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Abstract The aim of this study is to analyze the role of
modification of gravity on some dynamical properties of
spherically symmetric relativistic systems. In this settings,
the mathematical modeling of scalar variables associated
with the shearing viscous dissipative anisotropic spheri-
cal stars is explored. We assume that the non-static di-
agonally symmetric spherical structure is coupled with a
relativistic matter content in the presence of f (G,T ) =
αGn + β ln[G] + λT gravity. After using Misner–Sharp
mass function, we have made correspondence between
metric scale factors, tidal forces and structure parameters.
We have adopted Herrera’s technique for the orthogonally
breaking down of the Riemann tensor, in order to formulate
modified forms of structure scalars. The role of these invari-
ants is then explored in the evolutionary properties of radi-
ating spheres. The parameters responsible for the outbreak
of inhomogeneities are being examined in the presence and
absence of constant f (G,T ) terms. It is inferred that the
evolutionary phases of the spherical interiors can be well
studied via extended versions of scalar variables.

Keywords Gravitation · Structure scalars · Relativistic
dissipative fluids

1 Introduction

From the last recent decades, the remarkable endeavors in
the understanding of our cosmic evolution have been seen
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in literature. Generally, it is believed that almost 95% en-
ergy distribution of our cosmos constitutes enigmatic un-
known components known as dark energy (DE) and dark
matter (DM). Their nature, as well as properties, are still
unknown, thus indicating that a radically huge window of
relativistic astrophysics needs to explore. The existence of
DM constituent is firmly established from the current sound
large-scale astrophysical data. It is almost a general belief
that a mysterious force produced by DE is a reason behind
the recent acceleration of our expanding cosmos. The source
of the recently observed acceleration in the cosmic expan-
sion is a debatable issue in this era of modern cosmology
(Nojiri and Odintsov 2006; Bamba et al. 2012a). The pos-
sible explanation for such dark cosmic sector was given by
the cosmological constant proposed by Einstein. Neverthe-
less, the tuning of the expected amplitude of this constant
is a hard task for reconciling the quantum features of the
vacuum space. Other possible platforms for understanding
the nature and properties of dark sector terms include modi-
fied gravity theories (MGTs). Such theories are based on the
modification of the gravitational component of the Einstein–
Hilbert action (EHA) (for details, please see Capozziello and
De Laurentis 2011; Bamba et al. 2012b, 2013; Yousaf et al.
2016a,b; Nojiri and Odintsov 2007, 2008).

Nojiri and Odintsov (2007) reviewed a few attractive can-
didates of MGTs and found few cosmic models that have
passed the solar system tests. They also discussed in de-
tail the late time phases of our expanding cosmos in an
account of dark sector terms with an inhomogeneous state
equations. Yousaf and Bhatti (2016a) studied the effects of
some models of MGT on the occurrence of stellar interiors
and concluded that dark sector terms due to MGT probably
to support relatively super-massive more compact structures
than that in GR. Apart from the notable f (R) theory (in
which the Ricci scalar R is replaced with its generic func-
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tion in EHA), it could be worthwhile to include the amal-
gams of the curvature originating terms, like Riemann ten-
sor (Rγεμν ), Ricci tensor (Rγε ) and R in EHA. This led
the theoretical physicists to develop f (G) theory, where
G = R − 4RγεR

γε + RγεαβRγεαβ initiated firstly by No-
jiri and Odintsov (2005). Such MGTs could lead us to re-
alize inflationary and accelerating transition stages of our
cosmos. Recently, this gravitational model is extended by
admitting degrees of freedom mediating from the trace of
energy-momentum tensor (T ) in action of f (G) gravity and
widely known as f (G,T ) gravity. The motivation for in-
cluding such terms stem from the justification of includ-
ing T correction in the usual f (R) theory by Harko et al.
(2011).

Houndjo (2012) studied some dynamical perspectives of
our expanding universe in the matter dominated era with the
help of f (R,T ) gravity theoretical models. Bamba et al.
(2012b) analyzed our expanding and acceleratory universe
with the help of some modified gravity models. Further,
one can study the gravitational aspects of the instabilities
within the system of compact stellar models through mod-
ified gravity (Capozziello et al. 2011, 2012; Astashenok
et al. 2013). Yousaf along with his group examined the pace
of collapse for the planar (Bhatti et al. 2017a,b), spheri-
cal (Sharif and Yousaf 2015a; Yousaf 2017a; Yousaf et al.
2017d) and cylindrical (Yousaf and Bhatti 2016b) systems
in the backgrounds of modified gravity. Ilyas et al. (2017)
found reasonable stable spherical stellar models with the
help of exponential and quadratic f (R,T ) models. Re-
cently, Moraes et al. (2017) explored the hydrostatic state of
strange stars in order to investigate their stable regimes with
f (R,T ) = R + 2λT model. Recently, Bhatti et al. (2018)
performed computational simulations to check the stable re-
gions of some strange stars with the help of logarithmic
f (G,T ) gravity. The theoretical formations of wormholes
(Sahoo et al. 2017a; Bambi et al. 2016) and some analyt-
ical cosmological solutions are mentioned in (Sahoo et al.
2017b; Shamir and Sadiq 2018; Yousaf 2017b). Olmo and
Rubiera-Garcia (2011, 2015) discussed the dynamical prop-
erties of some stellar structures within the background of
modified gravity with Palatini approach. Herrera et al. ex-
plored the problem of cylindrical (Di Prisco et al. 2007) and
spherical (Herrera and Santos 2005) fate of collapse with
the help of matching conditions. Mishra et al. (2017) ana-
lyzed the role of anisotropic pressure on the interesting phe-
nomenon of reconstruction in modified gravity. Sharif and
Yousaf (2014) extended such analysis by including the dark
source terms mediated by the modified gravity. Recently,
Yousaf et al. (2017b,c) found some viable and theoretically
well-consistent matching condition for the joining of inte-
rior cylindrically symmetric metric with an outer region of
Einstein–Rosen bridge.

The investigation for exploring the reason behind the
emergence of inhomogeneous energy density (IED) has at-
tracted many researchers not only in the field of GR but also
in modified gravity. A tremendous work on gravitational
collapse was rendered by Oppenheimer and Snyder (1939)
and his collaborators. Hawking and Israel (1979) found a
specific relation between tidal forces and matter variables
for exploring the factors involved in IED over the spheri-
cal structure. Herrera et al. (1998) analyzed the formation of
naked singularity (NS) with the help of factors of IED and
pressure anisotropy in the matter distribution of the spherical
system. Virbhadra et al. (1998), Virbhadra and Ellis (2002)
presented a mathematical criterion under which one can an-
alyze the difference between NS and black holes formation
as a resultant of stellar collapse.

Herrera et al. (2004) used Einstein field equation for the
dissipative spheres and calculated and calculated a peculiar
relation among IED, tidal forces and pressure anisotropy.
Further, Herrera et al. (2011a) found Raychaudhuri (also
called as expansion evolution equation (EEE)) and shear
evolution equation (SEE) with the help of well-known struc-
ture scalars. Such scalars can be calculated from the orthog-
onal breaking down of the Riemann curvature tensor. Her-
rera et al. (2009) firstly found these scalar quantities for
the case of spherical system and after that many people ex-
tended their work by including various interesting physical
parameters in the analysis. Sharif and Yousaf (2015b) mod-
ified their analysis by including the dark source terms me-
diating from late-time acceleratory modified gravity model.
Bhatti along with his team Bhatti and Yousaf (2017), Bhatti
et al. (2017c) found the effects of fourth order and second
order gravity models on the existence and maintenance of
IED over the surface of regular collapsing structures. More-
over, Herrera et al. (2011b) and Herrera (2017) introduced
the notion of tilted congruences and calculated the corre-
sponding equations for discussing the pace of gravitational
collapse observed by an observer associated with the non-
comoving reference frame. Yousaf et al. (2017a) extended
their analysis by including correction coming from Palatini
f (R) gravity.

The phenomenon of gravitational implosion begins when
the hydrostatic equilibrium of a stellar self-gravitating struc-
ture is disturbed. If during evolutionary phases of a celestial
object, the gas pressure is inadequate to reinforce the grav-
itational attractive forces then, the star structure will enter
into the collapse window. The resultant of this process gives
compact structures, like black hole, neutron star or white
dwarf, etc. It worthy to note that no body can experience this
phenomenon unless it experiences an irregular and inhomo-
geneous state of energy density. Thus, it clearly points out
that in the study of stellar collapse, one must know the fac-
tors responsible for creating the inhomogeneous state. The
aim of this work is to explore inhomogeneity factors through
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set of modified versions of structure scalars in a specific
f (G,T ) = αGn + β ln[G] + λT gravity model.

Joshi and Singh (1995) explored the final stages of grav-
itational collapse of the collection of non-interacting inho-
mogeneous particles and found that the end state of the
spherically symmetric body is a black hole, if the dimen-
sionless parameter coming in the solution has a specific
range. Pinheiro and Chan (2011) studied the collapse rate of
inhomogeneous dissipative and shearing anisotropic spher-
ically symmetric systems. They, after comparing their re-
sults with the literature found the impact of inhomogeneous
data sets of energy density on gravitational collapse. Sharma
(2014) has found the significant contribution of inhomoge-
neous initial data of fluid distribution on the collapse rate.
They found the relatively fast size shrinking process of the
heat radiating star body.

A larger number of possibilities has been seen in the
books and works published in the field of relativistic astro-
physicist, to incorporate the dark sector terms on the study of
the structure formation of the universe. In this direction, the
impact of f (G,T ) terms could provide an effective platform
to resolve DE and DM problem. Shamir and Ahmad (2018a)
performed the analytical approach to investigate the exis-
tence of alternative to the black hole structure (gravastar) in
f (G,T ) gravity. Furthermore, the same authors Shamir and
Ahmad (2018b) evaluated extended the hydrostatic equation
for self-gravitating systems and found relativity more stable
star structures due to f (G,T ) terms. Therefore, it could be
worthwhile to understand the physical causes of irregular-
ity factors of dissipative spherically symmetric systems in
f (G,T ) gravity.

We use the analytical approach provided by the previ-
ously published paper of Herrera et al. (2011a). We would
like to explore the factors responsible for creating IED on
the radiating anisotropic spherical system with the well-
known modified gravity toy model. We consider a partic-
ular choice of f (G,T ) corrections coming from f (G,T ) =
αGn + β ln[G] + λT . The paper is organized as below. The
coming section is devoted to providing describe some fun-
damental formalism to understand f (G,T ) gravity as well
as spherical dissipative viscous matter configurations. Sec-
tion 3 describes the formation of f (G,T ) structure scalars
after the orthogonal decomposing of the Riemann tensor
with linear T and αGn + β ln[G] Gauss–Bonnet terms. We
shall also express three notable equations, i.e., SEE, EEE
and Weyl differential equation (WEE) with the help of mod-
ified structure scalars in this gravity. Further, the Sect. 4 ex-
amines the IED factors for the case of smooth dust relativis-
tic ball with recent G and T choices. The last section will
describe our results.

2 Spherical viscous spherical system and
f (G,T ) gravity

The modified version of EHA in the background of f (G,T )

gravity can be given as

S = 1

κ2

∫
d4x

√−g

[
R

2
+ f (G,T )

]
+ SM

(
gμν,ψ

)
, (1)

where R, g are the traces of Ricci and metric tensors, respec-
tively. Further, SM is the matter action and κ2 stands for the
coupling constant. We shall take this to be unity in our cal-
culations. The quantity G can be specified through the Ricci
scalar (R), tensor (Rμν) and the Riemann tensors (Rμναβ)

as

G = RμναβRμναβ − 4RμνR
μν + R.

In our paper, we shall write fX notation for the derivations of
the subsequent quantities with the quantity X. The quantity
T appearing in Eq. (1) can be defined generically, through
matter Lagrangian Lm, as

T = gγ δTγ δ, with Tγ δ = − 2√−g

δ(
√−gLm)

δgγ δ
, (2)

which further provides

Tγ δ = gγ δLm − 2∂Lm

∂gγ δ

. (3)

The δ variations of the above equation gives rise to

δTγ δ

δgμν
= δgγ δ

δgμν
Lm − 2∂2Lm

∂gμν∂gγ δ
+ gγ δ

∂Lm

∂gμν
. (4)

Furthermore, the metric tensor variations of Eq. (1) along
with Eq. (4), yield the f (G,T ) field equations as

Gγδ ≡ Rγδ − 1

2
Rgγδ = T

eff
γ δ , (5)

where

T
eff
γ δ = κ2Tγ δ − (Tγ δ + Θγδ)fT (G,T ) + 1

2
gγ δf (G,T )

− (
2RRγδ − 4Rε

γ Rεβ − 4RγεδηR
εη

+ 2Rεημ
γ Rδεημ

)
fG(G,T ) − (

2Rgγδ∇2 − 2R∇γ ∇δ

− 4Rγδ∇2 − 4gγ δR
εη∇ε∇η + 4Rε

γ ∇δ∇ε

+ 4Rε
δ∇γ ∇ε + 4Rγεδη∇ε∇η

)
fG(G,T ),

is the effective energy-momentum tensor for f (G,T ) grav-
ity. Such modified theories can be treated as among the ex-
cellent candidates for toy model gravities This could assists
to have some hidden insights about the inflationary and late
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time cosmic evolution. In the above equation, ∇2 ≡ ∇γ ∇γ

with ∇γ stands for covariant derivations and

Θγδ = gμν δTμν

δgγ δ

. (6)

Equations (6) and (4) provide

Θγδ = gγ δLm − 2Tγ δ − 2gμν ∂2Lm

∂gγ δ∂gμν
.

The trace of f (G,T ) field equations (5) gives

T + R − (Θ + T )fT + 2GfG + 2f − 2R∇2fG

+ 4Rγδ∇γ ∇δfG = 0.

In this paper, we wish to test GR results at cosmological
scales with the help of f (G,T ) theory. We also wish to
check the influences of heat flux vector (qγ ), anisotropic
pressure Π ≡ Pr − P⊥ and radiation density (ε) in the dy-
namical features of spherical stars. Therefore, we consider
the usual matter form with the stress-energy tensor as fol-
lows

Tλν = μVλVν + P⊥hλν + Πχλχν − 2ησλν + εlλlν

+ q(χνVλ + χλVν), (7)

where ξβ , Vβ and lβ are four vectors, which under non-tilted
reference frame obey

χνχν = 1, V νVν = −1, χνVν = 0,

lνVν = −1, V νqν = 0, lν lν = 0,

relations. Moreover, η is the coefficient of the scalar associ-
ated with the shear tensor σγ δ , while projection tensor (hγ δ)
that can be expressed as hγ δ = gγ δ + Vγ Vδ .

It has been noticed that the modified gravity could pro-
vide very interesting results about the evolution of the uni-
verse. In this respect, it has been seen that one can exam-
ine the existence of a finite-time future singularity through
Ricci squared terms that was proposed firstly by Abdalla
et al. (2005). Furthermore, the early-time cosmic accelera-
tion, elimination of the future singularity, or the inflationary
phase and many other phenomenological issue (Kobayashi
and Maeda 2009; Sharif and Yousaf 2016) can be dealt
through modified gravity models. In this direction, we con-
sider the f (G,T ) corrections in separate G and T forms as
follows

f (G,T ) = f (G) + g(T ), (8)

that provide some T corrections in the already developed
f (G) background that was firstly introduced and discussed
by Nojiri and Odintsov (2005). Here, we take linear g(T )

function, i.e., g(T ) = λT , then the above equation turns out
to be

f (G,T ) = f (G) + λT ,

with λ ∈ R, where R indicates the set of real numbers. We
consider the logarithmic as well as power law Gauss–Bonnet
with α, n and β as constant terms. Such model has been
found to compatible with cosmographic parameters (Setare
and Mohammadipour 2012). We consider (Schmidt 2011)

f (G) = αGn + βG log[G]. (9)

Motivated from the predictions of M-/string theory in the
coupling of scalar field and the Gauss–Bonnet term, one can
consider such theories as a reliable tool to understand the
existence of non-singularities in the early time cosmic evo-
lutions. One can also consider such a motivations to examine
the late-time cosmologies with an effective formulations of
Gauss–Bonnet dark energy models (Mavromatos and Rizos
2000).

We consider that the energy momentum tensor repre-
sented in Eq. (7) is the gravitational source of the following
diagonal non-static irrotational spherical system as

ds2 = B2(t, r)dr2 − A2(t, r)dt2 + C2(dθ2 + sin2 θdφ2),
(10)

where A, B and C are assumed to be greater than zero. This
system under comoving reference frame determines the fol-
lowing definitions

V ν = 1

A
δν

0 , χν = 1

C
δν

1 ,

lν = 1

A
δν

0 + 1

B
δν

1 , qν = q(t, r)χν.

The scalar quantities associated with expansion and shear
tensors are found to be

σA =
(

Ḃ

B
− Ċ

C

)
, Θ1A =

(
Ḃ

B
+ 2Ċ

C

)
,

where overdot indicates ∂
∂t

, while we shall describe ∂
∂r

for
radial differentiation. The f (G,T ) equations of motion for
the systems (7) and (10) are

G00 = A2
[
μ + ε + ελ − α

2
(1 − n)Gn − β

2
G

− λT

2
− ϕ00

A2

]
, (11)

G01 = BA

[
−(1 + λ)(q + ε) + ϕ01

BA

]
, (12)
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G11 = B2
[
μλ + (1 + λ)

(
Pr + ε − 4

3
ησ

)

+ α

2
(1 − n)Gn + β

2
G + λT

2
− ϕ11

B2

]
, (13)

G22 = C2
[
(1 + λ)

(
P⊥ + 2

3
ησ

)
+ μλ + α

2
(1 − n)Gn

+ β

2
G + λ

2
T − ϕ22

C2

]
, (14)

where one can found Gγδ from Herrera et al. (2011a). A pe-
culiar form of the matter 4-velocity is defined as

U = DT C = Ċ

A
. (15)

The matter quantity m within the geometry of spherically
symmetric spacetime can be given through formalisms pro-
vided by Misner–Sharp as follows (Misner and Sharp 1964)

m(t, r) = C

2

(
1 + Ċ2

A2
− C′2

H 2

)
, (16)

whose variations with respect to their arguments can be ex-
pressed via Eqs. (11)–(13) and (15) as

DT m= −1

2

[
U

{
(1 + λ)

(
P̄r − 4

3
ησ

)
+ λμ + α

2
(1 − n)Gn

+ β

2
G + λ

2
T + ϕ11

H 2

}
+ E

{
(1 + λ)q̄ − ϕ01

BA

}]
,

(17)

DCm= C2

2

[
μ̄ + λε − α

2
(1 − n)Gn − β

2
G − λT

2
+ ϕ00

A2

− U

E

{
ϕ01

AB
− (1 + λ)q̄

}]
, (18)

where over bar notation means H̄ = h + ε. Another form of
the mass function m can be given by

m= 1

2

∫ C

0
C2

[
μ̄ + λε − α

2
(1 − n)Gn − β

2
G − λT

2

+ ϕ00

A2
+ U

E

{
ϕ01

BA
+ (1 + λ)q̄

}]
dC, (19)

where

E ≡ C′

H
=

[
1 + U2 − 2m(t, r)

C

]1/2

. (20)

Equations (17)–(20) provide

3m

C3
= 3κ

2C3

∫ r

0

[
μ̄ + λε − α

2
(1 − n)Gn − β

2
G − λT

2

+ ϕ00

A2
+ U

E

{
(1 + λ)q̄ + ϕ01

BA

}
C2C′

]
dr, (21)

which has expressed radiating shearing matter parameters,
for instance spherical mass, energy density, heat conduction
with f (G,T ) extra degrees of freedom. It is notable that
the Weyl tensor can be decomposed into its magnetic and
electric constituents labeled respectively by Hαβ and Eαβ .
Their definitions are found to be

Hαβ = 1

2
εαγ ηδC

ηδ
βρV γ V ρ = C̃αγβδV

γ V δ,

Eαβ = CαφβϕV φV ϕ,

in which ελμνω ≡ √−gηλμνω along with ηλμνω as a Levi-
Civita symbol. The electric part of the Weyl tensor can be
expressed through Vγ and its scalar E as

Eλν =
[
χλχν − gλν

3
− 1

3
VλVν

]
E,

where

E =
[(

Ȧ

A
+ Ċ

C

)(
Ḃ

B
− Ċ

C

)
− B̈

B
+ C̈

C

]
1

2A2
− 1

2C2

−
[
−

(
A′

A
− C′

C

)(
C′

C
+ B ′

B

)
+ C′′

C
− A′′

A

]
1

2B2
.

(22)

The scalar E can be associated with power law and logarith-
mic f (G,T ) terms as

E = 1

2

[
μ̄ + λε − (1 + λ)(Π̄ − 2ησ) − α

2
(1 − n)Gn − β

2
G

− λT

2
− ϕ00

A2
+ ϕ11

B2
− ϕ22

C2

]
− 3

2C3

∫ r

0
C2

[
μ̄ + λε

− α

2
(1 − n)Gn − β

2
G − λT

2
+ ϕ00

A2

+ U

E

{
(1 + λ)q̄ − ϕ01

BA

}]
C′dr, (23)

in which Π̄ is defined as Π̄ ≡ P̄r − P⊥.

3 Structure scalars and f (G,T ) gravity

The aim of this section is to present the effects of modifi-
cations of GR on the computations of structure scalars that
would be obtain from the orthogonal decomposition of Rie-
mann tensor. We shall consider our analysis to test GR con-
sequences at large scales with the help of αGn +βG ln[G]+
λT corrections. We shall also calculate three important dif-
ferential equations, i.e., WDE, SEE and EEE via f (G,T )

structure scalars for the dissipative spherically symmetric
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spacetimes. After orthogonal breaking down of the Riemann
tensor, we have come up with the following couple of tenso-
rial quantities

Xαβ = ∗R∗
αγβδV

γ V δ = 1

2
ηερ

αγ R∗
ερβδV

γ V δ,

Yαβ = RαγβδV
γ V δ,

(24)

where the right, both and left sterics on the quantities de-
scribe right, double and left duals, respectively. We would
like to mention that such tensor equations of Xαβ and Yαβ

are apparently found to be same as found in GR by Herrera
et al. (2004, 2009). These tensors could be used not only to
unveil many hidden aspects of gravitational collapse see for
instance (Herrera et al. 2004) but also in the modeling of
the many stellar objects. The above tensors can be written
alternatively through field equations as

Xγδ = X
(m)
γ δ + X

(D)
γ δ

= 1

3

[
μ̄ + λε − α

2
(1 − n)Gn − β

2
G − λT

2
+ ψ00

A2

]
hγ δ

− 1

2

[
(1 + λ)(Π̄ − 2ησ) − ψ11

B2
+ ψ22

C2

]

×
(

χγ χδ − 1

3
hγ δ

)
− Eγδ, (25)

Yγ δ = Y
(m)
γ δ + Y

(D)
γ δ

= 1

6

[
μ̄ + λε + 3μλ + (1 + λ)(3Pr − 2Π̄) − ψ00

A2

− ψ11

B2
+ 2ψ22

C2
+ α

2
(1 − n)Gn + β

2
G + λT

2

]
hγ δ

+ 1

2fR

[
(1 + λ)(Π̄ − 2ησ) − ψ11

B2
+ ψ22

C2

]

×
(

χγ χδ − 1

3
hγ δ

)
− Eγδ. (26)

Through trace (denoted with subscript T ) and trace-less (la-
beled with subscript TF) components, these can be written
as

Xγδ = 1

3
TrXhγδ + X〈γ δ〉, (27)

Yγ δ = 1

3
TrYhγ δ + Y〈γ δ〉, (28)

where

X〈γ δ〉 = hν
γ h

μ
δ

(
Xνμ − 1

3
TrXhνμ

)
, (29)

Y〈γ δ〉 = hν
γ h

μ
δ

(
Yνμ − 1

3
TrYhνμ

)
. (30)

By making use of Eqs. (23)–(26), we obtain

TrX ≡ XT =
{
μ̄ + λε − α

2
(1 − n)Gn − β

2
G − λT

2

− λ

2
T + ψ̂00

A2

}
, (31)

TrY ≡ YT =
{
μ̄ + λε + 3μλ + 3(1 + λ)P̄r − ψ̂11

B2

+ α(1 − n)Gn + βG − ψ̂00

A2

− 2(1 + λ)Π̄ − 2ψ̂22

C2
− λT

}
, (32)

where XTF and YTF stand for the trace-free components of
the tensors Xαβ and Yαβ , respectively (for details, please see
Herrera et al. 2009). These tensors, X〈αβ〉 and Y〈αβ〉 can be
expressed in an alternative way as follows

X〈γ δ〉 = XTF

(
χγ χδ − 1

3
hγ δ

)
, (33)

Y〈γ δ〉 = YTF

(
χγ χδ − 1

3
hγ δ

)
, (34)

With the help of Eqs. (11)–(15), (28) and (29), it follows
that

XTF = −E − 1

2

{
(λ + 1)(−2ση + Π̄) + ϕ22

C2
− ϕ11

H 2

}
, (35)

YTF = E − 1

2

{
(Π̄ − 2ησ)(λ + 1) + ϕ22

C2
− ϕ11

H 2

}
. (36)

Equations (23) and (36) could provide YTF in the form

YTF = 1

2

(
μ̄ + ελ − α

2
(1 − n)Gn − β

2
G − λT

2

− 2(1 + λ)(Π̄ − 4ησ) − ϕ00

A2
+ 2ϕ11

H 2
− 2ϕ22

C2

)

− 3

2C3

∫ r

0

C2

1 + 2RλT 2

[
μ̄ − α

2
(1 − n)Gn − β

2
G

− λ

2
T + ελ + ϕ00

A2
+ U

E

{
(1 + λ)q̄ + ϕ01

AB

}
C2C′

]
dr.

(37)

It would be worth while to manipulate our set of equations
through arbitrarily defined dagger variables as

μ† ≡ μ̄ − ϕ00

A2
, P †

r ≡ P̄r − ϕ11

H 2
− 4

3
ησ,

P
†
⊥ ≡ P⊥ − ϕ22

C2
+ 2

3
ησ,

Π† ≡ P †
r − P

†
⊥ = Π − 2ησ + ϕ22

C2
− ϕ11

B2
.
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In view of the dagger variables, Eqs. (31), (32), (35) and (36)
boil down to

XTF = 3

2C3

∫ r

0

[{
μ† − α

2
(1 − n)Gn − β

2
G − λT

2

+ λε +
(

q̂(λ + 1) + ϕq

BA

)
U

E

}
C2C′

]
dr

− 1

2

[
μ† − α

2
(1 − n)Gn − β

2
G − λT

2
+ λε

]
, (38)

YTF = 1

2

[
μ† − α

2
(1 − n)Gn − β

2
G − λT

2
+ ελ − 2λ

×
(

ϕ11

H 2
− ϕ22

C2

)]
− 3

2C3

∫ r

0

[{
μ† − α

2
(1 − n)Gn

− β

2
G − λT

2
+ λε

+
(

q̂(λ + 1) + ϕq

BA

)
U

E

}
C2C′

]
dr, (39)

YT = 1

2

[
(1 + 3λ)μ† − 2λε + 3(1 + λ)P †

r − 2Π†(1 + λ)

+ α

2
(1 − n)Gn + β

2
G + λ

2
T

+ λ

(
2
ϕ22

C2
+ ϕ11

B2
+ 3

ϕ00

A2

)]
, (40)

XT = μ† − α

2
(1 − n)Gn − β

2
G − λT

2
+ ελ. (41)

These equations are known as f (G,T ) structure scalars
with αGn + βG log[G] + λT corrections. These mathemat-
ical quantities could be used to understand the rate of grav-
itational collapse, fluctuations in IED as well as to analyze
the role of Tolman mass function in various dynamical prop-
erties of the self-gravitating systems. Here, we would like to
express EEE widely known as called Raychaudhuri equation
through YT as

−(YT ) = 1

3

(
2σαβσαβ + Θ2) + V αΘ;α − aα

;α. (42)

Though this equation appears to be same as in GR but here
YT is the f (G,T ) structure scalar, that contains extra de-
grees of freedom from the logarithmic modified model. In
this way, YTF has been invoked in the mathematical model-
ing of EEE as

E − 1

2

{
(Π̄ − 2ησ)(λ + 1) + ϕ22

C2
− ϕ11

H 2

}

= YTF = a2 + χαa;α − aC′

BC
− 1

3

(
2Θσ + σ 2) − V ασ;α.

(43)

With the help of Eqs. (21)–(21), the WDE for system of vis-
cous and shearing locally anisotropic spherical system turns
out to be
[
XTF + 1

2

(
μ† − α

2
(1 − n)Gn − β

2
G − λT

2

)]′

= −XTF
3C′

C
+ 1

2
(Θ − σ)

(
qB(λ + 1) + ϕq

A

)
. (44)

It can be seen from the above equation that in the configura-
tions of WDE, the f (G,T ) structure scalar, XTF , has pivotal
role. The solution of the above equation would present XTF

as a factor of controlling inhomogeneous matter density in
the background of relativistic spheres in f (G,T ) gravity.

4 Dust ball with constant G and T

The purpose of this section is to understand the gravitational
effects with αGn +βG log[G]+λT gravity on the existence
as well as the evolution of non-interacting stellar particles.
In order to have some our results more simplified, we shall
evaluate the corresponding structure scalars along with SEE,
WDE and EEE in the background of constant G and T (de-
noted with tilde notations). In this respect, the matter quan-
tity for the dust ball are found to be

m = 1

2

∫ r

0
μC2dC − λR2T 2

2{1 + 2RλT 2}
∫ r

0
C2C′dr, (45)

while the Weyl scalar is evaluated as follows

E = 1

2C3

∫ r

0
μ′C3dr − α

2
(1 − n)G̃n − β

2
G̃ − λT

2
. (46)

From the above two equations, one can write through field
equations as

3m

C3
= 1

2

[
μ − 1

C3

∫ r

0
μ′C3dr

]
− α

2
(1 − n)G̃n

− β

2
G̃ − λT

2
. (47)

The complete set of four scalar variables with constant G

and T gravity are found to be

X̃T = μ − α

2
(1 − n)G̃n − β

2
G̃ − λT

2
, (48)

ỸTF = −X̃TF = E, (49)

ỸT = 1

2

[
μ + α(1 − n)G̃n + βG̃ + λT

]
. (50)

From these equations, one can see that f (G,T ) terms are
involved in only trace parts of Xγδ and Yγ δ , while their
trace-free parts are directly associated with the Weyl scalar
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(tidal forces) produced by system of non-interacting parti-
cles. With the help of field equations as well as Eqs. (45)–
(50), the WDE has been found to be
[
μ

2
+ α

2
(1 − n)G̃n + β

2
G̃ + λ

2
T̃ + X̃TF

]′
= − 3

C
X̃TFC′.

(51)

This is a WDE for the scalar X̃TF . On solving this equa-
tion, we found that the f (G,T ) scalar, i.e., X̃TF is fully in-
volved in controlling the appearance of irregularities on the
homogeneous distribution of relativistic dust cloud, under
some conditions. It is noticed that μ would be the function
of time, whenever X̃TF is zero along with the vanishing of
f (G,T ) dark source terms. This indicates that GR results
can be recovered by making f (G,T ) → R. This indicates
that GR results are valid and at cosmological scales, these
results are being influenced by dark source terms mediated
from the modified gravity. As the behavior of such terms are
non-attractive in nature, therefore its expected that such cor-
rections would produce resistance against the variations as
well as stability of IED. Moreover, the couple of differential
equations, i.e., EEE and SEE are found to be

V αΘ;α + 2

3
σ 2 + Θ2

3
− aα

;α

= 1

2

[
μ + α(1 − n)G̃n + βG̃ + λT̃

] = −ỸT , (52)

V ασ;α + σ 2

3
+ 2

3
σΘ = −E = −ỸTF. (53)

This indicates that SEE and EEE are being formulated
through modified versions of ỸTF and ỸT . Thus, one can
understand various theoretical and physically viable aspects
of these differential equations through ỸTF and ỸT .

5 Conclusions

This paper aims to analyze the effects of modifications of
GR on some dynamical features of radiating spherical sys-
tems. The present work could be treated as test beds for GR
at large scales through one of the modified gravity theories.
Such kind of approach could be considered to test GR at cos-
mological scales. In this context, we have taken the diago-
nally symmetric relativistic spheres which are coupled with
dissipative shearing viscous anisotropic fluid distributions.
It is further assumed that dissipation from the matter con-
tent is free streaming and diffusion degrees. In other words,
we have carrying out of dissipation without scattering. Af-
ter calculating the corresponding field as well as dynamical
equations, we have expressed the Misner Sharp mass func-
tion in terms of these. This has assisted us to relate Weyl
scalar with matter and structural spherical variables with

f (G,T ) corrections. This relation has peculiar importance
in the modeling of stellar structures.

It has been analyzed that the orthogonal breaking down
of the Riemann tensor could bring very effective tool to
study the reasons behind the emergence of inhomogeneities
in the initially regular spheres. In this direction, we have
followed the approach developed by Herrera et al. (2009)
and able to formulate couple of tensorial quantities namely,
Xμν and Yμν in the background of f (G,T ) gravity. We
noticed that both of their trace and trace-less components
might have direct relevance in few fundamental properties
of adiabatic and non-adiabatic spheres. It is seen that one of
the f (G,T ) structure scalars. i.e., like Weyl scalar, E , XTF

has very important role in the existence and evolution of reg-
ularity on the surface of relativistic spheres. Further, we have
expressed the WDE, SEE and EEE in terms of these scalar
variables. It is well established that EEE (or alternatively
called as Raychaudhuri equation) could assist one to study
the Penrose–Hawking singularity theorems, exact solutions
of gravitational field equations. As, we have expressed EEE
in view of YT , f (G,T ) structure scalar, therefore structure
scalars could be used to discuss singularity formation in
various stellar compact structures like, Kerr, Schwarzschild,
Reissner–Nordström, Kerr–Newman metrics etc.

The expressions of SEE and WDE are being expressed
in terms of the trace free parts of Xμν and Yμν tensors.
From the leading results of SEE and WDE, it is noticed that
one can visualize the pictures of these differential equations
through f (G,T ) structure scalars, including the Newman–
Penrose formalism with f (G,T ) gravity corrections. In or-
der to see more deeply the role of modified scalar variables,
we have then discussed the case of non-interacting relativis-
tic particles with constant choices of G and T . Here, we no-
ticed that two f (G,T ) scalars are controlling the states of
conformal flatness, while XTF (that contains modified scalar
corrections) is controlling inhomogeneities on the dust ball.
All of our studied properties of spherical systems match the
GR-results in the classical limits (Herrera et al. 2011a).

The obtained can be summarized as below.

1. In the orthogonal splitting phenomenon of spherical sys-
tem, the number of structure scalars has been found to be
four in number even in modified f (G,T ) gravity. These
are XT , XTF , YT and YTF . These scalars were found to
be eight in number in the case of cylindrical spacetime
(Yousaf and Bhatti 2016a).

2. The scalar YT has a direct connection in the formulation
of Raychaudhuri equation as described by Eq. (42). Thus,
this scalar could be used to understand the Newman–
Penrose formalism in f (G,T ) gravity.

3. The one of the f (G,T ) scalar YTF has been found to play
an important role in understanding the shearing effects
of spherically symmetric radiative spacetime as seen by
Eq. (43).
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4. The αGn + β ln[G] + λT dark source terms tend to pro-
duce hindrances in the working of XTF and thereby mak-
ing the system more stable.

5. The scalar XTF is an inhomogeneity factor once the
system experiences negligible effects of dissipative and
pressure components. This can be analyzed from WDE
Eq. (51).
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