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Abstract We demonstrate that, while the proposed Grav-
itational Dark-force Theory (of Nyambuya (New Astron.
67:1, 2019b) here-in Paper II) predicts an extra-anomalous
apsidal precession for Solar planets due to the gravitational
dark-force on the orbits of these planets, the predicted extra-
anomalous apsidal precession is so small—so much that—
it can not account for the observed extra-anomalous apsi-
dal precession of Solar planets. This null result is important
in that it informs us that whatever may be the cause of the
extra-anomalous apsidal precession, it is not the proposed
gravitational dark-force.

Keywords Anomalous apsidal precession · Darkmatter ·
Gravitatomagnetism · Fisher-Tully relation · Galaxy
rotation curves

1 Introduction

This reading is the last in our four part series where we de-
velop a new model of gravitation whose endeavour is to ex-
plain the Flat Rotation Curve Problem of Spiral Galaxies
via the path of Modified Gravity (MoG) where the hypoth-
esis of dark-matter is not assumed. In the first part of the
series i.e., in the reading Nyambuya (2019a) [hereafter Pa-
per (I)], we start off by justifying the Nordström gravitomag-
netic theory that we use to suggest our solution to the flat
rotation curve problem of spiral galaxies. In the second part
(i.e., in the reading; Nyambuya 2019b, hereafter Paper II),
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we consider one of the five gravitational potentials (Φ4)

that emerge from Nordström (1913)’s Relativistic Theory of
Gravitation (as presented in the reading Nyambuya 2015);
and from this potential, we harness an inverse distance law
of gravitation and with it, we make the temerarious endeav-
our to suggest the resulting MoG theory as an alternative
explanation to the long standing flat rotation curves problem
of spiral galaxies. We have coined this inverse distance law
(FD ∝ 1/r) the gravitational darkforce. In a pre-sequential
reading (i.e., in the reading Nyambuya 2018, hereafter Pa-
per III), we demonstrated how one can explain—from this
gravitational darkforce—the shape of spiral galaxies. In the
present reading, we will consider the effects of this new
gravitational darkforce on the orbits of Solar planet. The
aim of which is—if needs be—to constrain this gravitational
darkforce so that its affects are in-accord with experience on
both the Solar and galactic scales.

Obviously, any non-Newtonian addition to the Newton
model of gravitation is going to bring in new effects that
must be observable should this modification be correct de-
scription of physical and natural reality as we know it. One
of these effects is the anomalous apsidal precession of So-
lar planets. The issue of the anomalous apsidal precession
of Solar planets is an issue that began with planet Mercury
more than a century ago. When Newton’s theory of gravita-
tion was (is) applied to the case of the planet Mercury where
the extra tugging from other planets is taken into account,
perturbative Newtonian theory of gravitation (Le Verrier
1859) gave (gives) ∼ 5557′′ cy−1 for the apsidal precession
of the planet Mercury (cf., Clemence 1947). In 1846, the
consummate French mathematician—Urbain Jean Joseph
Le Verrier (1811–1877), accurately measured Mercury’s ap-
sidal precession whereby he obtained ∼ 5600′′ cy−1, which
is a difference of ∼ +43′′ cy−1 when compared to the ex-
pected Newtonian value obtaining from theory.
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An explanation of this unaccounted ∼ +43′′ cy−1 pre-
sented a challenge for theoretical physicists even to this
day it is still a problem of much interest (e.g., Park et al.
2017; Roy 2015; Cornejo 2014; Hu et al. 2014; Lo et al.
2013; Stewart 2005; Campbell et al. 1983). Various theo-
retical solutions were proposed in the order to explain this
unaccounted ∼ +43′′ cy−1, but, nobody was able to pro-
vide a widely satisfactory explanation. Having carefully ap-
plied himself to this problem and after the construction of
his great master piece (Einstein 1915a,b,c,d)—the General
Theory of Relativity (GTR), Albert Einstein (1915a) was the
first to successfully solve this problem—by successful, it is
here meant that Einstein (1915a) was the first to provide a
solution—to this problem of the anomalous apsidal preces-
sion of the planet Mercury—that was accepted by the ma-
jority of physicists. For his solution, Einstein (1915a) ob-
tained the exact same formula as that obtained by the Ger-
man high school teacher—Mr. Paul Gerber (1854–1909).
Gerber (1898a)’s solution is based on the Newtonian theory
of gravitation in which he (Gerber 1917, 1898a,b) makes an
ad hoc hypothesis that the gravitational potential depends on
the speed of the moving test body while Einstein (1915a)’s
solution is based on the effect of curvature of spacetime.
In Sect. 3, we will discuss briefly, Einstein (1915a)’s solu-
tion.

As it turns out, not only is the orbit of Mercury experi-
encing an anomalous apsidal precession that is not expli-
cable from the confines of Newtonian gravitation, all the
planets are—i.e., this is true for at least Venus, Earth, Mars,
Jupiter, Saturn. The other planets—Uranus, Pluto, etc., have
orbital periods that are much longer than an average human
lifetime and as such, direct measurements are not available.
The observed anomalous apsidal precessions of these plan-
ets are in satisfactory—if not good—agreement with Ein-
stein (1915a)’s GTR.

However, present day Solar astrometric has achieved
such level of accuracy that it is now possible to measure
down to a μ-arcsecond/yr for the apsidal precessions of
these planets. What this means is that, these measurement
now put stringent constraints on theory. As it turns out, after
all the known effects are taken into account, there remains
some very tiny extra-anomalous apsidal precession that are
not accounted for. These obviously point to horizons beyond
the GTR. It is in this domain that MoG theories enter. If they
are anything to go by, they must at least stand up to these
data of the observed extra-anomalous apsidal precessions.
The present theory obviously fall in the domain of MoG the-
ories. So, it is not only important, but very important to know
this theory’s prediction regarding these extra-anomalous ap-
sidal precession of Solar planets.

Because of the high level precession in the measurement
and all this being a direct result advanced modern tech-
nology, contemporary Solar astrometry studies (e.g., Pit-
jeva and Pitjev 2013; Pitjev and Pitjeva 2013; Pitjeva 2013;

Fienga et al. 2009, 2011) now place stringent constrains on
MoG theories via e.g., the measurement of apsidal preces-
sion that are not accounted for by the GTR and these are typ-
ically refereed to as ‘extra-anomalous apsidal precession’
(e.g., Iorio 2009).

Now, in-closing this introductory section, we shall give
the synopsis of the reminder of the reading. For instructive,
completeness and self-containment purposes, in Sect. 2 and
Sect. 3, we discuss the Newtonian solution of the orbit and
the GTR’s solution to the apsidal precession of test bodies,
respectively. In Sect. 4, for the purposes of this reading, we
give an exposition of the gravitational dark-force theory. In
Sect. 5, we derive the solution to the apsidal precession in-
accordance with the gravitational dark-force theory and in
Sect. 6, we discuss this solution with regard to Solar plan-
ets. In Sect. 7, we give a brief general discussion and the
conclusion drawn thereof.

2 Newtonian orbit

As is well known, the inverse square law of Newtonian grav-
itation FN, leads to the following second order differential
equation of motion:

d2u

dϕ2
+ u − 1

�
= 0, (1)

where (u = 1/r) with r being the radial distance of the test
particle from the centre of mass of the massive central grav-
itating body about which it orbits and ϕ is the angular dis-
placement. The solution uN to this (1), is:

uN = 1 + e cosϕ

�
, (2)

where e is the eccentricity of the orbit and:

� = J 2
ϕ

GM , (3)

is semi-latus rectum of the orbit, G is the usual Newtonian
gravitational constant, M is the mass of the central massive
gravitating body and (Jϕ = r2ϕ̇) is specific orbital angular
momentum of a test body about the ϕ̂-direction and this spe-
cific orbital angular momentum is such that:

dJϕ

dt
= 0. (4)

Having presented the traditional Newtonian solution of an
orbiting test particle, we shall in the next section present the
traditional Einsteinian modification to the Newtonian solu-
tion, which, we shall thereafter modify to include the gravi-
tational dark-force.
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3 General relativistic apsidal precession

As already stated in the introduction section: no sooner had
Einstein (1915b,c,d) discovered his GTR did he (Einstein
1915a) apply this theory to the problem of the anomalous
apsidal precession of the planet Mercury. In his application
of the GTR to the mercurial problem, he obtained that the
trajectory of solar planets must be described by the equation:

d2u

dϕ2
+ u − 1

�
=

(
3GM

c2

)
u2, (5)

where c is the speed of Light in vacuo. From this equation,
Einstein (1915a) obtained that the average the rate of pre-
cession of the perihelion is given by:
〈
�ϕ

Tϕ

〉
E

= 6πGM
Tϕc2(1 − e2)a

= �̇E, (6)

where Tϕ is the time period of revolution for the orbital mo-
tion under consideration. As aforestated: although this for-
mula (6) had been derived earlier by Gerber (1898a), the
credit for the ‘correct’ derivation goes to Einstein (1915a)
because he derived it from an acceptable theory, while Ger-
ber (1898a)’s MoG theory is considered physically incor-
rect. Einstein (1915a)’s formula (6) was unprecedented in
its prediction of the anomalous apsidal precession of the
planet Mercury which—well—before then was known to be
∼ 43.2′′, and, this value is the value that Einstein obtained
from the formula (6). Given that this anomalous apsidal pre-
cession of the planet Mercury had become a well recognised
problem that required a solution, Einstein’s explanation of it
led to the instant recognition that—one way or the other—
Einstein’s GTR, must be an acceptable description of phys-
ical and natural reality. The predicted value for the apsidal
precession for the other planets (Venus, Earth, Mars, Jupiter
and Saturn) are given column (5) of Table 1.

Now, in the next section before we can add the Gravita-
tional Darkforce Correction to the anomalous apsidal pre-
cession, we shall formally (i.e., for the completeness and
self-containment purposes of present reading) define the
Gravitational Darkforce. For a full lay out of the Gravita-
tional Darkforce Theory, one can visit Paper (II).

4 Gravitational darkforce

The gravitational darkforce FD comes in as an addition to
the Newtonian gravitational force (FN = −GMgalm/r2),
that is to say, if Fres is the resultant gravitational force acting
on a test particle orbiting the galactic bulge, then, in accor-
dance with Newton’s Second Law of Motion, we know that
(Fres = FN + FD), where:

FD = −GMm

rRD
. (7)

In (7), m is the mass of a test particle orbiting the central
mass at the radial distance r and, RD is the darkforce scale-
length which according to Paper (II), is defined:

RD = aRM
D

( M
M�

)1/2

Rkpc, (8)

where:

aRM
D = (3.00 ± 0.20) × 10−5, (9)

and (Rkpc = 1.00 kpc). As stated in Paper (II), we have
in (8) a mass dependent scale-length RD which is similar
to what Moffat et al. (2018) have suggested in their MoG
theory. It strongly appears that such a scale-length that is
mass-dependent is a kind of sine-quo-non for any MoG the-
ory to reproduce the Tully and Fisher (1977) relation. In the
next section, we shall now proceed to add the Gravitational
Darkforce Correction to the anomalous apsidal precession
formula (6) of Einstein (1915a).

5 Gravitational darkforce induced apsidal
precession

Viewed from a Newtonian gravitational standpoint, Ein-
stein (1915a)’s equation (5) adds a correction term FE(u)

to the Newtonian gravitational paradigm: (i.e., FE(u) =
−3mc2�(GM/c2)2u4). If we in-cooperate the darkforce
field as an additional force to the Newton-Einstein gravi-
tational paradigm, then, the resultant equation for the orbit
is:

d2u

dϕ2
+ u = −FN(u) + FE(u) + FD(u)

mu2J 2
ϕ

. (10)

The equation of motion that results from (10), is:

d2u

dϕ2
+ u − 1

�
=

(
3GM

c2

)
u2 +

(
GM
J 2

ϕRD

)
1

u
. (11)

This (11), can be re-written as:

d2u

dϕ2
+ u − 1

�
=

(
3GM
�c2

)
(�u)2

�
+

(
GM�

J 2
ϕRD

)
1

�u
. (12)

Since (J 2
ϕ = GM�), it follows that:

d2u

dϕ2
+ u − 1

�
= ηE(�u)2

�
+ ηD(�u)−1

�
, (13)

where:

ηD = �

RD
and ηE = 3GM

�c2
. (14)
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For the Solar system (i.e., the Sun in particular), the dark-
force scale-length RD, is such that:

R�
D = 6100 ± 400 AU. (15)

What this (15) is telling us is that, if the Gravitational Dark-
force Theory, is an acceptable description of physical and
natural reality, then, this dark-force should—in the Solar
system, dominate the Newtonian force at the distance of
∼ 6000 AU. This is about six times the size of the Solar
system—i.e., if we take the size of Solar system to be de-
fined at least by the furthest hypothesized object—dubbed
Planet Nine which is predicted to be orbiting with a semi-
major axis of about 1200 AU (Batygin and Brown 2016a,b;
Gomes et al. 2016; Trujillo and Sheppard 2014). Within the
region � 6000 AU of the orbits around the Sun, while the
dark-force may not dominate in this region, it might have
some minute effects on the Solar orbits. It is these minute
effects that we here seek—i.e., Does the dark-force have
any significant toll on the apsidal precession of Solar or-
bits?

Now—in-order for a solution to (13), we shall proceed to
assume a solution of the form (u = uN + up), where up is
the particular solution and uN the Newtonian solution. Fur-
ther, we shall assume that for this solution (e cosϕ + �up �
1), so that to first order:

(�u)2 � 1 + 2e cosϕ

(�u)−1 � 1 − e cosϕ − up�,
(16)

hence:

d2up

dϕ2
+ (1 + ηD)up

= ηE(1 + 2e cosϕ)

�
+ ηD(1 − e cosϕ)

�
. (17)

If we are to obtain a solution for (17), we surely must come
up with a strategy to solve it. That strategy is as follows.
We shall assume a solution of the form: (up = uap + upp),
where uap is the auxiliary part of up and upp is particu-
lar solution of up . For the solution up , the idea is to ob-
tain two differential equations in-terms of uap and upp . In-
order for us to do that, we will need to linearise the term:
(1 + ηD)up , i.e., obtain a first order expression that is linear
in uap and upp .

(1 + ηD)up � (1 + ηD)uap + upp. (18)

In (18), we have dropped the term ηDupp on the assumption
that it is too small, so small so much that, it can be neglected
without altering in any significant way, the content of the
final results.

Now, with this term having been linearised, we can now
write (17), as:

d2uap

dϕ2
+ (1 + ηD)uap + d2upp

dϕ2
+ upp

� ηE(1 + 2e cosϕ)

�
+ ηD(1 − e cosϕ)

�
. (19)

Further, we can split this (19) into two equations with one
for uap and the other for upp , as follows:—we set:

d2uap

dϕ2
+ (1 + ηD)uap = 0, (20)

so that:

d2upp

dϕ2
+ upp = ηE(1 + 2e cosϕ)

�
+ ηD(1 − e cosϕ)

�
. (21)

The solution to (21), is:

uap = ηE(1 + eϕ sinϕ)

�
+ ηD[1 − (e/2)ϕ sinϕ]

�
, (22)

while that (20), is:

uap = eα0 sin(kϕ + β0)

�
(23)

where (k = √
1 + ηD � 1+ηD/2) and (α0, β0) are constants

of integration where we shall set (β0 = 0) while (α0 	= 0),
hence the full solution (up = uap + upp) is given by:

u = 1 + e cosϕ + eηϕ sinϕ + eα0 sin(kϕ)

�
, (24)

where (η = ηE − ηD/2). In writing this solution [i.e., (24)],
we have dropped the term (ηE +ηD), because it is negligibly
small, so small so much that, dropping it will not any way
significantly alter the final desired and sought for result.

Now, for small η, we know that to first order approxima-
tion:

cosϕ + ηϕ sinϕ � cos(ηϕ) cosϕ + sin(ηϕ) sinϕ

= cos(ηϕ + ϕ)

= cos
[
(1 + η)ϕ

]
= cos(γEDϕ), (25)

where (γED = 1 + η); therefore:

u = 1 + e[cos(γEDϕ) + α0 cos(kϕ)]
�

. (26)

At the perihelion, we will have:

cos(γEDϕ) + α0 cos(kϕ) = 1. (27)
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For our convenience, we shall set (γEDϕ = ϕ + δ1) and
(kϕ = ϕ + δ2) where (δ1 = ηϕ) and (δ2 = ηDϕ/2), so that
to first order approximation, we will have:

cosϕ − δ1 sinϕ + α0 cosϕ − α0δ2 sinϕ = 1, (28)

hence:

(1 + α0) cosϕ − (δ1 + α0δ2) sinϕ = 1, (29)

thus, we can write the left hand-side of this equation as:

(1 + α0) cosϕ − (δ1 + α0δ2) sinϕ ≡ R cos[ϕ − α∗], (30)

where:

R =
√

(1 + α0)2 + (δ1 + α0δ2)2 � 1

α∗ = arctan

(
δ1 + α0δ2

1 + α0

)
� δ1 + α0δ2

1 + α0
.

(31)

From all this, it follows that:

cos

(
ϕ + δ1 + α0δ2

1 + α0

)
� 1. (32)

Substituting back (δ1 = ηϕ) and (δ2 = ηDϕ/2), we will
have:

cos

[
ϕ

(
1 + η + α0ηD/2

1 + α0

)]
� 1, (33)

hence:

ϕ

(
1 + η + α0ηD/2

1 + α0

)
= 2πn, (34)

where (n = 0,1,2, etc.). Since ϕ is a function of n, we can
write (34) with ϕ having a subscript n, as follows:

ϕn

(
1 + η + α0ηD/2

1 + α0

)
= 2πn, (35)

so that:

(ϕn+1 − ϕn)

(
1 + η + α0ηD/2

1 + α0

)
= 2π, (36)

where (δϕ = ϕn+1 − ϕn). Since [(η + α0ηD/2)/(1 + α0)]
is very small, much smaller than unity, it follows from this
that, to first order approximation:

ϕn+1 − ϕn = 2π − π(2η + α0ηD)

(1 + α0)︸ ︷︷ ︸
�ϕ

, (37)

where:

�ϕ = π(2η + α0ηD)

(1 + α0)
, (38)

is the apsidal advance of that occurs every revolution of the
orbit. From all these computations, it is clear that the result-
ing apsidal precession rate of advance will be given by:

�ϕ

Tϕ

= 1

1 + α0

2πηE

Tϕ

+ α0

1 + α0

πηD

Tϕ

, (39)

and this equation can be written as:

�ϕ

Tϕ

= 1

1 + α0

〈
�ϕ

Tϕ

〉
E

+ α0

1 + α0

πηD

Tϕ

. (40)

The unknown parameter, α0, is expected to be extremely
small ranging in order of magnitude perhaps to η if not far
less. If α0 is small as afore-stated, it follows that to first order
approximation, we must have:

〈
�ϕ

Tϕ

〉
ED

�
〈
�ϕ

Tϕ

〉
E

+
〈
�ϕ

Tϕ

〉
D
, (41)

where:

〈
�ϕ

Tϕ

〉
D

= −πα0ηD

Tϕ

= −π(1 − e2)aα0

TϕRD
= ��̇D, (42)

is the gravitational dark-force field contribution to the
anomalous apsidal precession rate of planetary orbits. Now
having derived the formula that gives us the apsidal preces-
sion due to the gravitational darkforce, we shall in Sect. 6,
discuss the dark ‘anomalous’ apsidal precession, i.e., how it
fairs with observational evidence.

6 Apsidal precession of the solar planets

Table 1 gives that anomalous apsidal precession of the
Solar planets i.e., the predicted Einstein anomalous apsi-
dal precession �̇E, the predicted gravitational dark-force
extra-anomalous apsidal precession ��̇D/α0, and the mea-
sured anomalous apsidal precession from the ��̇EPM2011

(Pitjeva 2013) and ��̇INPOPa (Fienga et al. 2011, 2009)
ephemerides respectively. From the measurements, the
extra-anomalous apsidal precession are of the order of
mas/cy, while ��̇D/α0 is of the order of μas/cy. Given
that α0 is small, it follows from this that even if α0 where
known with whatever accuracy—for so long as it is a small
quantity, the extra-anomalous apsidal precession, ��̇D, due
to the gravitational dark-force is much smaller that a μas/cy,
hence, this force is not expected to be the cause of the
extra-anomalous apsidal precession detected by e.g. in the
��̇EPM2011 and ��̇INPOPa ephemerides. This is not an un-
expected result. Naturally and logically, we expect the dark-
force to be significant on the scale-length RD, which (ac-
cording to (15)) for the Sun—is, ∼ 6000 AU.
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Table 1 Predicted Anomalous Apsidal Precession due to the Gravi-
tational Darkforce Field. Column (1) gives the name of the planet,
columns (2)–(4), the semi-major axis ‘a’ of the planet’s orbits, its
orbital period and the eccentricity the planet’s orbits, respectively.
Column (5) gives the predicted Einstein anomalous apsidal preces-

sion �̇E, column (6) the predicted gravitational dark-force extra-
anomalous apsidal precession ��̇D/α0, columns (7) and (8), the
measured anomalous apsidal precession from the ��̇EPM2011 and
��̇INPOPa ephemerides, respectively

Planet a Tϕ e �̇E ��̇D/α0 ��̇EPM2011 ��̇INPOPa

(AU) (yr) (1′′/cy) (μas/cy) (mas/cy) (mas/cy)

Mercury 0.39 0.24 0.206 43.29 1.60 ± 0.10 +2.00 ± 3.00 +0.40 ± 0.60

Venus 0.72 0.62 0.007 8.59 1.20 ± 0.08 +2.60 ± 1.60 +0.20 ± 1.50

Earth 1.00 1.00 0.017 3.85 1.10 ± 0.07 +0.19 ± 0.19 −0.20 ± 0.90

Mars 1.52 1.88 0.093 1.36 0.80 ± 0.06 −0.02 ± 0.04 −0.04 ± 0.10

Jupiter 5.20 11.86 0.048 0.06 0.50 ± 0.03 +58.70 ± 28.30 −41.00 ± 42.00

Saturn 9.54 29.46 0.054 0.01 0.30 ± 0.02 −0.32 ± 0.47 +0.15 ± 0.65

7 General discussion and conclusion

The ‘dark-matter’ phenomenon has manifested itself on the
grandest of scales—i.e., on the galactic scale. If this dark-
matter phenomenon is really a result of our gravitational
models lacking, then, it is expected that the new terms aris-
ing in the new MoG theory should have be negligible for
non-colossal bodies such as our Sun, the meaning of which
is that one would naturally expect not to pick-up any sig-
nals associated with the new terms in the MoG. This is
different from dark-matter theories—i.e., theories that hold
that our gravitational theories are not lacking and go to
postulate the existence of some—perhaps—invisible, weak
interacting and non-luminous matter, these theories (e.g.,
Pitjeva and Pitjev 2013; Pitjev and Pitjeva 2013) do ex-
pect the effects of this dark-matter to manifest in the So-
lar system. The simple message coming out of this reading
that the present MoG theory predicts that the extra grav-
itational poles that come into play to explain the flat ro-
tation curves of spiral galaxies, these terms are negligi-
ble on smaller scales (e.g., stars, molecular core, molecu-
lar clouds, etc.) where the effects dark-matter have not been
dictated.

8 Conclusion

In conclusion, while the gravitational darkforce does con-
tribute to the apsidal precession of Solar planetary orbits,
the contribution of this force is negligibly small.

Dedications As is the case with Papers (II) & (III), this
paper is dedicated to the memory, illustrious life and en-
during works the brilliant Nobel Laurent that was not af-
forded to the World—Professor Dr. Vera Cooper Rubin (July
23, 1928–December 25, 2016). May Her Dear Soul Rest In
Peace. Despite the fact this work being submitted for publi-
cation more than a year latter, this work was completed just

before the passing on of Professor Dr. Vera Cooper Rubin
and prior to her passing on, the work was already dedicated
to her—the hope of which that she would one-day read this
dedication, thus, we felt it proper to maintain this dedica-
tion as our own lasting tribute to her unparalleled devotion
on this issue of dark-matter. We have kept this work unpub-
lished because, related work—that would support the main
theory out of which the present dark-matter model has been
build, was still ongoing.
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