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Abstract Low-energy transfers (LET) for lunar and inter-
planetary missions has received immense attention of the
scientific community during the last few decades as its im-
portance was understood by the success of JAXA’s Hiten,
ESA’s SMART-1, NASA’s GRAIL and ARTHEMIS mis-
sions, and several proposals, like the BepiColombo, Multi-
Moon Orbiter and Europa Orbiter. In this paper the devel-
opments in the area of LET and low-thrust trajectories are
reviewed. Starting with the basics of the restricted three-
body problem and its use in finding invariant manifolds in
phase space, the design of LET trajectories and optimisation
methods used to find optimal LET and low-thrust transfers
is discussed.

Keywords Weak stability boundary · Ballistic capture ·
Low thrust · Invariant manifolds · Optimisation methods ·
Phase space · Restricted three-body problem

1 Introduction

Many space faring nations are planning for interplanetary
missions to distant planets, asteroids and comets. The con-
ventional method for the design of an interplanetary tra-
jectory begins with the Hohmann transfer ellipse (Fig. 1),
which is further refined using the Lambert conic (Fig. 2) and
patched conic methods (Fig. 3). Alternative techniques, like
aerobraking (Fig. 4), aerocapture (Fig. 5), gravity assist and
ballistic capture trajectories, can be employed for optimis-
ing the fuel requirements. In some cases it has been proved
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that these alternative methods are better than conventional
methods as they aid to reduce the total impulse require-
ment and provide extended launch opportunities. The low-
energy transfer (LET) trajectory method is one such new un-
conventional technique; it was used by the Japanese Hiten
Mission in 1991 (Belbruno and Miller 1993; Uesugi 1996),
NASA’s ARTEMIS in 2009 (Folta et al. 2011; Sweetser et al.
2011), NASA’s GRAIL in 2011 (Roncoli and Fujii 2010;
Chung et al. 2010 and Hatch et al. 2010), shown in Fig. 6,
and it is proposed for missions like BepiColombo, Multi-
Moon Orbiter (MMO) and Europa Orbiter. The LET tra-
jectories have some advantages over direct transfer trajecto-
ries like lower total �V , more flexible launch opportunity,
longer view opportunity of en route satellites/planets com-
pared to gravity assist (Ross et al. 2003 and Gómez et al.
2004); but they suffer mainly from long flight durations and
tracking difficulties as the spacecraft travels longer distances
than in the case of direct transfers.

Basically the transfer approach to the Moon can be
broadly classified into four categories, namely, the direct,
phasing loop, weak stability boundary and spiral transfer
(Lee 2011). The ‘classical’ direct transfer trajectory to the
Moon starts from an Earth Parking Orbit (EPO) with an im-
pulse Trans-lunar Injection (�VTLI), usually at perigee, to
increase the apogee to 384400 km (mean distance between
Earth and the Moon). After reaching near Moon, another
impulse (Lunar Orbit Insertion, �VLOI) is given, usually at
periselenium, so that the spacecraft is captured in an orbit
around Moon. The time of flight for direct transfer varies
from 2–5 days and the total �V from a 300 km circular
EPO varies from 3.5 to 4 km/s. This method was used from
1960s to 1980s including the Luna and Apollo missions, and
recently by Lunar Prospector and Lunar Reconnaissance Or-
biter. This is the most-proven approach and can provide rel-
atively simple and fast transfer processes and lowest overall
risk and cost.
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Fig. 1 Hohmann transfer geometry

Fig. 2 Lambert conic method

Fig. 3 Patched conic method

Both the TLI and the LOI burns can be divided into
several smaller burns to minimise gravity losses and is
known as the phasing loop transfer. This technique was
used by Clementine, SELENE, Chandrayaan-1 (Fig. 7) and
Chang’E-1. This approach can provide a chance to verify

Fig. 4 Aerobraking—MGS (http://spacecraftkits.com/MGSFacts.
html)

Fig. 5 Aerocapture (http://www.rpi.edu/dept/chem-eng/WWW/
faculty/plawsky/Comsol%20Modules/Aerocapture/Aerocapture.html)

Fig. 6 Trajectory GRAIL spacecraft (www.nasa.gov/pdf/
582116main_GRAIL_launch_press_kit.pdf)

the operating condition, address the status of the orbiter and
correct any anomalies before the orbiter arrives at the Moon.
In general the time of flight varies from 2–3 weeks and it in-
volves more operational complexities. The initial direct and
phasing loop trajectories are designed using the Hohmann
transfer or patched conic technique, which are based on an
analytical solution of the two-body problem. Later the tra-

http://spacecraftkits.com/MGSFacts.html
http://spacecraftkits.com/MGSFacts.html
http://www.rpi.edu/dept/chem-eng/WWW/faculty/plawsky/Comsol%20Modules/Aerocapture/Aerocapture.html
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Fig. 7 Chandrayaan-1 mission profile (www.isro.gov.in)

jectory is refined using numerical methods taking into con-
sideration other perturbing factors like the third-body per-
turbation, atmosphere and solar radiation pressure.

Low-energy trajectories are characterised by a low en-
ergy with respect to the primaries and are usually associ-
ated with ballistic capture (getting captured by the primary
without an impulsive manoeuvre). Weak Stability Boundary
(WSB) transfer belongs to the category of LET that takes
the orbiter to the region of Lagrange points of the Sun–Earth
system to arrive at the Moon with low relative velocity, thus
reducing �VLOI at Moon. A small manoeuvre in WSB re-
gions can lead to significant change in the trajectory. This
approach usually requires a complex mission design require-
ment and very precise targeting and control of flight parame-
ters (Biesbroek and Janin 2000). These transfers require less
fuel, saving up to 150 m/s compared to Hohmann transfer.
The time of flight varies from 60–100 days. The Japanese
Hiten used the WSB transfer method to reach the Moon
(Belbruno 2007).

The spiral approach belongs to the category of low-thrust
transfers and requires the longest time of flight of all transfer
methods. ESA’s SMART-1 used its low-thrust hall thrusters
to expand its EPO to a lunar orbit over a period of 14 months.
In the construction of WSB and spiral trajectories the per-
turbation of the Sun has to be included along with Earth and
Moon and thus two-body dynamics is no more applicable.
These trajectories are designed using the invariant manifold
structures related to periodic orbits in the Restricted Three-
Body Problem (R3BP).

The objective of this paper is to show the developments in
the area of R3BP transfers and its application to finding LET
trajectories. We begin with the developments in the area of
R3BP related to capture dynamics, the use of R3BP in find-
ing invariant manifolds in phase space, the use of manifold
theory to determine low-energy transfers and methods to
find an optimal trajectory. Some of the missions which are
planned to use or which have used LET are discussed.

Fig. 8 Restricted three-body problem (Earth–Moon system)

2 Design of low energy transfers

2.1 Restricted Three-Body Problem

The Restricted Three-Body Problem (R3BP) is the problem
to describe the motion of an infinitesimally small particle
P which is moving under the gravitational influence of two
massive bodies M1 (more massive primary) and M2 (smaller
primary). The two massive bodies are moving in a circu-
lar orbit about their centre of mass. It is the simplest non-
integrable system. Figure 8 shows the R3BP Earth–Moon
system. P1 is Earth (E) and P2 is Moon (M). Unlike the
patched conic approach, simulations in the restricted three-
body problem consider the influence of two massive bodies
on the spacecraft at all time. Egorov (1958) has presented lu-
nar and circumlunar trajectories in the R3BP and problems
like circumnavigation of the Moon with a return to Earth at
a flat entry angle, using the Moon’s gravity assist to reach
other planets, possibility of the lunar capture etc. He con-
cluded that capture of the projectile launched from Earth by
the Moon on the first circuit of the trajectory was not possi-
ble. This was based on the analysis in the R3BP. But later it
has been established that when Sun’s gravity is considered,
ballistic capture is possible.

In the three-body problem, Conley–McGehee tubes, the
invariant manifolds of the periodic orbits, play an important
role in understanding the transfer mechanism in the solar
system (Koon et al. 2006). Hunter (1967) studied the sta-
bility conditions and satellite lifetime before escape in the
framework of elliptic R3BP. Conley (1968) described the lo-
cal dynamics near saddle-centre equilibrium points and the
construction of a lunar trajectory in the planar circular R3BP.
From his work it is known that both the stable and the un-
stable manifolds of periodic orbits around L1 and L2 are
two-dimensional. He showed that the local invariant hyper-
bolic manifolds emanate from the Lyapunov orbits. He con-
jectured that a low-energy transfer between Earth and Moon
might exist which leads to capture by the Moon. McGehee
(1969), building on the work of Conley, studied homoclinic
transfer trajectories that take the spacecraft off a periodic
orbit and then return it onto that same orbit at a later time.

http://www.isro.gov.in
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Heppenheimer (1978a, 1978b) brought out the idea of us-
ing these orbits for material transportation from the Moon
for space colonisation. Huang and Innanen (1983) numeri-
cally explored the stability and capture regions of retrograde
Jovian satellites. They also obtained the conditions for tem-
porary capture of retrogate jovicentric satellites in the frame-
work of R3BP and elliptic R3BP. Brunini (1996) investi-
gated stability and capture regions in phase space for direct
and retrograde satellites and found possible candidates to
be temporary Jovian satellites. Llibre et al. (1985) showed
the global extension of invariant hyperbolic manifolds about
the smaller primary and showed that they transversally in-
tersect. This means that complicated hyperbolic networks
exist about the smaller primary which can be used to de-
sign LET. Murison (1989) used a surface of section analy-
sis of a selected region of the C-x0 plane to show that the
finite capture time areas correspond to motion in chaotic re-
gions while the permanent capture areas are regions where
the motion is trapped in quasi-periodic islands surrounding
elliptical fixed points. He claims that most, if not all, es-
cape/capture orbits are chaotic and the boundaries of such
regions are fractal.

2.2 The weak stability boundary

WSB transfers from Earth to the Moon are constructed us-
ing WSB region of Sun–Earth to alter the spacecraft’s ve-
locity as it enters WSB region of Earth–Moon so that it gets
ballistically captured by the Moon. WSB transfer introduces
more complexities to mission design than direct transfer. In
order to design a WSB transfer trajectory, standard astro-
dynamics tools like the two-body problem cannot be used
without modification, as the trajectory does not follow conic
sections. When modelled in R3BP, the energy or the Jacobi
constant of the trajectory changes due to thrusting. As a re-
sult the design of such trajectories is usually performed us-
ing optimisation tools. Since the discovery of such chaotic
regions in the three-body problem, a lot of research has been
done in this area to utilise these regions to design low-energy
interplanetary trajectories.

According to Belbruno and Miller (1993), “WSB is tran-
sition region in the phase space where the gravitational inter-
actions between Earth, Sun and Moon tend to balance”; also
WSB is “a generalisation of Lagrange points and a compli-
cated region surrounding the Moon”; Belbruno (2004) de-
scribes WSB as “a region in phase space supporting a spe-
cial type of chaotic motion for special choices of elliptic ini-
tial conditions with respect to m2”; Belbruno (2004) defines
WSB as “in the circular R3BP, WSB is a boundary set in the
phase space between stable and unstable motion relative to
hte second primary. Keplerian orbits about the second pri-
mary, perturbed by the first primary are stable if after a pre-
scribed number of revolutions they preserve the character

of bounded motion. Otherwise they are unstable”; Yagasaki
(2004a) describes WSB as “a transition region between the
gravitational capture and escape from the Moon in the phase
space”.

2.2.1 Analytical definition of capture and WSB is given by
Belbruno (2004)

Let us consider the elliptic restricted three-body problem.

Definition The two-body Kepler energy of P3 with respect
to P2 in P2-centred inertial coordinate is given by

E2(X, Ẋ) = 1

2
|Ẋ|2 − μ

r23
, (1)

where r23 = |X|, 0 ≤ μ < 1
2 .

Definition P3 is ballistically captured by P2 at time t = t1

if

E2
(
ϕ(t1)

) ≤ 0

for a solution ϕ(t) = (X(t), Ẋ(t)) of the elliptic restricted
problem relative to P2, r23(ϕ(t)) > 0.

In particular, we consider the planar circular restricted

problem and determine the set J
−1

(C) where Ẽ2(x, ẋ) ≤ 0
and x = (x1, x2) are barycentric rotating coordinates. In ad-
dition, those points are considered where ṙ23 = 0, i.e., local
periapsis or apoapsis points. Set

Σ = {x, ẋ | Ẽ2 ≤ 0}, σ = {x, ẋ | ṙ23 = 0}.

Then

W = J
−1

(C) ∩ Σ ∩ σ (2)

defines a special set where ballistic capture occurs in the
restricted problem. W is called the weak stability boundary.
The motion of P3 near W is sensitive.

Here we are interested to find the trajectories that attain
ballistic capture. The trajectory starts close to the primary
P1 and goes to a point in W near P2. This type of trajectory
is called a ballistic capture transfer and it has the property
that it arrives at a periapsis point near P2 with substantially
lower Kepler energy E2 than the classical Homann transfer
trajectories.

Let ϕ(t) be a smooth solution to the elliptic restricted
problem for t1 ≤ t ≤ t2; t2 is finite.

Definition If E2(ϕ(t2)) ≤ 0 then ϕ(t) is called a ballistic
capture transfer from t = t1 to t = t2, relative to P2.
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Definition If E2(ϕ(t1)) ≤ 0 and E2(ϕ(t2)) > 0 then ϕ(t)

is called a ballistic ejection transfer from t = t1 to t = t2,
which defines ballistic ejection (or escape) from P2.

Definition Let ϕ(t) be a ballistic capture transfer from t =
t1 to t = t2. If E2(ϕ(t)) ≤ 0 for t2 ≤ t ≤ t3, t2 < t3 < ∞, and
E2(ϕ(t)) > 0 for t = t3, then ϕ(t) has temporary ballistic
capture for t2 ≤ t ≤ t3. If t3 = ∞, then ϕ(t) has permanent
ballistic capture for t2 ≤ t < ∞.

Hohmann transfer is referred to as high energy since the
hyperbolic excess velocity V∞ (= VM–VF , where VM is the
magnitude of the velocity of Moon about Earth and VF is
the magnitude of velocity of P3 on the transfer trajectory at
lunar periapsis. Also, E2 = (1/2)V 2∞) is significantly high,
and a ballistic capture transfer is said to be of low energy,
since the V∞ is eliminated. This is the fundamental differ-
ence between these two types of transfers.

2.2.2 Numerical algorithmic definition of WSB is given by
Belbruno (2004)

The numerical algorithmic definition of WSB by Belbruno
(2004) is given by considering a radial line l from P2 in a
P2-centred rotating coordinate system X1, X2. We follow
trajectories ϕ(t) of P3 starting on l, which satisfy the fol-
lowing requirements.

• The initial velocity vector of the trajectory for P3 is nor-
mal to the line l, pointing in the direct (posigrade) or ret-
rograde directions.

• The initial two-body Kepler energy E2 of P3 with respect
to P2 is negative or 0.

• The eccentricity e2 ∈ [0,1] of the initial two-body Kep-
lerian motion is fixed along l. The initial velocity magni-

tude V2 = (Ẋ2
1 + Ẋ2

2)
1
2 = (μ(1 + e2)/r23)

1
2 , 0 < μ ≤ 1

2 .
It varies along l.

Let us assume that P3 starts its motion at the periapsis of an
osculating ellipse. Hence,

E2 = μ

2

(
e2 − 1

r23

)
≤ 0.

The motion of P3 is stable about P2 if

(i) after leaving l it makes a full cycle about P2 without
going around P1 and returns to a point b ∈ l, where
E2 ≤ 0.

The motion of P3 is unstable if either

(ii) it performs a full cycle about P2 without going about
P1 (θ1 �= 0, where θ1 is the polar angle with respect

to P1) and returns to a point b ∈ l, where E2 > 0;
or

(iii) P3 moves away from P2 towards P1 and makes a cy-
cle about P1 achieving θ1 = 0, or P3 collides with P1.
It is assumed that for t > t0, once P3 leaves l, where
θ2 = θ2(t0) ∈ [0,2π), P3 needs only cycle about P2

until θ2(t) = 2π .

It is noted that (i) corresponds to ballistic capture at b with
respect to P2 and the orbit from a to b is a ballistic capture
transfer which is bounded. (ii) corresponds to ballistic es-
cape from P2 and (iii) represents a different type of escape,
called primary interchange escape.

As the initial conditions vary along l satisfying (i), (ii),
(iii), it is numerically found that there is a finite distance r∗
on l from P2 satisfying the following statements:

If r2 < r∗, the motion is stable.
If r2 > r∗, the motion is unstable.

r∗ depends on only two parameters: the polar angle θ2 which
l makes with the x1-axis and the eccentricity e2 of the os-
culating Keplerian ellipse at the point a at t = t0. r2 is a
well-defined function of θ2, e2. Define

W = {
r∗(θ2, e2) ∈ R1 | θ2 ∈ [0,2π], e2 ∈ [0,1]}. (3)

W is a two-dimensional stability transition region of posi-
tion and velocity space, which we call the weak stability
boundary. W has two components, one corresponds to retro-
grade motion about P2 and the other to direct motion about
P2 after propagation from l.

The motion of spacecraft is stable/unstable accordingly
as it can or cannot perform a full cycle about the smaller
primary P2 without going around the more massive pri-
mary P1. In the algorithm stated above, only one orbit
around Moon is considered before the spacecraft P3 reaches
the WSB. García and Gómez (2007) claimed that the ge-
ometry of WSB is much more complicated than that de-
fined by Belbruno (2004). Instead of one cycle, García and
Gómez (2007) generalised this region by considering the
capture of P3 by the Moon after it has performed n cy-
cles around it. Hence they defined the nth weak stability
boundary. They defined the generalised WSB as the union
of these sets for n = 1,2,3, . . . . They gave a rough es-
timate of the stable/unstable regions around Moon. They
computed the stable and unstable manifolds associated to or-
bits around the collinear Lagrangian points and established a
connection between these manifolds and the stable/unstable
regions.

2.2.3 Definition of WSB given by García and Gómez (2007)

In the algorithmic definition given by Belbruno (2004), Gar-
cía and Gómez (2007) pointed out that the requirements on
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the initial conditions fix the modulus of the velocity and its
direction, but not the sense. So, for a fixed position on l(θ),
there are two different initial velocities, fulfilling the four
restrictions, which can produce orbits with different stabil-
ity behaviour. Also, they pointed out that along l(θ) there
are several transitions from stability to instability. The set of
stable points resembles a Cantor set. Also some maximum
time interval must be fixed for the numerical integration.

García and Gómez (2007) gave the initial conditions
along radial segment l(θ) that must be integrated to deter-
mine the stable/unstable regions around P2.

Initial conditions with positive velocity (osculating retro-
grade motions around P2):

x = −1 + μ + r2 cos θ, y = r2 sin θ,

ẋ = r2 sin θ − v sin θ, ẏ = −r2 cos θ + v cos θ.

(4)

Initial conditions with negative velocity (osculating direct
motions about P2):

x = −1 + μ + r2 cos θ, y = r2 sin θ,

ẋ = r2 sin θ + v sin θ, ẏ = −r2 cos θ − v cos θ,

(5)

where v is the modulus of the initial sidereal velocity of P3

given by

v2 = μ

(
2

r2
− 1

a

)
= μ(1 + e)

r2
. (6)

For fixed value of the eccentricity e and the angle θ , all the
possible values of the distance r∗ along l are searched for
which there is a change of the stability property of the or-
bit. For a finite number of points (up to a certain precision)
r∗

1 = 0, r∗
2 , . . . , r∗

2n such that r2 ∈ [r∗
1 , r∗

2 ] ∪ [r3
∗, r∗

4 ] ∪ · · · ∪
[r∗

2n−1, r
∗
2n]; then motion is stable, and otherwise unstable.

The number of points r∗
i and their values depend on e, θ

and the precision of the computation. Thus, WSB is defined
as

W = {[
r∗

2k−1(θ, e), r∗
2k(θ, e)

]
, k = 1, . . . , n; θ ∈ [0,2π],

e ∈ [0,1)
}
. (7)

Topputo and Belbruno (2009) found that the variability of
mass ratio of the primaries has an important effect in chang-
ing the structure of weakly stable sets. Sousa Silva and Terra
(2012a, 2012b) demonstrated the selection of suitable stable
subsets which can to feasible ballistic capture.

2.3 WSB transfers

Belbruno (1987) discovered this new type of WSB transfer
from Earth to the Moon using ballistic lunar capture (i.e.,
no �VLOI), which was demonstrated by Japanese spacecraft

Hiten in 1991. When a spacecraft undergoes ballistic cap-
ture at Moon, it goes into an unstable orbit around Moon
automatically without any �V to slow it down near Moon.
The spacecraft remains in this orbit for finite time and then
escapes. In this weak capture state it is in the transitional
boundary between capture and escape. This orbit can be sta-
bilised by imparting a small impulse �V . The mechanism
of such capture was studied by Belbruno (2004). He has
mapped out the region in the phase space (position-velocity
space) where weak capture can occur about the Moon. He
called this region WSB. The initial orbit conditions depend
on the location of the Sun relative to the Earth and the Moon
(Miller 2003). Belbruno (1990) used numerical simulations
to demonstrate that the spacecraft undergoes resonance tran-
sition via weak capture. They have used the Poincaré surface
of section to visualise WSB regions. Belbruno and Marsden
(1997) have showed that resonance hopping in comets oc-
cur when comets fly by Jupiter in the WSB region. Topputo
et al. (2008) illustrated that the resonance transition mech-
anism is related to weak capture. They numerically demon-
strated that the orbits that undergo resonance transition pass
through the WSB regions. They incorporate solar perturba-
tion to study ballistic escape. Belbruno et al. (2008) used
special normalised resonance Poincaré surfaces to visualise
WSB and its role in resonance transitions (Fig. 9). They
used a correlation dimension to analyse different kinds of
orbits and found that orbits close to resonance exhibit mixed
regular-chaotic behaviour.

2.4 Low-energy trajectory design

The research done in the area of WSB transfers can be clas-
sified into three parts; namely, manifold theory, optimisation
methods used and mission design.

2.4.1 Design of WSB transfers to the Moon using
back-propagation

Belbruno and Miller (1993) have shown the existence of
WSB numerically. They compared WSB transfers with
Hohmann, biparabolic and bielliptic transfers. They have
shown that WSB transfers require 18%, 14% and 37%
smaller �V than Hohmann, biparabolic and bielliptic trans-
fers, respectively (Table 1).

They developed the trajectory in the three-dimensional
four-body problem consisting of the point mass (space-
craft) m, Sun, Earth and Moon. The equations of motion are
given by

mkẍk =
4∑

i=1
i �=k

Gmimk|xi − xk|−3(xi − xk). (8)
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Fig. 9 Visualisation of ‘classic’ WSB (black bold line) and the ex-
tended WSB, B (grey area) on S. (a) C = C2 − 0.01, (b) C = C(0),
(c) C = C(0.1), (d) C = C(0.2), (e) C = C(0.3), (f) C = C(0.4),

(g) C = C(0.5), (h) C = 2.9368, (i) C = C∗ + 0.01 (from Belbruno
et al. 2008)

Table 1 Comparison between the low-energy, low-thrust (LELT) solutions designed and a set of impulsive reference solutions found in literature
(from Mingotti et al. 2009)

Trajectory type �υTLI (m/s)
∑

i �υi (m/s) e (–) hp (km) mp/m0 (–) �t (days)

LELT#1 3195 – 0.65 1000 0.031 236

LELT#2 3207 – 0.65 1000 0.032 228

LELT#3 3203 – 0 100 0.061 271

WSB (Belbruno and Miller 1993) 3161 677 0 100 0.205 90–120

BP (Belbruno and Miller 1993) 3232 721 0 100 0.217 ∞
HO (Belbruno and Miller 1993) 3143 848 0 100 0.253 4–5

BE (Belbruno and Miller 1993) 3161 987 0 100 0.285 55–90

L1 (Topputo et al. 2005) 3265 629 0 100 0.192 255

MIN (Sweetser 1991) 3099 622 0 100 0.190 –

Here, xk = (xk1, xk2, xk3) ∈R3 is the position in inertial co-
ordinates (x, y, z) of the point mass m. The initial values
xk(0), ẋk(0) for k = 2,3,4 for the Sun, Earth and Moon,
respectively, are given for an epoch from t = 0. The co-

ordinates of the solution of Eq. (8) with respect to Earth,
called xk , are defined by the transformation xk = xk − x3,
where E is the origin (x3 = 0). This is a non-inertial coordi-
nate system (x, y, z) where the differential equations for xk ,
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k = 1,2,4 are

mkẍk =
4∑

i=1
i �=k

Gmimk|xi − xk|−3(xi − xk)

−
4∑

i=1
i �=3

Gmim3|xi |−3xi. (9)

Their method for calculation of WSB transfer to the Moon
consists of the following steps:

1. Assume that the position of spacecraft, m, with respect to
the Moon, M , at time t = tF of capture is given at some
altitude h > 0 above the lunar surface. Suppose that the
lunar approach direction is given. Let the radial distance
of m from M is the stability breakdown distance with re-
spect to M , so that m is in the WSB region of Moon.
The value of the eccentricity, e, is determined from the
definition of WSB in (3). Let Φ(t) = [x1(t), ẋ1(t)] be
the solution of the equation of motion (9). Increase e to
e + δ and integrate Φ(t) backward in time from the cap-
ture state ΦC at t = tF to Φ̂ = Φ3(T ) for T < tF , which
is near the WSB of Earth.

2. Let ΦE be the initial state of m relative to Earth. Vary
the initial velocity ẋ(t0) of ΦE so that m leaves Earth
and goes to the initial position x̂ ∈R3 of Φ̂ at t = T and
achieves energy augmentation by lunar gravity assist.

3. In general, the initial velocity of the capture trajectory
from Φ̂ to ΦC will not be equal to the final velocity of the
trajectory arc from ΦE to Φ̂ . Let �V be the difference
of the two velocities. �V is minimised by varying t0, tF
and δ.

4. The trajectory thus obtained by joining the two trajectory
segments is the WSB transfer from E to M . A differen-
tial correction is used for targeting and the equations of
motion are solved using fourth-order Runge–Kutta nu-
merical integration.

5. The solution thus obtained is used as an initial guess for
a more realistic model.

The WSB theory is used for the trajectory design of Hiten
(Belbruno and Miller 1993; Uesugi 1996) and Lunar GAS
(Belbruno 1987), the Lunar Observer Mission (Belbruno
and Miller 1993), the Blue Moon Mission (Belbruno et al.
1997), SMART-1 (Schoenmaekers et al. 2001), ARTEMIS
(Folta et al. 2011) and GRAIL (Chung et al. 2010). Belbruno
(2005) gives the concept for the design of a low-energy lu-
nar transportation system for servicing lunar base. The sys-
tem consists of a Crew Exploration Vehicle and a robotic
Tanker Craft. The latter uses WSB transfer to reach Moon
and supply necessary fuel to the Crew Vehicle.

Miller and Belbruno (1991) gives the methodology for
the design of a WSB trajectory, the so-called Belbruno–

Miller (B–M) trajectory, that receives gravity assist from
Moon on its way to the Sun–Earth Lagrange point about
1.5 million km from Earth. In that region, the gravitational
accelerations of the Earth–Moon system and the Sun tend
to balance when combined with the inertial acceleration of
spacecraft. A small manoeuvre in this region returns the
spacecraft for ballistic capture by the Moon. Krish (1991)
has carried out an injection period analysis for a particular
B-M trajectory. It is found that the injection period can be
increased to 4 and 11 days, respectively, with a maximum
allowable �V of 100 m/s and 150 m/s. The results showed
that a nominal B-M trajectory can save 150 m/s over the
Hohmann transfer.

Yamakawa (1992) and Yamakawa et al. (1992, 1993)
have provided a systematic method of construction and a
wide variety of examples of ballistic lunar capture trajec-
tories. They classify these trajectories into two categories,
namely: (1) an Earth side approach to the Moon through
a geocentric orbit with initially small semi-major axis and
(2) an anti-Earth side approach through a geocentric orbit
of the large semi-major axis. They have identified perilune
conditions which take advantage of solar gravity to reduce
C3 with respect to the Moon at perilune. They investigated
the influence of solar gravity on the geocentric orbit from an
angular momentum point of view and showed that the space-
craft location in the second or fourth quadrant in a Sun–
Earth fixed frame increases the local perigee distance. They
also found that the total flight time of Earth–Moon transfer
can be reduced by the use of lunar swing-by, as it reduces
the local eccentricity and hence raises the initial perigee of
the geocentric orbit. Using the above information they give a
systematic method of orbit design which makes use of grav-
itational capture by the Moon and solar gravity to raise the
perigee of the initial EPO.

Capuzzo-Dolcetta and Giancotti (2013) have shown in
Fig. 10, the gravity gradient of the Sun in Earth’s surround-
ings and its effect on orbits around the Earth. When the orbit
is oriented within the second or fourth quadrant in a Sun–
Earth rotating frame, Sun’s gravity aids the orbit by rais-
ing the spacecraft’s energy, especially when it is close to
its apogee. This phenomenon is used in the design of outer
WSB trajectories (the initial EPO has an apogee beyond the
Moon’s orbit). In this case, the spacecraft approaches Moon
with a lower relative velocity, compared to Hohmann trans-
fer, possibly resulting in a ballistic capture. Let �v1 be the
impulse from EPO to begin the transfer and �v2 be the im-
pulse to put the spacecraft into a stable orbit around the
Moon. Ballistic capture results in a reduction in �v2 by up
to 44%. The inner resonance or cislunar transfers take ad-
vantage of unstable dynamics near the Earth–Moon libration
point L1 to increase the apogee to the Earth–Moon distance.
The inner transfers consist of �v1 < 3.1 km/s (�vh

1 is the
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Fig. 10 The angle α and the
shape of Sun’s gravity gradient
in Earth’s surroundings.
(a) When α is in an even
quadrant, perigee of initial
osculating Kepler orbit (dashed
grey line) raises. (b) When α is
in an odd quadrant, the length of
the semi-major axis is reduced,
leading to lower perigee (from
Capuzzo-Dolcetta and Giancotti
2013)

Fig. 11 Position of points of the Paerto front (red dots) in whole dis-
tribution by date of the orbits. First and third quadrants are shown on a
darker background (from Capuzzo-Dolcetta and Giancotti 2013)

value of the mean Hohmann transfer), while the outer trans-
fers require �v1 > 3.140 km/s. Figure 11 shows the posi-
tion of optimal points (in red) falling within the second and
fourth quadrants in a Sun–Earth rotating frame. Of all the
transfers with �v2 < 1.0 km/s, 93% have the apogee an-
gle α in the second or fourth quadrant. Figure 12 shows the
relation between �v1 and �v2 for a collection of orbits pro-
duced for different simulation modes. Points in the vicinity
of [3.1 km/s, 1.093 km/s] represent an average Hohmann
transfer. The Pareto fronts are the points highlighted in red
colour. Pareto sets are distributed into three different areas,
namely, inner transfers, Hohmann transfer and outer trans-
fers (Capuzzo-Dolcetta and Giancotti 2013).

Dutt et al. (2016) have represented the capture trajecto-
ries, obtained by back-propagation of highly elliptical lunar
orbits, on the phase space with colour code on time of cap-
ture, as shown in Fig. 13. So looking at the phase space dia-
grams short flight duration trajectories can be differentiated
from longer flight duration trajectories. Also the distribution
of trajectories with different capture durations in the phase

Fig. 12 The Pareto front (dots joined by red line) in �v1–�v2 plane.
The points occupy three distinct areas, highlighted by circles, corre-
sponding to inner, Hohmann and outer transfers, respectively, from left
to right (from Capuzzo-Dolcetta and Giancotti 2013)

space can be clearly visualised. Similarly, highly eccentric
geocentric orbits for which the perigee increases from LEO
to Earth–Moon distance are also represented on the phase
space with colour code on time of one revolution. Once the
geocentric orbit and lunar capture orbits are identified the
two are patched using the Fixed Time of Arrival method
and optimal patching points are found using a Genetic Algo-
rithm to obtain a WSB transfer trajectory from Earth to the
Moon.

Graziani et al. (2000) have developed a numerical algo-
rithm using back-propagation to find WSB trajectories to the
Moon in four-body problem using real ephemerides. First
they found two angles, namely α and β . α is the angle be-
tween Earth to apogee line and the Earth–Sun line. α must
lie on the II or IV quadrant with respect to the Earth–Sun
direction. β is the ecliptic projection of angle between the
Earth–Sun and Earth–Moon lines at Moon arrival. There are
two allowed regions of β split by an angle of amplitude π ,
known as the “π -symmetry”. They also found that most of
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Fig. 13 Lunar capture trajectories obtained by back-propagation for 50 days. The initial conditions which lead to a capture trajectory are plotted
in the phase space with colour code on time of capture. Left: Direct motion about m2, right: retrograde motion about m2 (from Dutt et al. 2016)

the transfers tend to remain on the ecliptic plane. They were
able to find a number of WSB transfers to the Moon. Work-
ing along similar lines, Mora et al. (2003) have studied inner
and outer WSB transfers using backward propagation for the
LUNARSAT Mission.

Ivashkin (2002, 2004) developed a method to construct
transfers between Earth and Moon using the Sun’s gravita-
tional influence. Bollt and Meiss (1995) construct a ballistic
capture trajectory using four small manoeuvres which re-
quires less energy when compared to the conventional direct
transfer. Schroer and Ott (1997) reduced the time of such
transfers from 2.05 years to 0.8 years, by targeting specific
three-body orbits near the Earth. The total cost remained ap-
proximately the same. Belbruno (2007) has shown the ex-
istence of very low-energy orbits around Moon, which can
orbit Moon for extended periods and change their inclina-
tion using 12 times smaller �V than conventional method.

Circi and Teofilatto (2001) determine the spacecraft-
Earth–Moon–Sun configuration that enable WSB transfers
and demonstrate the role of the Sun in increasing the space-
craft perigee and allowing lunar capture. It is demonstrated
that the Sun provides the spacecraft with minimum energy
necessary to reach the Moon. The conditions generating
WSB transfer in ‘quasi-ballistic capture’ is estimated by
an analytical method. The generalisations of the Tisserand–
Laplace definition of the sphere of influence into exterior
and interior spheres of influence is accounted for in the study
of capture dynamics using analytical and numerical meth-
ods. Griesemer et al. (2011) have developed an algorithm
for targeting ballistic lunar capture transfer. The algorithm
uses a particular member of a family of periodic orbits, doc-
umented by Markellos (1974) as family f 16, as an initial
guess for an Earth–Moon transfer.

Parker (2010) investigates annual and monthly variations
in low-energy ballistic transfers from Earth to Lunar Halo
Orbits. Variations are attributed to Earth’s and Moon’s non-
circular and non-coplanar orbits. They have found that some
families of transfers exist only in certain months of a year
due to their sensitivity to the geometric shifts. Anderson and
Parker (2011) have studied lunar landing trajectories at dif-
ferent elevation angles using invariant manifolds both in pla-
nar and 3D R3BP. Topputo (2013) has surveyed all the fami-
lies of two-impulse Earth to the Moon transfers in the frame-
work of the restricted four-body problem. These transfers in-
clude Hohmann, Sweetser’s theoretical minimum, and those
investigated by Yamakawa, Belbruno, Yagasaki, Pernicka,
Mingotti etc. Parker and Anderson (2013) have surveyed
two-burn transfers to 100 km polar orbit around Moon.
These transfers include 3–6 days direct transfer, transfers
including Earth phasing orbits and/or lunar flyby and 3–4
month low-energy transfers.

2.4.2 Design of WSB transfers to the Moon using forward
targeting method

Belbruno et al. (1997) discovered a forward search algo-
rithm to generate WSB transfers from Earth to the Moon.
Belbruno and Carrico (2000) presented a modified form of
that algorithm using the software package STK/Astrogator.
Their algorithm is as follows:

1. Consider a point x with respect to Earth with radial dis-
tance rE . The spherical coordinates at point x are the ra-
dial distance rE , the longitude (αE), the latitude (δE), the
velocity magnitude (VE), the flight path angle (γE), and
the flight path azimuth, i.e. the angle in local plane from
the projection of the positive z-axis to the velocity vector
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(σE). Let rM and iM be the desired radial distance and
inclination, respectively, with respect to the Moon. The
algorithm varies VE and γE to target rM and iM .

2. The initial value of VE is chosen so that the spacecraft is
in orbit around Earth with an apoapsis of 1.5 million km.
The initial value of γE is chosen near zero. These trans-
fers are possible every month. Once the desired month
of launch is decided, the day of month for launch is de-
cided such that a specific Sun–Earth–Moon geometry is
obtained. Let λ be the Sun–Earth–Moon angle, in the
Sun–Earth rotating coordinate system. The Earth is in
the centre and the Sun–Earth line defines the x-axis. For
the second and fourth quadrant transfers, the Sun helps
to increase the local periapsis distance. A first guess of
the angle between the Sun–Earth line and the trajectory
at launch, α, is important so that the trajectory will en-
counter the Moon with proper arrival conditions. The ori-
entation of the line of apsides in the Sun–Earth rotating
coordinate system is also an important parameter to be
monitored and controlled. The time of launch establishes
the Right Ascension of the Ascending Node (RAAN) and
the coast time establishes the argument of perigee (AOP).

3. Using a second order Newton differential correction tar-
geting algorithm the trajectory usually converges in six
iterations.

Ockels and Biesbroek (1999) and Biesbroek et al. (1999)
gave a method to find WSB trajectories to the Moon from
a geostationary transfer orbit (GTO) for LunarSat Mission.
More details are provided in Sect. 2.4. Dutt et al. (2018a)
gave a method using forward propagation to find WSB trans-
fer to the Moon. They considered it as an optimisation prob-
lem with two loops. The outer loop varies the parameters re-
lated to departure from an EPO, while the inner loop varies
the small impulse given at WSB of Earth to obtain a capture
trajectory at Moon. After attaining a capture orbit at Moon,
they wait for the orbit to attain minimum eccentricity for
circularisation.

2.4.3 Low-energy transfers to Halo orbits and distant
planets

Solar libration points are good locations for space-based
observations. There have been several missions to La-
grange points and halo orbits, like International Sun/Earth
Explorer 3 (ISEE-3) in 1978, Global Geospace Science
(GGS) WIND in 1994, the Solar and Heliospheric Observa-
tory (SOHO) in 1996, the Advanced Composition Explorer
(ACE) in 1997 and Genesis in 2001. Earth–Moon libration
regions are also interesting locations for space exploration
missions for instance, for servicing facilities and launch to
outer planets. Farquhar (1968) first proposed the use of halo
orbit about the Earth–Moon L2 as a communication relay
station for an Apollo mission to the far side of the Moon.

He used analytical expressions to represent the halo orbits.
On the other hand Howell (1984) computed them numeri-
cally. Gómez et al. (1992) give a method for construction of
trajectory from vicinity of Earth to a halo orbit around the
Earth–Sun L1 point in the real solar system. They used the
simplified models, namely, the R3BP and bicircular prob-
lem to understand the geometrical aspects of the problem.
They used the hyperbolic character of halo orbits to transfer
the spacecraft into a halo orbit using just one manoeuvre.
Howell et al. (1994) studied the construction of trajectories
from low EPO to halo orbits in the Sun–Earth three-body
problem. A number of works have been carried out in this di-
rection; for instance by Starchville and Melton (1997, 1998),
Sukhanov and Eismont (2003), Senent et al. (2005), Min-
gotti et al. (2007), Demeyer and Gurfil (2007), Liu et al.
(2007), Cabette and Prado (2008), Canalias and Masdemont
(2008), Alessi et al. (2010), and Li and Zheng (2010). Min-
gotti et al. (2012) demonstrated the construction of trans-
fer trajectory to distant periodic orbits in the Earth–Moon
system. They exploited the invariant manifolds of distant
periodic orbits for the construction of interior and exterior
low-energy transfers.

Strizzi et al. (2001) simulated and analysed Earth to Mars
transfers using the Lissajous orbit. They demonstrated that
a braking manoeuvre at low altitude Mars periapsis prior
to LOI can significantly save fuel. They have used a loose
control technique for station keeping. Castillo et al. (2003)
have described a numerical method to find WSB transfers
to inner planets and outer planets. For inner planets, i.e.,
Mercury, Venus and Mars trajectory design is discussed for
the BepiColombo, Venus Express and Mars Express mis-
sions, respectively. They claimed that WSB transfers to in-
ner planets do not decrease the total �V required for the
capture but provides greater flexibility when selecting the
geometry of the target orbit. They show that for outer plan-
ets, when natural moons are available, GA combined with
WSB can be used. The combination of both methods pro-
vides opportunity to explore the giant planets (e.g. Jupiter
and Saturn) and their moons. Kulkarni and Mortari (2005)
demonstrated that Earth to distant planet can be reached us-
ing hopping between halo orbits and it could save 35% fuel
over gravity assist. Nakamiya et al. (2008) described the use
of halo/Lyapunov periodic orbits to reduce propellant re-
quirements to reach distant planet. Nakamiya et al. (2010)
analysed escape and capture trajectories to and from halo
orbits and applied it to the design of Earth–Mars round-
trip transportation system. They observed that the �V re-
quired for round-trip transfer between low-Earth orbit and
low-Mars orbit via spaceports on Earth and Mars Halo orbits
is slightly larger than that of direct round-trip transfer. But
evaluation in terms of required spacecraft wet mass (pro-
pellant) for Earth–Mars transportation system revealed that
spacecraft wet mass can be reduced by one-half compared
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Fig. 14 Structure of the ballistic capture transfers to Mars (from Top-
puto and Belbruno 2015)

with direct transfer if the propellant for return is left at the
spaceports at Earth and Mars halo orbits on the way to low
Mars orbit. Such an option to use stored fuel at spaceports is
not available during direct round-trip transfers. Topputo and
Belbruno (2009) have computed and visualised the WSB re-
gions for the Sun–Jupiter system.

Topputo and Belbruno (2015) gave a new concept for the
design of trajectory to Mars with ballistic capture. They tar-
geted a distant point (few million km from Mars) where a
manoeuvre is carried out and the trajectory finally leads to a
capture orbit at Mars. They claim that 25% �VMOI can be
saved with penalty on flight duration which can be 1.5 to 2
years to be compared with conventional direct transfer. The
algorithm to compute WSB transfer trajectory to Mars from
Topputo and Belbruno (2015) is given below. A point xc

is selected near Mars orbit, several million kilometres from
Mars as the target point, where a manoeuvre �VC is applied,
which leads to a ballistic capture at Mars (Fig. 14). It takes
several months to travel from point xc to ballistic capture
near Mars with a periapsis distance, rp . At the periapsis rp
the osculating eccentricity of the spacecraft, e, with respect
to Mars is less than 1.

The steps involved are as follows:

1. For a given periapsis distance rp , compute a ballistic cap-
ture trajectory to Mars starting from a point xc near Mars
orbit. It takes several months to travel from xc to ballis-
tic capture near Mars at rp . When the spacecraft arrives
at rp , its osculating eccentricity e with respect to Mars is
less than 1. The simulations in this step are carried out in
planar elliptic R3BP.

2. Design an interplanetary trajectory which starts from
the sphere of influence (SOI) of Earth and reaches the
point xc. �V1 is applied at SOI of Earth to reach the
point xc near Mars, and �VC is applied at the point
xc to match the velocity of the ballistic capture transfer
to Mars. An optimisation algorithm is used to minimise
�VC by adjusting the location of xc. The transfer trajec-
tory is viewed as a two-body problem between the space-
craft and the Sun.

3. The trajectory thus obtained from SOI of Earth to point
xc (step 2), together with ballistic capture transfer from
xc to rp (step 1), where the osculating eccentricity e < 1,

is the desired ballistic capture transfer from Earth to
Mars. This is compared with the standard Hohmann
transfer starting from SOI of Earth to the periapsis dis-
tance rp at Mars with the same eccentricity e, where �V2

is MOI manoeuvre applied to achieve an orbit around
Mars.

Topputo and Belbruno (2015) found that for rp > 22000 km,
�VC < �V2 can be achieved. According to them, the rea-
sons for selecting xc far away from Mars, are the following:

1. If xc is sufficiently far from Mars SOI, then the gravita-
tional attraction of Mars on the spacecraft will be negli-
gible. Thus, a more constant arrival velocity from Earth
can be obtained.

2. Infinitely many possibilities for the location of xc gives
flexibility of the launch period from Earth.

3. Since xc is outside the SOI of Mars, �VC can be ap-
plied gradually, which is safer from an operational point
of view, opposed to a high velocity capture manoeuvre at
rp in the case of a Hohmann transfer.

Dutt et al. (2018b) developed a forward propagation algo-
rithm to generate transfer trajectories to Mars with ballistic
capture. Their algorithm is a two-step optimisation process.
The outer loop varies the control parameters at EPO on the
way to Mars to attain different arrival conditions at xc, while
the inner loop varies the three components of the impulse
�VC to obtain the capture orbit at Mars. They conclude that
the capture orbits at Mars are high-altitude orbits (with semi-
major axis of the order of 4–40 × 108 km), which are not
a good choice for the majority of science payloads for in-
terplanetary missions. For lower mapping orbits at Mars, a
conventional Hohmann transfer trajectory remains the best
choice in terms of �V and flight duration, provided the
launch is during the launch opportunity.

It remains to be explored whether few gravity assists on
the way to Mars or aerobraking at Mars can lead to smaller
�V values than those reported by previous work. The result-
ing trajectory could be a combination of gravity assist and/or
aerobraking and ballistic capture. The analysis of the capture
corridor at Mars to ensure that the trajectory gets captured
at Mars within some tolerance levels for navigational uncer-
tainties will ensure complete mission design. Classification
of capture orbits at Mars is also an area to be explored. The
above directions hold good for other destination planets as
well.

2.5 Invariant manifold theory

Koon et al. (2006) describe the theory of Lagrange point dy-
namics of the three-body system, the use of stable and un-
stable manifold tubes to transport to and from the capture re-
gion and their application in mission design. The asymptotic
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orbits are parts of the stable and unstable cylindrical mani-
folds winding around a Lyapunov orbit and they separate
two types of motion namely, transit and non-transit orbits.
These tube shaped manifolds facilitate transportation be-
tween regions of allowable motion. They describe an algo-
rithm to find a low-energy transfer trajectory with required
itinerary. They have suggested the division of the four-body
problem into two R3BP for the design of low-energy trans-
fers.

Topputo et al. (2004) have used surface sections to iden-
tify the intersections between two manifold tubes from two
R3BP. They have assigned a merit function to each inter-
section and used a systematic search to find optimal starting
and arriving trajectories. Once an appropriate first guess is
obtained, it is refined using a sequential quadratic program-
ming (SQP) method. This algorithm is used for the design
of low-energy interplanetary transfer trajectories.

Villac and Scheeres (2004) have presented a simple cor-
rector algorithm to compute hyperbolic invariant manifolds
associated to periodic and quasi-periodic orbits about the
libration points L1 and L2, which are significant for low-
energy trajectory design. Gómez and Masdemont (2000) and
describe heteroclinc transfer trajectories, to transfer between
three-dimensional libration orbits. Parker and Chua (1989);
Wiggins (1994) and Gómez et al. (2004) and many more
authors describe invariant manifolds which can be used to
construct homoclinic and heteroclinic transfer trajectories.
Topputo (2016) give a two-step approach for approximating
the invariant manifolds in R3BP. This method is helpful for
trajectory optimisation problems where a large number of
manifold insertion points have to be evaluated.

Gómez et al. (2004) explained geometrically the phe-
nomenon of natural routes among the planets and/or their
satellites with the help of invariant manifold structures of the
collinear libration points in R3BP. They applied this tech-
nique to construct a 3D Petit Grand Tour of the Jovian moon
system. This technique has the advantage of more visibility
than Voyger-type flybys where the flybys last for only a few
seconds. In this technique the spacecraft can be made to or-
bit about a moon in a temporary capture orbit for a number
of revolutions, then it can be made to escape that moon and
perform a small manoeuvre to get ballistically captured by
a nearby moon for some revolutions. Also the �V in this
case is much less than those required for joining two-body
motion segments.

Neto and Prado (1998) studied the effect of various pa-
rameters like mass ratio, distance between the spacecraft
and secondary body at the time of manoeuvre (rp), the
energy C3 of spacecraft at that moment, the direction of
velocity at that point and the departure angle (α) on the
time required for capture. The results show that the time
of capture can be reduced without reduction in energy sav-
ings by proper selection of initial conditions. Melo et al.

(2007) have studied stable and escape-capture trajectories
in R3BP (Earth–Moon-Particle) and the four-body (Sun–
Earth–Moon-particle) problem. They have mapped out re-
gions in the phase space where these trajectories can be
found.

Romagnoli and Circi (2009) studied the geometry and
performance of low-energy transfers to the Moon in the
framework of three-body and four-body models. They have
considered various low-energy transfer orbits by varying the
periselenium altitude and eccentricity of the initial oscu-
lating orbit of spacecraft. They found that equatorial cap-
tures with low pericentre altitude leads to minimum �V .
Another important observation is that the lunar orbit eccen-
tricity and the presence of Sun does not affect the WSB
geometry much, both in the planar and in the 3D case.
Castellà and Jorba (2000), Prado (2005), Jorba (2000) used
a bicircular problem to study low-energy transfers. Ya-
gasaki (2004a, 2004b) computed optimal low-energy Earth-
to-Moon transfers with moderate flight duration by solving a
nonlinear boundary value problem in planar circular R3BP.
Circi and Teofilatto (2006) presented the design of an eco-
nomical lunar satellite constellation.

Fantino et al. (2010) considered four combinations of the
two collinear libration points namely, LSE

i − LEM
j (i, j =

1,2) connections for the determination of low-energy trans-
fers. In the above notation, a subscript denotes the collinear
libration point, L1 or L2 and a superscript denotes the cir-
cular R3BP system under consideration, namely, the Sun–
Earth (SE) or Earth–Moon (EM) system. They found that
LSE

1 − LEM
2 and LSE

2 − LEM
2 connections can provide low or

zero cost transfers. This capability to provide low cost (�V

at connection) transfers depends on the energy of libration-
point orbits (LPOs) to be connected. The cost is higher for
lower energy LPOs. The unstable points of the WSB region
effectively confine to the points of invariant manifold tra-
jectories which are characterised by orthogonality between
radial and velocity vectors relative to the smaller primary.
They also find that the temporary capture is more efficient
when the Jacobi constant of the invariant manifold is larger
and the size (amplitude) of the progenitor LPO is smaller.
Figure 15 gives a global picture regarding temporary cap-
ture as a function of energy, over two families of 70 planar
Lyapunov orbits each, around L1 and L2. The two plots give
the percentage of trajectories that complete at least five or
ten loops around the smaller primary before they escape or
the integration ends, respectively.

Generally, WSB transfers are less expensive than the con-
ventional Hohmann transfer but suffer from long flight du-
rations. In order to reduce the transfer time, it is necessary to
hop from one orbit to another using the invariant manifold.
There are very many possibilities of switching between or-
bits to attain the destination. Several researchers have con-
tributed in the use of optimisation methods to find trajecto-
ries connecting two or more arcs like Luo et al. (2006, 2007),



253 Page 14 of 21 P. Dutt

Fig. 15 Capability of being captured around smaller primary within
the unstable invariant manifold of two families of planar Lyapunov or-
bits around L1 (circles) and L2 (asterisks), expressed as the percentage
of trajectories that perform minimum number of loops (five loops in the

left figure and ten loops in the right figure) around smaller primary be-
fore the Keplerian energy becomes positive or the integration ends at
maximum time limit considered (from Fantino et al. 2010)

Yokoyama and Suzuki (2005), Radice and Olmo (2006),
Lizia et al. (2005). There are also studies concerning op-
timisation of transfer trajectories using low-thrust engines
and the combination of impulsive and low-thrust engines
like Kluever (1997) and Mingotti et al. (2003).

Alessi et al. (2009a) have simulated rescue orbits, trajec-
tories that depart from the surface of Moon and reach a LPO
around the L1 or L2 points of the Earth–Moon system, in the
framework of R3BP. They analysed the trajectories that can
leave the Moon’s surface that is the accessible regions on the
Moon, the velocity and the angle of arrival (angle between
the velocity vector and the Moon’s surface normal vector)
and the time required for the transfer. They identified regions
on the Moon’s surface from which departure is possible and
regions where departure is almost orthogonal (departure ve-
locity vector is perpendicular to the Moon’s surface). Longer
transfer duration non-direct rescue orbits are available from
much larger regions on the Moon than direct rescue orbits.
Alessi et al. (2009b), have explored LPO to LEO transfers
and found that the minimum cost connection occurs when
the LPO around L1 increases in size and at maximum dis-
tance between Earth and arrival point on the manifold. They
refined these trajectories in a realistic model and concluded
that the cost of manoeuvres in R3BP does not change much.

2.6 Optimisation for computation of low-energy
trajectories

Ockels and Biesbroek (1999), Biesbroek et al. (1999) and
Biesbroek and Ancarola (2003) have studied the use of a ge-
netic algorithm to construct WSB trajectories from GTO to
the Moon. The parameters chosen to be optimised are the

time spent in GTO or the phasing orbit, �V at perigee of
GTO, and the magnitude, azimuth and declination of �V

at WSB region. The fitness function is negative of the total
�V . A small population size (10) was sufficient for inter-
planetary trajectory optimisation problems for example, us-
ing multiple swing-by but for WSB higher population size
(100) gave better results. GA was able to find WSB transfers
to the Moon for each day in a year saving 218–265 m/s �V

with respect to the conventional direct transfer.
Moore (2009) utilised invariant manifolds of planar cir-

cular R3BP to find an initial guess trajectories from Earth to
the Moon which is optimised using the optimal control al-
gorithm DMOC (Discrete Mechanics and Optimal Control)
by two different approaches. The first approach is based on
patching invariant manifolds of the Sun–Earth and Earth–
Moon three-body systems to create a trajectory which is then
modified to fit four-body dynamics. The second approach is
based on finding out intersections of trajectories that orig-
inate at the endpoints on the manifolds near the Earth and
Moon. Moore finds that DMOC optimisation trajectories
to minimise �V obtained by these two methods generate
very different trajectories. Yamakawa (1992) used a modi-
fied Newton algorithm with controls on the velocity and the
orientation of perigee and perilune, the total time of flight,
the Sun phase angle, and the epochs at both ends of interme-
diate trajectory segments to minimise the total �V .

Lantoine et al. (2009) used the multiple shooting tech-
nique for the design of missions to inter-moon transfers of
the Jovian system. Pre-computed unstable resonant orbits
serve as an initial guess for the highly nonlinear optimisation
problem along with Tisserand–Poincaré (TP) graph. Assa-
dian and Pourtakdoust (2010) used a non-dominated sorting



A review of low-energy transfers Page 15 of 21 253

genetic algorithm with crowding distance sorting (NSGA-
II) for multi-objective optimisation of trajectories from EPO
around Earth to a circular orbit around Moon in the frame-
work of a 3D restricted four-body problem (R4BP). Apart
from �VTLI and �VLOI another mid-course manoeuvre is
permitted to patch the Earth escape path to the Moon’s bal-
listic capture trajectory. The arrival date at Moon, the mid-
course manoeuvre time and some of the orbital elements of
the ballistic capture orbit around Moon are parameters used
to minimise the total �V and the flight time.

Peng et al. (2010) used an improved differential evo-
lution algorithm with self-adaptive parameter control for
the design of Earth–Moon low-energy transfer to find the
patch point of the unstable and stable manifold of the Lya-
punov orbit around Sun–Earth L2. They found this optimi-
sation technique to be more effective than three other evo-
lutionary algorithms, namely the genetic algorithm, parti-
cle swarm optimisation and standard differential evolution.
Peng et al. (2011) used adaptive uniform design differen-
tial evolution (AUDE) with self-adaptive parameter control
method to find low-energy Earth–Moon transfers. Coffee
et al. (2011) describe a two-stage approach to construct-
ing low-energy transfers between arbitrary unstable peri-
odic orbits to reduce fuel requirements. They used an adap-
tive approach to global optimisation to identify position-
space intersections of invariant manifolds. Grover and An-
dersson (2012) optimised the GTO-to-moon mission by ap-
propriately timed �V s which are obtained by shooting and
the Gauss-pseudospectral collocation method for different
phases of the mission.

Generally, the optimisation routines employed to find op-
timal low-energy transfers, employ much time searching
in regions where the chance of finding solution is low. If
knowledge of invariant manifold theory can be integrated
inside the routine, it might enhance the efficiency of the op-
timisation routines.

2.7 Low thrust trajectories

Low-thrust trajectories (LTTs) use low-thrust propulsion
(LTP) systems. LTP systems utilise propellant more effi-
ciently, like electric propellant or a solar sail, and hence they
can significantly enhance the payload capability or enable
high-�V missions. LTTs are different from ballistic trajec-
tories because the spacecraft is propelled for long periods
and sometimes almost continuously by low-thrust engines.
So it experiences the gravitational attraction of celestial bod-
ies and other perturbations along with the change in energy
due to thrusters. Lo and Parker (2005) showed that the unsta-
ble simple periodic orbits can be linked using their invariant
manifolds to generate “chains” to build LTT for space ex-
ploration. A similar technique was used for the design of the
Genesis mission (Howell et al. 1997) and the Lunar Sample

Return Mission (Lo and Chung 2002). The incorporation of
knowledge of invariant manifolds of unstable orbits within
an optimisation tool and a good initial guess are important
for reducing the time required for an optimisation routine to
search for an optimal LTT. Lo et al. (2004) compared LTT
with the invariant manifolds at the same energy level. In or-
der to reduce the time of flight it is important to switch from
one manifold to another by application of small manoeuvres.
But �V causes a change in energy and hence the Jacobi con-
stant. Anderson and Lo (2004, 2009) analysed the Planar
Europa Orbiter (PEO) trajectory and concluded that in order
to switch from one manifold to another, an impulsive ma-
noeuvre is required at the point where the manifolds inter-
sect in configuration space but not in phase space. They also
found that even with a change in the Jacobi constant, PEO
travels along the manifolds. Hence they established that the
underlying dynamics of multiple gravity assist is provided
by invariant manifold theory. In order to understand the rela-
tionship between the optimised low-thrust trajectory and the
invariant manifold of an appropriate energy level, Anderson
and Lo (2009) plotted a series of intersections where some
thrusting occurred but the Jacobi constant did not change
dramatically.

Mingotti et al. (2009) formulated a systematic method for
the design of low-energy transfers to the Moon using high
specific impulse low-thrust engines (e.g. ion engines). They
derived the initial guess with no velocity discontinuity at
the patching point in the bicircular four-body problem. The
search is reduced to the search of a single point on a suitable
surface of section. Optimisation is carried out in controlled
four-body dynamics using a direct multiple shooting strat-
egy. They found this method to be efficient in finding low-
energy transfers that require smaller propellant than stan-
dard impulsive low-energy transfers. They provide a com-
parison table (Table 1), where their solutions LELT#1–3 are
provided along with high-thrust solutions for WSB, BP (bi-
parabolic), HO (Hohmann), BE (bielliptic), L1 (via L1 tran-
sit orbits), MIN (minimum theoretical). In the table, �υTLI

is the translunar injection manoeuvre, from a 200 km circu-
lar EPO for LELT#1–3, while it is 167 km circular EPO for
other reference solutions. In order to compute the propel-
lant mass fraction using the rocket equation, for LELT and
high-thrust solutions, the specific impulse is considered to
be 3000 s and 300 s, respectively. In the table, e and hp are
the eccentricity and periapsis altitude of the final orbit about
Moon, respectively, and �t is the flight duration.

Mingotti and Topputo (2011) surveyed the possible
routes to the Moon considering both high- and low-thrust
propulsion. They have considered three target orbits, namely
low lunar orbits, libration-point orbits, and distant periodic
orbit. Transfer times for low lunar orbits vary from 14 to 103
days and the best low-energy, low-thrust solution has a 4%
of propellant mass fraction (PMF) when the initial burn is
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not considered. In order to achieve a halo orbit in the Earth–
Moon system, starting from a GTO is convenient and the
best solution has 7% PMF. They found distant prograde or-
bits to be appealing, as no insertion manoeuvres are required
to achieve the final orbit.

Gurfil and Kasdin (2002) applied a Deterministic Crowd-
ing Genetic Algorithm to characterise and design out-of-
plane trajectories in the Sun–Earth system. They have ad-
dressed the constraints imposed by interplanetary dust (IPD)
for space-borne observation missions. They found a low-
energy trajectory with a maximum normal displacement of
0.223 AU and maximum reduction of 67% IPD. The sec-
ond optimal trajectory had a maximum normal displace-
ment of 0.374 AU above the ecliptic and reduction of 97%
IPD. Dachwald (2004) demonstrated the use of evolutionary
neurocontrollers to find near optimal LTT without an initial
guess and without the requirement to embed the knowledge
of invariant manifolds in the optimisation code named In-
Trance (Intelligent Trajectory optimisation using neurocon-
troller evolution). The performance of InTrance is assessed
for interplanetary missions. It was able to reduce the trans-
fer time of a reference trajectory to a near-Earth asteroid by
74%. It was also used for the analysis of the Mars mission
using a spacecraft with a nuclear electric propulsion system.
Yam et al. (2009) used differential evolution and simulated
annealing with an adaptive neighbourhood to find optimal
LTT for an Earth–Mars rendez-vous problem. The solution
obtained when used as an initial guess for a local optimiser
yields high convergence rates.

Xu and Xu (2009) studied the cislunar transfers. They
proposed a distant retrograde orbit (DRO) for the design of
low-energy transfers to the Moon. Xu et al. (2012) discussed
the evolution of invariant manifolds of halo orbits for low-
thrust trajectories. They concluded that acceleration or de-
celeration of low-thrust trajectories near the libration point
is inefficient. It is used to increase the velocity and avoid
stagnation near the libration point. Secondly, all controlled
manifolds are captured, and finally, most of the manifolds
preserve their topologies in circular R3BP.

Taheri and Abdelkhalik (2015) used a finite Fourier se-
ries for the construction of LTT with thrust acceleration con-
straints, in RTBP. They used the developed technique to gen-
erate Earth to Moon orbit transfers with a number of revolu-
tions around the primaries. These trajectories can be used as
an initial guess for high-fidelity solvers.

Xu et al. (2013) explored the dynamics of lunar libra-
tion points LL1 and LL2. They used a Poincaré mapping to
show the statistical feature of fuel cost and orbital elements
of Moon-captured trajectories for both cislunar and translu-
nar transfers. They found that the asymptotical behaviours
of invariant manifolds approaching or travelling from the li-
bration points or halo orbits are destroyed by the solar grav-
itational perturbation. They found that the energy-minimal

cislunar transfer trajectory is acquired by transiting the LL1

point, while the energy-minimal translunar transfer trajec-
tory is obtained by transiting the LL2 point.

Zhang et al. (2014) formulated low-thrust minimum-fuel,
minimum-energy and minimum-time trajectories in the re-
stricted three-body problem. They obtained transfers to halo
orbit around the Earth–Moon L1 starting from a geostation-
ary transfer orbit. Their technique solves the optimisation
problem by introducing energy-to-fuel homotopy, formulat-
ing analytical derivatives, implementing a hybrid method for
switching point detection, and it avoids splitting up transfers
into phases.

Xu et al. (2016) have summarised the developments in
the use of libration-point orbits (LPOs) for deep space ex-
ploration. They also addressed the application of LPO the-
ory to the fields of lunar transfer, solar sail equilibria and
formation flying, and they gave future research directions
as regards the proof of existence of halo orbits, orbital de-
sign of potential missions motivated by LPOs, etc. Liang
et al. (2016) have discussed direct transfer and low-energy
transfers to the Moon in the context of R3BP. They used
a Poincaré mapping to obtain the feasible cislunar trajecto-
ries and to demonstrate the relationship between Jacobi en-
ergy, perilune or perigee radius and certain characteristics
of cislunar trajectories. They also present the distribution of
low-energy transfers, direct cislunar transfers and resonance
cyclers. They also demonstrated the applications in geosyn-
chronous orbit deorbiting and lunar relay satellite system.

Qu et al. (2017) have designed an open-loop control law
to guide the spacecraft to escape from Earth till it is captured
by the Moon. They used a two-dimensional search strat-
egy to find the ON/OFF time of the low-thrust engine dur-
ing its Earth-escaping and Moon-capture phases. Lin et al.
(2017) have proposed a block decomposition algorithm de-
veloped in Compute Unified Device Architecture (CUDA)
platform for the computation of Lagrangian Coherent Struc-
tures (LCSs) of multi-body gravitational regimes. The al-
gorithm utilises a block decomposition strategy to facilitate
the computation of finite-time Lyapunov exponent (FTLE)
fields of arbitrary size and timespan. Liang et al. (2017) have
considered a family of periodic orbits polygonal-like peri-
odic orbits (PLPOs), which are in resonance with respect
to the secondary. They constructed PLPOs in the Earth–
Moon system using Hori–Lie perturbation method. They
used Poincaré surface of section (PSS) to determine the crit-
ical states between non-transit and transit and the break of
frozen tori. Finally, they propose a cislunar in-orbit infras-
tructure named “parking apron” system based on the peri-
odicity condition and transition of PLPOs supporting sup-
ply and crew transportation. Oshima et al. (2017) used the
necessary conditions of optimality based on the Pontryagin
principle to search for LTTs to the Moon. They obtained
a wide range of Pareto solutions and a Tisserand–Poincaré
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graph shows that a number of these solutions exploit high-
altitude lunar fly-by to reduce fuel consumption.

Pérez-Palau and Epenoy (2017, 2018) used an indirect
optimal control approach to determining minimum-fuel LTT
starting from a LEO to lunar orbit in the Sun–Earth–Moon
bicircular restricted four-body problem. They derived the
necessary optimality conditions from Pontryagin’s maxi-
mum principle. They have classified the trajectories into var-
ious families based on their shape, transfer duration (�t)
and total fuel consumption (�m = m0 − m(tf )) and ob-
tained a physical interpretation of these families from the
dynamical structures of invariant manifolds.

3 Notable missions/plans

The Japanese Hiten mission used both a lunar swing-by and
a WSB trajectory to reach the Moon with favourable condi-
tions for capture into a highly elliptic lunar orbit in 6 months
(Uesugi 1996).

Kawaguchi et al. (1995) described the use of solar and
lunar gravity assist to reduce the propellant required for
LUNAR-1 Mission to the Moon and PLANET-B Mission
to Mars mission. The LUNAR-A mission (presently can-
celled) planned in 1997 to the Moon utilises ballistic capture
at Moon. The expected C3 gain is 0.8 km2/s2 or 5–9% in
spacecraft mass assuming a specific impulse of 300–500 s to
be compared to Hohmann-type transfer. For the PLANET-B
(Nozomi) mission to Mars planned in 1998, they found that
triple lunar gravity assist can reduce C3 by 4.5 km2/s2.
Among the three solutions thus obtained they selected one
based on the launch window constraints. The expected C3
gain was around 2 km2/s2.

The Petit Grand Tour of the moons of Jupiter is already
discussed in previous section.

Sweetser et al. (1997) discussed a number of trajectory
design techniques for Europa Orbiter Mission. The space-
craft shall reach Jupiter by the end of the decade and plan
for a follow-up mission to Europa. After it arrives at Jupiter,
it will undergo two Ganymede flyby G0 and G1 to reduce
its incoming hyperbolic velocity. After reducing arrival V∞,
a phase called endgame begins, which requires certain ar-
rival conditions for the final flyby of the tour. The endgame
is designed by JPL (Johannesen and D’Amario 1999) to fur-
ther reduce �VPOI using a combination of Europa flybys.
Heaton et al. (2002) started investigating the E0 trajectory
after G1. They analysed sequences of Jovian satellites flyby
to reduce arrival V∞ at Europa. They explored and evalu-
ated an enormous number of possible tours using a graphi-
cal method based on Tisserand’s criterion to reduce the ar-
rival V∞ satisfying all the mission constraints. Among all
the solutions obtained, the best tour arrival V∞ at Europa
was reduced from 3.3 km/s to 2 km/s and the total radiation
exposure was reduced by 70%.

Jehn et al. (2004) described the trajectory of Bepi-
Colombo mission to Mercury which is a joint exploration
mission by ESA and JAXA. Two spacecraft then were pro-
posed for launch in 2015 and were destined to reach Mer-
cury in 2021 utilising several gravity assists and SEP (Solar
Electric Propulsion) ion engine thrust arcs. Since the thrust
level of SEP is very low for a capture from hyperbolic ap-
proach, various options of Mercury Orbit Insertion (MeOI)
through gravitational capture were found by varying the cap-
ture time and speed of the spacecraft, right before MeOI.
The trajectory which provides the best recovery options in
the case of a failed orbit insertion is selected for the 2012.
The spacecraft on this trajectory arrives with very low excess
velocity and from a direction where the gravity of Sun and
Mercury have similar effects on the orbit. In the case of fail-
ure in orbit insertion on 5 January 2017 (assuming launch on
13 April 2012), the spacecraft would make five revolutions
around Mercury before escaping again. It is observed that
at the second, fifth and sixth periherm, the altitude, inclina-
tion and orientation of the line of apsides for this trajectory
are not very far from the nominal values. With small ma-
noeuvres (less than 10 m/s) close to the previous apoherms,
new orbit insertion possibilities arise with nearly the same
orbital parameters. Campagnola and Lo (2007) find that the
manifolds of symmetric quasi-periodic orbits around Mer-
cury play a key role as symmetry properties provide several
recovery opportunities to the mission. Jehn et al. (2008) de-
scribe the navigation strategy for BepiColombo during the
final phase of WSB capture by Mercury.

Ross et al. (2003) found a trajectory for the Multi-Moon
Orbiter (MMO) in which the spacecraft would orbit three
of Jupiter’s moons, namely Callisto, Ganymede and Eu-
ropa, using very little fuel. They found a tour trajectory with
�V of the order of 22 m/s (vs. 1500 m/s using conven-
tional methods) and will spend about 4 years in the inter-
moon phase. Finally, �V of about 450 m/s is required to
put the spacecraft into a 100 km orbit about Europa with
an inclination of 45◦. Ross et al. (2004) used the patched
three-body approximation method to compare the trade-off
between flight time and �V for the MMO. They tried to
reduce the flight duration to find another feasible tour tra-
jectory which takes 227 days of flight duration for �V of
211 m/s.

4 Conclusion and scope for future work

The method of low-energy transfers (LETs) has proved rev-
olutionary in reducing the fuel requirements for lunar mis-
sions, but it suffers from the major drawback of longer flight
durations than conventional direct transfers. The develop-
ments in the area of LETs transfers, use of the invariant
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manifold theory and optimisation techniques to design low-
energy and low-thrust trajectories are presented. Some no-
table missions and planned missions that have been used
or have proposed to use the WSB theory for trajectory de-
sign are listed. The richness of this area is evident from the
work of several researchers in the last decade. Still, this area
provides opportunities for further work which can be classi-
fied into three parts; namely, manifold theory, optimisation
methods and mission design.

New work can be aimed to improve our understanding
of the manifold theory behind the existence of such natural
routes, improvement in the existing or use of novel optimi-
sation techniques to find an optimal trajectory and the de-
sign of an innovative trajectory. For interplanetary transfers,
the possibility of combining WSB with alternative methods,
like the gravity assist and aerobraking methods to reduce
fuel requirement, still remains to be explored. The analysis
of the capture corridor at the destination planet to ensure that
the trajectory gets captured at the destination planet within
some tolerance levels to accomodate for navigational uncer-
tainties will ensure complete mission design. Classification
of capture orbits at the destination planet is also an area to
be explored. Another promising area is the incorporation of
knowledge from invariant manifold theory, for guiding the
search for an optimal trajectory, within the search methods
to increase their efficiency and reduce the number of failure
cases.
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