere and in the near-
Earth magnetosheath (Baumjohann and Treumann 1997;
Choi et al. 2007; Denton et al. 1994).

Acknowledgements Authors gratefully acknowledge the construc-
tive suggestions of an anonymous referee which significantly improved
the quality of the manuscript. Ata ur Rahman would like to thank Dr.
Fazli Hadi for his support and assistance.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eqs. (9)–(11) from Eq. (2)
using Eq. (3)

We consider the ion momentum equation (2), repeated be-
low:

∂ �v
∂t

+ (�v · �∇)�v = −Ze

m
�∇φ + Ze

mc
(�v × B0ẑ) − 1

mn
�∇ · P̃

(46)

We also know from Eq. (3) that the anisotropic pressure is

P̃ = p⊥Î + (p‖ − p⊥)b̂b̂ (47)

where Î and b̂b̂ in matrix form can be written as,

Î =
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ and b̂b̂ =
⎛

⎝

0 0 0
0 0 0
0 0 1

⎞

⎠ .

The divergence of pressure tensor becomes

�∇ · P̃ = �∇p⊥ + b̂
∂

∂z
(p‖ − p⊥) (48)

Note that �∇ · (p⊥Î ) = �∇p⊥. Further we may also write
Eq. (48) in the following form

�∇ · P̃ = x̂
∂p⊥
∂x

+ ŷ
∂p⊥
∂y

+ ẑ
∂p‖
∂z

(49)

From Eq. (4), we know that

p⊥ = p⊥0

(

n

n0

)

and p‖ = p‖0

(

n

n0

)3

(50)

Using Eq. (50) into Eq. (49), we get

�∇ · P̃ = x̂

(

p⊥0

n0

)

∂n

∂x
+ ŷ

(

p⊥0

n0

)

∂n

∂y
+ ẑ

(

3p‖0

n3
0

)

n2 ∂n

∂z
(51)

We plug the above value of �∇ · P̃ into Eq. (46), and finally
arrive at the set of Eqs. (9)–(11).
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