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Abstract We study relativistic solutions of compact objects
with Finch and Skea (FS) metric of a hydrodynamical stable
star in four and in higher dimensions. The solutions obtained
in the usual four and in higher dimensions will be employed
to construct stellar models. We study variation of different
physical parameters inside the star. It is noted that a com-
pact star in 4-dimensions with Finch and Skea geometry is
always isotropic here which however is anisotropic if the
space time is higher dimensional. The plausibility of such
stars are studied here.

Keywords Compact object · Theoretical astrophysics ·
Higher dimensional star

1 Introduction

The success of superstring theories in the last couple of
decades led to a considerable research activities in under-
standing issues both in cosmology and in astrophysics in
higher dimensions. The results obtained in the usual four
dimensions are generalized in higher dimensions in addition
to exploring scope of new physics. The history of higher di-
mensions goes back to the work done by Kaluza (1921) and
Klein (1926) independently by introducing the concept of
extra dimensions in addition to the usual four dimensions
to unify gravity with the electromagnetic interaction. On the
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other hand, it is also very important to generalize the re-
sults obtained in four dimensional General theory of Rel-
ativity (GTR) in higher dimensional context and to probe
the effects due to incorporation of extra space-time dimen-
sions in the theory. The study of higher-dimensional grav-
ity has no recorded observational and experimental support
till now but it remains an academics interest today. A num-
ber of work in astrophysics with Finch and Skea (1989)
metric is studied in D = 4 dimensions. The motivation of
the paper is to study for stellar models by considering a
higher dimensional FS metric. Finch and Skea (1989) metric
was originally developed by Duorah and Ray (1987). This
space-time geometry has got much attention in the modeling
of relativistic compact star as the solution is well behaved
and satisfies all criteria of physical acceptability (Delgaty
and Lake 1998). The Finch-Skea metric has been used by
many to study a large variety of stellar bodies by introduc-
ing electromagnetic field and anisotropic pressure. It is also
generalized to study astrophysical objects in lower as well
as in higher dimensional gravitational aspects, considering
isotropic pressure distribution.

Kalam et al. (2013) obtained a model for strange quark
star in Finch and Skea metric with the help of MIT Bag
model, which later extended for two-fluids model. The
above solution satisfies all the energy conditions. Banerjee
et al. (2013) employed Finch and Skea metric to obtain a
class of interior solutions corresponding to the BTZ (Bana-
dos et al. 1992) exterior solution, which is useful for the
description of compact objects in (3 + 1)-dimensions. In
(2 + 1)-dimensions Bhar et al. (2014) proposed a new class
of solutions of anisotropic stars in Finch and Skea space time
making use of the MIT bag model, which corresponds to
the BTZ black hole. Tikekar and Jotania (2007) applied this
space-time geometry to find two-parameters family of phys-
ically viable relativistic models of neutron stars and found
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the possibilities of describing strange stars and other highly
compact objects. Recently, Jafry et al. (2017) investigated
theoretically the nature of the massive pulsar J0348+0432 in
a compact relativistic binary by considering it as isotropic
one. The space-time of the pulsar is described by Finch
and Skea metric in four dimensions to obtain stellar mod-
els taking into its mass as was considering (Antoniadis et al.
2013). Hansraj and Maharaj (2006) obtained charged ana-
logue model of the Finch-Skea solution which can describe
a realistic charged stellar body. The relativistic solution for
the Einstein-Maxwell equations can be described by Bessel
functions and modified Bessel functions in addition to el-
ementary function with electric field intensity E �= 0 (ex-
cept at the center) and E = 0 throughout the interior space-
time. Recently, Maharaj et al. (2017) derived a master equa-
tion which governs an anisotropic and charged compact star
description with a Finch and Skea geometry and find the
solutions of that equation in terms of Bessel and modified
Bessel functions which can be reduced to an elementary
function for certain choice in the model. Consequently, an
infinite family of exact solutions can be obtained from the
master equation in terms of elementary functions. Pandya
et al. (2015) taken up a modified Finch and Skea geometry,
which is compatible with the observed masses and radii of
a wide variety of compact stars. The stellar models in the
above cases predict masses and radii of the pulsars which
are in agreement with objects that might filled up with exotic
strange matter used by Dey et al. (1998) and Gangopadhyay
et al. (2013). The Finch-Skea ansatz has also been taken
up in higher dimensional gravitational theories by Hansraj
(2017), Dadhich et al. (2017), Molina et al. (2017). In a re-
cent paper, assuming the Finch-Skea ansatz as a seed solu-
tion, Hansraj et al. (2017) constructed a stellar model with
static spherical distribution of perfect fluid using trace-free
Einstein gravity where the solution admit only for isotropic
fluid distribution.

Furthermore, Chilambwe et al. (2015) also studied the
Finch and Skea metric in n-dimensional context considering
the space-time geometry isotropic in nature. A class of so-
lutions of compact objects in five dimensional EGB gravity
has been also found by Sardar (2016) in Finch-Skea geome-
try.

The motivation of the present work is to explore the stel-
lar models both in usual four dimensions as well as in higher
dimensions to accommodate isotropic and anisotropic stars
respectively. Variations of different physical parameters
will be probed, considering the technique given by Paul
(2004). The relativistic compact star solution in higher di-
mensions will also be studied considering a spherically sym-
metric space-time. The motivation of the paper is to study
highly compact stars, consequently relativistic stellar solu-
tions are obtained describing anisotropic matter distribution
whose geometry will be characterized by the Finch and Skea

ansatz. The reason for incorporating anisotropy is due to the
fact that in the high-density regime of compact stars the ra-
dial pressure (pr) and the transverse pressure (pt ) need not
be equal which was invented by Ruderman (1972), Canuto
(1974). Kippenhahn and Weigert (1990) proposed that in
relativistic stars anisotropy might occur due to the exis-
tence of a solid core or type 3A super fluid. Weber (1999)
pointed out that strong magnetic field in a compact star may
generate an anisotropic pressure. Anisotropy might occur
in astrophysical objects for various reasons namely, vis-
cosity, phase transition (Sokolov 1980), pion condensation
(Sawyer 1972) and the presence of strong electromagnetic
field (Usov 2004). The shear of the fluid may be consid-
ered as another reason for the origin of anisotropy in a self-
gravitating body (Prisco et al. 2007). It is also assumed that
anisotropy may develop due to the slow rotation of fluids
(Herrera and Santos 1995), a mixture of perfect and a null
fluid also originates an effective anisotropic fluid model in a
compact star Letelier (1980).

In this work we study the Finch and Skea stellar models
can be extended to the case of an anisotropic matter distribu-
tion in higher dimensional aspects. The system of field equa-
tions has been solved to generate analytic solutions which
are physically important.

The paper is organized as follows: In Sect. 2, we have
discussed the Einstein field equations for a static spher-
ically symmetric and anisotropic fluid distribution in n-
dimensions. In Sect. 3, we redact the conditions for a physi-
cally realistic model. Then, in Sect. 4, we studied features of
compact objects e.g. density and radial pressure in the usual
form and more than four dimensions, anisotropy parame-
ter, mass radius relation, stability and in Sect. 5 equation of
states are presented. In Sect. 6, we illustrated the range of
different metric parameters and their variations with dimen-
sions. Finally, in Sect. 7 we summarized the results.

2 Field equation in higher dimensions and
solution

The Einstein’s field equation is given by,

Rab − 1

2
gabR = 8πGD

c2
Tab (1)

where, D is the total no. of Dimensions, GD = GVD−4 is
the gravitational constant in D-dimension. G denotes the 4-
dimensional gravitational constant and VD−4 is the volume
of the extra space. Rab is Ricci tensor and Tab is the energy-
momentum tensor in D-dimension. We consider the metric
of a higher dimensional spherically symmetric, static space-
time is given by,

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2�2
n (2)
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where, ν(r) and λ(r) are the two unknown metric functions,
n = D − 2 and d�2

n = dθ2
1 + sin2 θ1dθ2

2 + sin2 θ2(dθ2
3 +

· · · + sin2 θn−1dθ2
n) represents the metric on the n-sphere

in polar coordinates. The energy momentum tensor for an
anisotropic star in the most general form is given by,

Tab = diag(−ρ,pr,pt ,pt , . . . , pt ) (3)

where, ρ is the energy density, pr is the radial pressure and
pt is the tangential pressure. � = pr − pt is the measure of
pressure anisotropy in this model, which depends on metric
potential λ(r) and ν(r).

Using Eqs. (1) and (2), Einsteins field equation reduces
to the following set of equations:

8πGDρ

c2
= n(n − 1)

(
1 − e−2λ

)

2r2
+ nλ′e−2λ

r
(4)

8πGDpr

c2
= nν′e−2λ

r
− n(n − 1)

(
1 − e−2λ

)

2r2
(5)

8πGDpt

c2
= e−2λ

(
ν′′ + ν′2 − ν′λ′ − (n − 1)(λ′ − ν′)

r

)

− (n − 1)(n − 2)
(
1 − e−2λ

)

2r2
(6)

where, overheads dash denotes the derivative w.r.t r . Us-
ing Eqs. (5) and (6), the pressure anisotropy condition (� =
pt − pr ) gives rise to,

ν′′ + ν′2 − ν′λ′ − (n − 1)λ′

r
− ν′

r
− (n − 1)

(
1 − e2λ

)

r2

= �e2λ (7)

We consider the interior space-time given by Finch and Skea
metric as,

e2λ(r) = (1 + Cr2) (8)

e2ν(r) = D2[(B − A
√

1 + Cr2)Cos
√

1 + Cr2

+ (A + B
√

1 + Cr2)Sin
√

1 + Cr2]2 (9)

where A, B , C and D are constants, prescribing the specific
geometries for the 3-Space of the interior space-time of the
star and discussed the various features. Therefore, in D (i.e.
n + 2)-dimension, the physical parameters relevant in this
model are given below:

8πGDρ

c2
= Cn(1 + n − Cr2 + Cnr2)

2(1 + Cr2)2
(10)

8πGDpr

c2
= −nC[nX + X′]

2K2X
(11)

where, K = √
1 + Cr2, X = (B − AK)CosK + (A +

BK)SinK and X′ = CosK(AK −3B)−SinK(BK +3A)

� = C2(n − 2)r2

(1 + Cr2)2
(12)

Here, n = 2 correspondingly � = 0 is obtained but � �= 0
for n �= 2. Equations (10) to (13) will be employed here to
study exact compact stellar objects in higher dimension.

The total mass contained within radius r in D-dimension
is,

m(r) = An

∫ r

0
r ′D−2ρ(r ′)dr ′ (13)

where, An = 2π
n+1

2

	( n+1
2 )

and ρ(r ′) represents the energy density

at r = r ′. The actual mass of a star can be obtained by using
Eq. (14) and then integrating upto r = b, i.e., the maximum
size of the compact object.

3 Conditions for obtaining physically
realistic stellar model

A comparatively reasonable set of conditions includes:

(i) At the boundary of the star (i.e.r = b), the inte-
rior solution should be matched with the exterior
Schwarzschild solution. This determines the metric at
the surface, e2ν(r=b) = e−2λ(r=b) = (1 − K

bn−1 ) where
K is a constant related to the mass of the star which
is given by M = nAnK

16πGD
. In four dimensions (D = 4),

K = 2M and in five dimension (D = 5), K = 0.84848
MG5 where G5 = GV1 and V1 is the volume of extra

space in five dimensions. In general, Vn = 2π
n+1

2 rn+1

(n+1)	 n+1
2

.

In D = 5, it becomes V1 = 2r .
(ii) In addition, the radial pressure drops from its maximum

value (at center) to zero at the boundary, i.e., at r = b,
pr = 0.

(iii) The density and the pressures should be positive in-
side the star. For ρ this coincides with the null energy
condition (NEC). At the center, they should be finite
ρ(0) = ρ0, pr(0) = pr0. Moreover, pr0 = pt0.

(iv) The solution should satisfy the dominant energy condi-
tion (DEC) at the center, ρ0 > |p0|.

(v) Inside the star the stellar model should satisfy the con-
dition, v2 = dp

dρ
� 1, for the sound propagation to be

causal.
(vi) The gradient of the pressure and energy-density should

be negative inside the stellar configuration, i.e., dpr

dr
< 0,

dpt

dr
< 0 and dρ

dr
< 0.

The above conditions are used to obtain physically viable
stellar models.
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Fig. 1 Radial variation of energy-density (ρ) for D = 4 (Black) and
D = 5 (Red)

4 Physical analysis of compact objects

In this section we investigate the following features of the
compact object:

• Density and pressure of a compact object and variation
with dimension

From Eq. 10, the energy-density in D = 4 dimension is,

8πGρ4

c2
= C(3 + Cr2)

(1 + Cr2)2
(14)

Whereas, in D = 5 dimension,

8πG5ρ5

c2
= 3C(2 + Cr2)

(1 + Cr2)2
(15)

For the both cases, clearly, at the center, the density of
the star is maximum and it decreases radially outward. In
Fig. 1, we plot variation of energy density (ρ) inside the
compact objects with different space-time dimensions using
Eqs. (15) and (16). It is found that the energy density is more
in five dimensions than that in four dimensions. Therefore,
it is evident that a star of same radius accommodates more
mass in the case of higher dimensions.

Similarly, in D = 4 dimension, the radial pressure (pr4)

becomes,

8πGpr4

c2
= C[(B + AK)CosK + (A − BK)SinK]

K2X
(16)

In D = 5 dimension, the radial pressure (pr5) becomes

8πG5pr5

c2
= 3C[ACosK − B SinK]

KX
(17)

where, K = √
1 + Cr2 and X = (B − AK)CosK + (A +

BK)SinK .
In the case of radial pressure plotted in Fig. 2, it is evident

that the radial pressure increases with increase of space-time
dimensions. Thus, the energy density and the pressure are
found well behaved inside the compact object. The plot of

Fig. 2 Radial variation of pressure (pr ) for D = 4 (Black) and D = 5
(Red)

Fig. 3 Radial variation of the energy-density gradient dρ
dr

for D = 4
(Black) and D = 5 (Red)

Fig. 4 Radial variation of pressure gradient dPr

dr
for D = 4 (Black) and

D = 5 (Red)

variation of the energy-density and radial pressure gradients
with dimensions in Figs. 3 and 4 are negative.

• Anisotropy parameter
From Eq. (13), it is shown that when n = 2, i.e., in

4-dimension � = 0, it represent an isotropic star always.
However it is found that if we extend the space-time di-
mensions, it is possible to accommodate anisotropy in star
for n �= 2. We noted from Fig. 5 that the anisotropy (�)
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Fig. 5 Variation of compact object for different dimensions namely:
D = 5 (Black) and D = 6 (Green), D = (2 + 1) (Blue)

Table 1 Variation of dp
dρ

with dimensions (n) for different values of
radius (r)

Dimension (D) Values of dp
dρ

n = (D − 2) r = 10 km r = 12 km r = 14 km

2 1.0138 0.8202 0.7111

3 0.5091 0.3994 0.3377

4 0.2066 0.1366 0.0981

5 0.0050 −0.0430 −0.0686

increases with dimensions. Therefore, the FS solution ad-
mits anisotropic star in higher dimensions which however
is isotropic in 4-dimensions. Now, the transverse pressure is
defined as, pt = pr + �. From Fig. 5 it is evident that at the
center of the star anisotropy (�) vanishes for all dimensions,
whereas it attains a maximum value at the surface. Though
the nature of radial variation of � is same, it picks up higher
values in higher dimensions. But different situations arises
with (2 + 1) dimension, as shown in Fig. 5.

• Stability
The stability of a stellar model is studied by computing

dp
dρ

insider the star. The effect of increase in space time di-
mensions on stability on a compact object is studied here,
which is presented in Table 1. From Table 1, it is shown
that a star with r = 10 km in D = 4 dimensions as well as in
D = 6 dimensions are not allowed. Similarly, for r = 12 km,
D < 4 and D > 6 are not allowed and for r = 14 km, D < 4
and D > 6 are also not permitted for a given set of values of
A, B and C. The variation of the sound speed inside the star
for D = 4 and D = 5 are plotted in Fig. 6. It is found that
dp
dρ

decreases with increasein radius for a particular dimen-

sion. It is also noted that dp
dρ

is maximum at the center and
gradually it decreases outward.

• Mass-radius relation The total mass contained within
radius r in D-dimension is,

mD(r) = An

∫ r

0
r ′D−2ρ(r ′)dr ′ (18)

Fig. 6 Variation of the sound speed at the stellar interior for D = 4
(Black) and D = 5 (Red)

For Pulsar J0348+0432, the observed mass is 2.01 ±
0.04 M�. Now, plotting observed mass in mass-radius curve
one can find the radius of pulsar in the frame of D = 4 and
D = 5 dimensions using Finch-Skea metric.

In D = 4 dimension, from Eq. (14) the gravitational mass
(M) in terms of the energy density (ρ4) can be expressed as
(taking c = 1 and G = 1),

m4(r) = A2

∫ r

0
r ′2ρ4(r

′)dr ′ = Cr3

2 + 2Cr2
(19)

Similarly, in D = 5 dimension, the mass will be,

m5(r) = A3

∫ r

0
r ′2ρ5(r

′)dr ′

=
3π[r − r

2(1+Cr2)
− tan−1(

√
Cr)

2
√

C
]

8
(20)

Conventionally, the mass-radius curves are plotted in
Fig. 7 for a given density function in a particular dimension,
where the mass of a star is fixed. The radius is estimated
for the Pulsar J0348+0432 is in the range of 13.92 km <

r < 14.16 km for D = 4 dimension and 10.44 km < r <

10.58 km for D = 5 dimension respectively with mass =
2.01 ± 0.04 M�.

5 Equation of state

Using the above model parameters we plot the radial vari-
ation of density and radial pressure vied Eqs. (4) and (5).
However, it may be pointed out here that an analytic func-
tion of pressure with density in known form cannot be ob-
tained exactly here because of non-linearity terms. We study
numerically to obtain a best fitted relation between the en-
ergy density (ρ) and radial pressure (pr ), which vary with
dimensions. Equation of state for a compact object is plotted
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Fig. 7 Nature of the mass function at the stellar interior of the Pulsar
J0348+0432 for D = 4 (Black) and D = 5 (Red)

Fig. 8 Equation of State of the Pulsar in our model in different dimen-
sions D = 4 (Black) and D = 5 (Red)

Fig. 9 Nature of the mass function at the stellar interior of the Pulsar
HER X1 (Purple), SAX J-SS1 (Orange) and SAX J-SS2 (Green) (for
D = 4 (Black) and D = 5 (Red))

in Figs. 8 and 9 corresponding to D = 4 and D = 5 respec-
tively.

6 Variations of metric parameters with
dimensions

The metric parameters A, B and C for D = 4 and D = 5 di-
mensions both for an acceptable range of radius of compact
objects (i.e. from R = 10 km to R = 14 km) using Finch-
Skea metric are shown in Table 2. These will be used to un-

Table 2 Different values of parameters A, B , C in D = 4 and D = 5

D = 4 D = 5

r A B C r A B C

10 0.0135 0.0087 0.0140 10 0.0291 0.0044 0.0101

11 0.0134 0.0117 0.0096 11 0.0300 0.0066 0.0069

12 0.0131 0.0131 0.0067 12 0.0307 0.0081 0.0050

13 0.0127 0.0140 0.0040 13 0.0312 0.0095 0.0037

14 0.0124 0.0160 0.0037 14 0.0316 0.0107 0.0028

derstand the physical properties of a compact object in more
general way.

7 Discussion

In this paper we study compact objects in hydrodynamical
equilibrium for different dimensions with Finch and Skea
metric (1989) as the interior space of the object. But it is
quite interesting that one determines various physical as-
pects with a similar kind of solutions in different dimen-
sions. The interior geometry is described by Finch and Skea
metric both in four and in higher dimensions and we have
analyzed the effect of higher dimensions on the physically
relevant Finch-Skea model of a spherically symmetric com-
pact object in the standard Einstein gravitational theory. We
note the following:

(i) In Fig. 1, we plot the variation of energy density (ρ)

with radial distance and found that energy density is
more in five dimensions than that in four dimension.
It is evident that a star of same radius accommodates
more mass in case of higher dimensions.

(ii) In Fig. 2, we plot the variation of radial pressure away
from the center to the boundary and found that the ra-
dial pressure (pr) increases with an increase in space-
time dimensions (D).

(iii) Here, the density and the radial pressure in D = 4
and also in higher dimensions are all decreasing away
from the center. At the center, density and radial pres-
sure are found to be more than that in four dimensions.
But, the radial pressure becomes zero at the boundary
(i.e. at r = R). Here, also energy-density and pressure
gradients is negative (see Figs. 3 and 4).

(iv) The squared speed of sound (v2 = dp
dρ

) with radius r

for different dimensions is presented in Table 1. From
Table 1, it is shown that a star with r = 10 km in
D = 4 dimensions as well as in D = 6 dimensions
are not allowed. Similarly, for r = 12 km, D < 4 and
D > 6 are not allowed and for r = 14 km, D < 4
and D > 6 are also not permitted for a given set of
values of A, B and C. Therefore, it is found that for
fixed values A, B and C there exist a upper bound
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of dimensions for a physically viable stellar model.
It is also noted that for a particular dimension, dp

dρ
is

maximum at the center which however found to de-
crease radially outward and decreases with increasing
dimensions in Finch-Skea geometry which is in agree-
ment with Chilambwe et al. (2015). It’s observed that
inside the star v2 = dp

dρ
� 1, which shows that the stel-

lar model is stable.
(v) It is found the EoS satisfies a linear relation p = α +

βρ. In D = 4, α = −0.00214163 and β = 0.322546
and similarly, in D = 5, α = −0.0127792 and β =
0.565581. The plot of p vs. ρ are shown in Figs. 8
and 9 for D = 4 and D = 5 respectively.

(vi) The most interesting result in this model is that the
relativistic solution in D = 4, which was obtained
for isotropic fluid, is found anisotropic when the
space time dimensions is increased, which is shown
in Fig. 5. At the center of the star, the anisotropy (�)

vanishes both in D = 5, D = 6 and also in D = 3,
whereas at the surface it attains a maximum value.
Though the nature of radial variations of � is same,
but situation becomes completely flipped when D =
(2 + 1).

(vii) In Table 2, we tabulated the range of the values of A,
B and C, which vary with dimensions. It is evident
that for a particular radius, A increases with dimen-
sions, whereas B and C decreases with dimensions.

(viii) Again, from Table 2, it is evident that for both D = 4
and D = 5 as radius increases, B increases and C de-
creases simultaneously. But A is found to play dif-
ferent role. For D = 4, A decreases with increasing
radius, where for D = 5 it increases with radius.

(ix) From Fig. 7, it is also found that for a particular radius,
the mass of the compact object increases with increas-
ing dimensions. It is also worthy to mention here that
our model is well applicable to other Pulsars also such
as HER X1, SAX J-SS1 and SAX J-SS2 etc., which is
shown in Fig. 9. More interestingly, if we starts from
the center with a certain central density, the structure
of a pulsar can be determined by stopping at any ra-
dius where pressure becomes zero.

(x) For Pulsar J0348+0432, we estimate the radius in
D = 4 and D = 5 dimensions. In Fig. 7, we obtain
the radii: 13.92 km < r < 14.16 km for D = 4 di-
mension and 10.44 km < r < 10.58 km for D = 5
dimension respectively. It is evident that if the dimen-
sion is increased, the lower and upper limit of radius
of a compact object are found to decrease accommo-

dating same mass. So in higher dimensions a massive
compact object can be accommodated.
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