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Abstract In this paper, we are interested to investigate
spatially homogeneous and totally anisotropic perfect cos-
mological model in the presence of an attractive massive
scalar field in f (R,T ) gravity in the background of Bianchi
type-III space-time. Here R is the Ricci scalar and T is the
trace of the energy momentum tensor. In order to solve the
field equations, we have used (i) the expansion scalar of the
space-time is proportional to the shear scalar which leads
to a relationship between metric potentials and (ii) a power
law between the scalar field and the average scale factor. We
obtain a cosmological model of the universe with variable
deceleration parameter. We have computed all the cosmo-
logical parameters of the model and discussed their physical
importance.

Keywords Bianchi type-III model · Dark energy model ·
Anisotropic model · Massive scalar field · f (R,T ) gravity

1 Introduction

The recent concept of cosmic acceleration of our universe
has been confirmed by the observational data and the reason
for this is supposed to be the presence of mysterious force
known as dark energy (DE) (Riess et al. 1998; Perlmutter
et al. 1999; Hanany et al. 2000; Peebles and Ratra 2003;

B D.R.K. Reddy
reddy_einstein@yahoo.com

Y. Aditya
yaditya2@gmail.com

1 Department of Mathematics, ANITS (A), Visakhapatnam
531162, India

2 Department of Applied Mathematics, Andhra University,
Visakhapatnam 530003, India

Padmanabhan 2003; Komatsu et al. 2009). Two approaches
have been proposed to explain this late time acceleration of
the universe. One of them is to study the dynamics of DE
model like the Chaplygin gas (Kamenshchik et al. 2001;
Bento et al. 2002; Zhang et al. 2006), holographic models
(Hsu 2004; Li 2004), new age graphic model (Cai 2008), the
polytropic gas model (Karami et al. 2009) and the pilgrim
model (Wei 2012; Sharif and Jawad 2013; Santhi et al. 2016,
2017a). The above models have been studied because of the
fact that the simple DE model namely cosmological constant
is plagued with the coincidence and other serious problems
in general relativity. Another approach to explain the cos-
mic acceleration is to modify Einstein’s theory of gravita-
tion. Among the several modifications the theories which
are significant are f (R), f (R,T ) (Capozziello et al. 2003;
Nojiri and Odintsov 2003; Harko et al. 2011) theories of
gravity. Here we are, mainly, concerned with f (R,T ) grav-
ity. In this particular theory, the gravitational Lagrangian has
been taken as an arbitrary function of the Ricci scalar R and
the trace T of the matter energy tensor.

There has been a lot of interest in the investigation of cos-
mological models in f (R) and f (R,T ) theories of gravita-
tion in the presence of various source terms which represent
stress energy tensor. This is mainly because f (R,T ) grav-
ity models describe early inflation and late time acceleration
of the universe. A review of modified theories of gravity to
explain dark energy is made available by Capozziello and
De Laurentis (2011), Nojiri and Odintsov (2011) and No-
jiri et al. (2017). FRW models are obtained in f (R) grav-
ity by Paul et al. (2009) while Sharif and Shamir (2009)
and Shamir (2010) have discussed Bianchi type-I , III, V

and Kantowski-Sachs models in this theory. Several authors
(Sheykhi 2012; Katore 2015; Santhi et al. 2018; Aditya and
Reddy 2018) have studied various anisotropic Bianchi type
cosmological models in this theory under different physical
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situations. In particular Reddy et al. (2012, 2014) have dis-
cussed Bianchi type-III and Kantowshi-Sachs cosmological
model in f (R,T ) gravity in the presence of perfect fluid
and bulk viscous strings as source while Reddy and Santhi
Kumar (2013) have obtained some anisotropic models in the
background of Bianchi type-II space time in this theory of
gravitation. Mishra et al. (2015) have discussed non-static
cosmological model in f (R,T ) gravity. Sahoo et al. (2016)
have investigated Bianchi type string cosmological models
in f (R,T ) gravity. Aditya et al. (2016) have studied vari-
ous Bianchi type models in this theory of gravitation with
variable Λ. Santhi et al. (2017b) have obtained Kantowski-
Sachs scalar field cosmological models in this modified the-
ory of gravity.

The study of scalar fields in general relativity has at-
tracted the attention of many researchers because of their
physical importance in cosmology. Scalar fields are sup-
posed to cause the accelerated expansion of the universe
and help to solve the horizon problem. In cosmology, scalar
fields represent matter fields with spin less quanta and de-
scribe gravitational field. Scalar fields are of two types. They
are zero mass scalar fields and massive scalar fields. Long
range interactions are described by zero mass scalar fields
while massive scalar field describe short range interactions.
Mass less and massive scalar meson fields in general rel-
ativity have been extensively studied. FRW models in the
presence of mass less scalar fields have been studied by
Ellis (1971) while Mohanty and Pradhan (1992) have dis-
cussed attractive massive scalar field models in this particu-
lar space time. Singh and Ram (1996) and Singh (2005) have
investigated cosmological models with viscous fluid in the
presence of attractive massive scalar field. Singh (2009) ob-
tained Bianchi type-V model in Lyra’s (1951) geometry in
the presence of massive scalar field. Singh and Rani (2015)
presented Bianchi type-III cosmological model in Lyra’s ge-
ometry in the presence of massive scalar field. Recently,
Reddy (2018) obtained Bianchi type-V dark energy model
with scalar meson fields in general relativity while Naidu
(2018) investigated Bianchi type-II modified holographic
Ricci dark energy model in the presence of attractive mas-
sive scalar field. It is worth mentioning that Bianchi models
in f (R,T ) gravity in the presence of anisotropic dark en-
ergy and attractive massive scalar field have not been inves-
tigated in literature.

The main aim of the present work is to study the dy-
namics of Bianchi type-III cosmological model in the pres-
ence of perfect fluid and an attractive massive scalar meson
field. Investigation of Bianchi type-III models are important
in cosmology because they are among the simplest models
with an anisotropic background. Our work in this paper is
organized as follows: Sect. 2 consists of the general frame-
work of f (R,T ) gravity. In Sect. 3, we derive the field equa-
tions f (R,T ) gravity in Bianchi type-III space-time in the

presence of perfect fluid and attractive massive scalar field.
In Sect. 4, we solve the field equations and present the corre-
sponding cosmological model in this theory of gravitation.
The cosmological parameters corresponding to our model
are computed and their physical significance with reference
to the modern cosmology is discussed in Sect. 5. The last
section is devoted to summary and conclusions.

2 Basic f (R,T ) theory field equations

Here, the field equations of f (R,T ) theory of gravity
are obtained from the following action incorporating grav-
ity, matter and scalar field (Harko et al. 2011; Sharif and
Nawazish 2017):

S = 1

16π

∫
f (R,T )

√−g d4x +
∫

(Lm + Lϕ)
√−g d4x,

(1)

where Lm and Lϕ represent matter and scalar field La-
grangian densities. Here gravity Lagrangian f (R,T ) admit-
ting minimal coupling only with Lm and Lϕ (Harko et al.
2011). Here T is the trace of the energy-momentum tensor
of matter and R is the Ricci scalar. The combined energy-
momentum tensor of matter and scalar field is defined as

Tij = −2δ(
√−g(Lm + Lϕ))√−gδgij

, i, j = 1,2,3,4. (2)

By assuming that matter Lagrangian Lm and scalar field
Lagrangian Lϕ depend only on the metric tensor compo-
nents gij , we have obtained the field equations of f (R,T )

gravity as

fR(R,T )Rij − 1

2
f (R,T )gij − (∇i∇j − gij��)fR(R,T )

= 8πTij − fT (R,T )(Tij + Θij ) (3)

and

Θij = −2Tij + gij (Lm + Lϕ) − 2glk ∂2(Lm + Lϕ)

∂gij ∂glm
. (4)

Here

�� = ∇ i∇i ,

fR(R,T ) = ∂f (R,T )

∂R
, fT (R,T ) = ∂f (R,T )

∂T

and ∇i denotes the covariant derivative.
For a perfect fluid, the energy-momentum tensor is

Tij = (ρm + pm)uiuj − pmgij (5)
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where ρm and pm define energy density and pressure, re-
spectively whereas ui represents the four-velocity vector of
the fluid. Also, we assume an attractive massive scalar field
whose energy-momentum tensor is given by

T
ϕ
ij = ϕ;iϕ;j − 1

2
gij

(
ϕ;kϕ,k − M2ϕ2), (6)

where M is the mass of the scalar field ϕ which satisfies the
Klein-Gordon equation

gijϕ;ij + M2ϕ = 0. (7)

Here a comma and a semicolon indicate ordinary and covari-
ant differentiation respectively and ϕ is a function of time t .
For the action (1), the Lagrangian density of perfect fluid
and scalar fields are defined as (Harko et al. 2011; Sharif
and Nawazish 2017)

Lm = −pm, Lϕ = 1

2

(
M2ϕ2 − ϕ̇2). (8)

Now with the use of Eqs. (4) and (8) we obtain the tensor
Θij as

Θij = −2Tij − gij

2

(
2pm + ϕ̇2 − M2ϕ2). (9)

Generally, the field equations also depend through the ten-
sor Θij , on the physical nature of the matter field. Hence in
the case of f (R,T ) gravity, depending on the nature of the
matter source, we obtain several theoretical models corre-
sponding to each choice of f (R,T ) given by (Harko et al.
2011)

f (R,T ) =

⎧⎪⎨
⎪⎩

R + 2f (T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

(10)

Assuming the function f (R,T ) as

f (R,T ) = R + 2f (T ) (11)

where f (T ) is an arbitrary function of the trace of stress en-
ergy tensor of matter (perfect fluid), we get the gravitational
field equations of f (R,T ) gravity from Eq. (3) as

Rij − 1

2
Rgij = 8πTij − 2(Tij + Θij )f

′(T ) + f (T )gij

(12)

where the prime denotes differentiation with respect to the
argument.

3 Metric and explicit field equations

Here we consider spatially homogeneous and anisotropic
Bianchi type-III metric of the form

ds2 = dt2 − A2(t)dx2 − B2(t)e−2αxdy2 − C2(t)dz2, (13)

where A(t), B(t) and C(t) represent the scale factors of the
universe. Here α �= 0 is a constant which can be set equal to
unity. Also, we can obtain Bianchi type-I metric by choos-
ing α = 0. However the underlying geometry of Bianchi
type-I and III metrics are completely different.

We assume the particular choice of the function (Harko
et al. 2011)

f (T ) = λT , λ = constant. (14)

Now using comoving coordinates and Eqs. (5)–(6) the
explicit form of f (R,T ) gravity field equations (12) and the
Klein-Gordon equation, for the metric (13), take the form:

B̈

B
+ C̈

C
+ ḂĊ

BC
= pm(8π + 3λ) − λρm + 4π

(
ϕ̇2 − M2ϕ2)

(15)

Ä

A
+ C̈

C
+ ȦĊ

AC
= pm(8π + 3λ) − λρm + 4π

(
ϕ̇2 − M2ϕ2)

(16)

Ä

A
+ B̈

B
+ ȦḂ

AB
− 1

A2

= pm(8π + 3λ) − λρm + 4π
(
ϕ̇2 − M2ϕ2) (17)

ȦḂ

AB
+ ḂĊ

BC
+ ȦĊ

AC
− 1

A2

= −ρm(8π + 3λ) + λpm − (4π + 2λ)ϕ̇2 − 4πM2ϕ2

(18)

Ȧ

A
− Ḃ

B
= 0. (19)

Klein-Gordon equation is given by

ϕ̈ + ϕ̇

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
+ M2ϕ = 0 (20)

where an overhead dot denotes differentiation with respect
to cosmic time t .

The following are the geometrical and physical param-
eters to be used in finding the solution of the f (R,T )

field equations for the Bianchi type-III space-time given by
Eq. (13). The volume V and average scale factor a(t) of the
Bianchi type-III space time are defined as

V = √−g = ABC, a(t) = (ABC)
1
3 (21)
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Anisotropic parameter Ah is given by

Ah = 1

3

3∑
i=1

(
Hi − H

H

)2

(22)

where H1 = Ȧ
A

,H2 = Ḃ
B

,H3 = Ċ
C

are directional Hubble’s

parameters and H = 1
3 ( Ȧ

A
+ Ḃ

B
+ Ċ

C
) is mean Hubble’s pa-

rameter.
Expansion scalar (θ ) and shear scalar (σ 2) are defined as

θ = ui
;i = Ȧ

A
+ Ḃ

B
+ Ċ

C
(23)

σ 2 = 1

2
σ ijσij

= 1

3

(
Ȧ2

A2
+ Ḃ2

B
+ Ċ2

C2
− ȦḂ

AB
− ȦĊ

AC
− ḂĊ

BC

)
(24)

where

σij = 1

2

(
ui;μh

μ
j + uj ;μh

μ
i

) − 1

3
θhij , (25)

hij = gij − uiuj is the projection tensor while ui =
(1,0,0,0) is the four-velocity in comoving coordinates. De-
celeration parameter is given by

q = d

dt

(
1

H

)
− 1. (26)

4 Solution and the model

From Eq. (19), we get

A = c1B (27)

where c1 is an integration constant which can be taken as
unity without any loss of generality so that we have

A = B (28)

In view of Eq. (28), the field equations (15)–(20) yields
the following independent equations

Ä

A
+ C̈

C
+ ȦĊ

AC
= pm(8π + 3λ) − λρm + 4π

(
ϕ̇2 − M2ϕ2)

(29)

2
Ä

A
+ Ȧ2

A2
− 1

A2
= pm(8π + 3λ) − λρm + 4π

(
ϕ̇2 − M2ϕ2)

(30)

Ȧ2

A2
+ 2

ȦĊ

AC
− 1

A2

= −ρm(8π + 3λ) + λpm − (4π + 2λ)ϕ̇2 − 4πM2ϕ2.

(31)

Klein-Gordon equation is given by

ϕ̈ + ϕ̇

(
2
Ȧ

A
+ Ċ

C

)
+ M2ϕ = 0 (32)

Now Eqs. (29)–(32) are a system of four independent
equations in five unknowns A, C, ϕ, pm and ρm. Hence to
find a determinate solution we use the following physically
plausible conditions:

• The shear scalar σ 2 is proportional to scalar expansion θ

so that we can taken (Collins et al. 1980)

C = An (33)

where n �= 1 is a constant and preserves the isotropic char-
acter of the space-time.

• We use power law for ϕ as (Singh and Rani 2015)

ϕ̇

ϕ
= −(n + 2)

Ȧ

A
. (34)

Here the question of over determinacy is settled by satisfy-
ing the field equations. Now from Eqs. (32)–(34), we get the
scalar field ϕ(t) as

ϕ = exp

(
ϕ0t − M2t2

2
+ ϕ1

)
(35)

and the metric potentials are obtained by

A = A1 exp

( 1
2M2t2 − ϕ0t + ϕ1

n + 2

)

C = An
1 exp

( n
2 M2t2 − nϕ0t + nϕ1

n + 2

) (36)

where A1, ϕ0 and ϕ1 are integrating constants. Now the met-
ric (13) with the help of Eq. (36) can be written as

ds2 = dt2 −
(

A2
1 exp

(
M2t2 − 2ϕ0t + 2ϕ1

n + 2

))

× (
dx2 + e−2xdy2)

− A2n
1 exp

(
nM2t2 − 2nϕ0t + 2nϕ1

n + 2

)
dz2. (37)

The behavior of scalar field ϕ versus cosmic time t is
shown in Fig. 1. The scalar field exhibits a rapid increase
from very low value, goes towards maximum value and af-
ter a short interval of time rapidly approaches zero. The
rapid increasing behavior is because of the exponential po-
tential and it is quite similar to cosmological scaling solu-
tions obtained by Copeland et al. (2006) and the behavior of
the quintessence scalar field described by Sharif and Jawad
(2012), Sharif and Rani (2013) and Chattopadhyay and Deb-
nath (2011).
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Fig. 1 Plot of massive scalar field ϕ versus cosmic time t for M = 14,
ϕ0 = 50, n = 0.95, ϕ1 = 5

5 Cosmological parameters and discussion

Equation (37) along with Eq. (35) represents Bianchi
type-III universe with attractive massive scalar fields in
f (R,T ) modified theory of gravity along with the following
physical and geometrical parameters which are very impor-
tant in the discussion of cosmology.

Spatial volume

V (t) = An+2
1 exp

(
1

2
M2t2 − ϕ0t + ϕ1

)
. (38)

Average scale factor is given by

a(t) =
(

An+2
1 exp

(
1

2
M2t2 − ϕ0t + ϕ1

)) 1
3

. (39)

The mean Hubble parameter is

H = 1

3

(
M2t − ϕ0

)
. (40)

The scalar expansion is

θ = M2t − ϕ0. (41)

The shear scalar is

σ 2 = (M2t − ϕ2
0)2

2

(
n2 + 2

(n + 2)2
− 1

3

)
. (42)

The average anisotropic parameter is

Ah = 9

(M2t − ϕ0)

×
{

2

{
1

3
− A1

n + 2
exp

( 1
2M2t2 − ϕ0t + ϕ1

n + 2

)}2

+
{

1

3
− nA1

n + 2
exp

( 1
2M2t2 − ϕ0t + ϕ1

n + 2

)}2}
. (43)

Now using Eqs. (35) and (36) in the field equations (15)–
(20) we get the isotropic pressure pm as

pm = 1

3(8π + 3λ)2 − 3λ2

{
(8π + 3λ)

×
{

4

A1

(
A1M

2

n + 2
+ A1(M

2t − ϕ0)
2

(n + 2)2

)

+ 2

(
n2(M2t − ϕ0)

2

(n + 2)2

(
1 + nM2

n + 2

))}

+ 8π

(
(M2t − ϕ0)

2

(n + 2)2
(2n + 1)

− 1

A1
2

(
exp

{−M2t2 + 2ϕ0t + 2ϕ1

n + 2

}))

+ 24πM2(exp
{
M2t2 − 2ϕ0t + 2ϕ1

})
(4π + λ)

}

(44)

energy density ρm can be obtained as

ρm = 1

3(8π + 3λ)2 − 3λ2

{
4λ

A1

{
A1M

2

n + 2
+ A1(M

2t − ϕ0)
2

(n + 2)2

}

− (24π + 8λ)

{
(M2t − ϕ0)

2(2n + 1)

(n + 2)2

− 1

A1
2

exp

{−M2t2 + 2ϕ0t − 2ϕ1

n + 2

}}

+ 2λ

{
n2(M2t − ϕ0)

2

(n + 2)2
+ M2n

n + 2

}

− (
24πM2(4π + λ) − 6

(
M2t − ϕ0

)2

× (
3λ2 + 12λπ + 16p2))

× (
exp

{
M2t2 − 2ϕ0t + 2ϕ1

})}
(45)

The behavior of energy density ρm and isotropic pres-
sure pm are shown in Figs. 2 and 3 respectively. It can
be observed that the energy density ρm is positive whereas
the pressure pm is negative throughout the evolution of the
model. This should be the case because we are considering
f (R,T ) gravity which has been formulated to explain ac-
celerated expansion of the universe. Also, the rapid change
in the behavior of these parameters (pm and ρm) is because
of the exponential expansion of the model.

5.1 Deceleration parameter

The sign of deceleration parameter (q) shows whether the
model accelerates or decelerates. The positive sign of q in-
dicates standard decelerating model whereas the negative
sign −1 < q < 0 corresponds to accelerated expansion of
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Fig. 2 Plot of energy density ρm versus cosmic time t for M = 14,
ϕ0 = 50, n = 0.95, ϕ1 = 5, A1 = 55, λ = −13

Fig. 3 Plot of pressure versus cosmic time t for M = 14, ϕ0 = 50,
n = 0.95, ϕ1 = 5, A1 = 55, λ = −13

the universe. If q = −1, the universe exhibits exponential
expansion and super-exponential expansion if q < −1. In
our model, the deceleration parameter q is given by

q = −1 − 3M2

(M2t − ϕ0)2
. (46)

In Fig. 4, we show the evolution of deceleration parame-
ter q versus cosmic time t . It is observed that the decelera-
tion parameter varies in negative region and hence the evo-
lution of our model is in accelerating phase at present epoch.
This behavior is in good agreement with the modern obser-
vations. Also, we observe that we have a super-exponential
(q < −1) model at initial epoch and finally approaching ex-
ponential expansion (q = −1).

Fig. 4 Plot of deceleration parameter versus cosmic time t for M = 14
and ϕ0 = 50

Fig. 5 Plot of EoS parameter versus cosmic time t for M = 14,
ϕ0 = 50, n = 0.95, ϕ1 = 5, A1 = 55, λ = −13

5.2 Equation of state parameter

The equation of state (EoS) parameter is defined as follows

ω = pm

ρm

(47)

where pressure pm and energy density ρm are given in
Eqs. (44) and (45) respectively.

We plot EoS parameter versus cosmic time as shown in
Fig. 5. It can be observed that the EoS parameter ω starts
from quintessence dark energy era (−1 < ω < −1/3) and
goes towards phantom dark energy (ω < −1) era by evolv-
ing the vacuum dark energy era (ω = −1). It is also observed
that after some finite time t the model approaches to ΛCDM
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Fig. 6 Plot of energy conditions versus cosmic time t for M = 14,
ϕ0 = 50, n = 0.95, ϕ1 = 5, A1 = 55, λ = −13

model (ω = −1). Recent studies (Spergel et al. 2003; Riess
et al. 2007; Eisenstein et al. 2005; Astier et al. 2006;
Bamba et al. 2012) indicate that the model approaches to
ΛCDM served as an excellent models to describe the cos-
mological evolution.

5.3 Energy conditions

It is well known that the energy conditions play an important
role in the study of recent scenario of accelerating expansion
of the universe. Hence, we now analyze the energy condi-
tions for our massive scalar field model in f (R,T ) modified
theory of gravity. The energy conditions are given, respec-
tively, by:

• Null energy conditions (NEC): ρm + pm > 0
• Weak energy conditions (WEC): ρm ≥ 0, ρm + pm ≥ 0
• Dominant energy condition (DEC): ρm ≥ 0, ρm ±pm ≥ 0
• Strong energy conditions (SEC): ρm + 3pm > 0, ρm +

pm ≥ 0.

The violation of NEC and WEC immediately leads to the
violation of the other energy conditions. This in turn leads
to the reduction of energy density with the expansion of the
universe. On the other hand the violation of SEC results in
the accelerated expansion of the universe. Within the frame-
work of modified theories of gravitation, these energy con-
ditions have been widely investigated (Santos et al. 2007;
Sadeghi et al. 2012; Jawad et al. 2013). The plot of NEC for
our model versus cosmic time t is shown in Fig. 6. We see
that throughout evolution ρm + pm < 0 =⇒ ω < −1. This
indicates the violation of the NEC as well as the remain-
ing energy conditions. For our model SEC are violated and
hence we have an accelerating model of the universe.

6 Concluding remarks

Dark energy is one of the attracting and interesting sub-
jects of modern cosmology which leads to accelerated ex-
pansion of the universe. In order to explain this cosmic ac-
celeration, various approaches have been adopted through
many dynamical dark energy models and modified theories
of gravitation. The purpose of this paper is to discuss this
phenomenon by studying the dynamics of Bianchi type-III
perfect fluid cosmological model in the presence of mas-
sive scalar field in f (R,T ) modified theory of gravity. We
have obtained the deterministic solution of the field equa-
tions which leads to the varying deceleration parameter. We
have concluded our results as follows:

• The scale factors and volume of the model admit constant
value at initial epoch i.e., at t = 0 and then start increasing
exponentially with cosmic time approaching to very large
values as t → ∞. Also, the model does not have any type
of initial singularity.

• The mean Hubble parameter and expansion scalar are
constant at initial epoch indicating homogeneous expan-
sion of the universe and we have accelerated expansion
with evolution.

• The scalar field exhibits a rapid increase from very low
value, goes towards maximum value and after a short in-
terval of time rapidly approaches zero (Fig. 1). The rapid
increasing behavior is because of the exponential poten-
tial and it is quite similar to cosmological scaling solu-
tions obtained by Copeland et al. (2006) and the behav-
ior of the quintessence scalar field described by many
authors (Chattopadhyay and Debnath 2011; Sharif and
Jawad 2012; Sharif and Rani 2013).

• The energy density ρm is positive whereas the pressure
pm is negative throughout the evolution of the model
(Figs. 2 and 3). This should be the case because we are
considering f (R,T ) gravity which has been formulated
to explain accelerated expansion of the universe. Also,
the rapid change in the behavior of all these parameters
(ϕ, pm and ρm) is because of the exponential expansion
of the model.

• It is observed that the deceleration parameter varies in
negative region and hence the evolution of our model is in
accelerating phase at present epoch (Fig. 4). This behav-
ior is in good agreement with the modern observations.

• We have observed that the model evolves from quintes-
sence dark energy era (−1 < ω < −1/3) and goes to-
wards phantom dark energy (ω < −1) era by crossing
the phantom divided line or the vacuum dark energy
era (ω = −1). It is also observed that after some finite
time t the model approaches to ΛCDM model (ω = −1).
Recent studies (Spergel et al. 2003; Riess et al. 2007;
Eisenstein et al. 2005; Astier et al. 2006; Bamba et al.
2012) indicate that the model approaches to ΛCDM
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served as an excellent models to describe the cosmologi-
cal evolution. Hence our model is in good agreement with
these observations.

• The study of energy conditions shows that the NEC and
SEC are violated and hence we have a model representing
accelerated expansion of the universe.
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