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Abstract The first post-Newtonian approximation of gen-
eral relativity is used to account for the motion of solar
system bodies and near-Earth objects which are slow mov-
ing and produce weak gravitational fields. The n-body rel-
ativistic equations of motion are given by the Einstein-
Infeld-Hoffmann equations. For n = 2, we investigate the
associated dynamics of two-body systems in the first post-
Newtonian approximation. By direct integration of the asso-
ciated planar equations of motion, we deduce a new expres-
sion that characterises the orbit of test particles in the first
post-Newtonian regime generalising the well-known Binet
equation for Newtonian mechanics. The expression so ob-
tained does not appear to have been given in the literature
and is consistent with classical orbiting theory in the Newto-
nian limit. Further, the accuracy of the post-Newtonian Binet
equation is numerically verified by comparing secular vari-
ations of known expression with the full general relativistic
orbit equation.

Keywords Post-Newtonian approximation · Kepler
problem · General relativity · Celestial mechanics

1 Introduction

Newtonian gravity is the first-order approximation to Ein-
stein’s covariant and non-linear theory of gravitation; Gen-
eral Relativity (GR) (d’Inverno 1992; Misner et al. 1973;
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Weinberg 1972). The field equations of GR are a system of
ten, non-linear, coupled partial differential equations; hence,
obtaining exact analytical solutions (Stephani et al. 2009) is
a notoriously formidable task. Notable solutions are given
by Schwarzschild (1916) and Kerr (1963) which describe
highly ideal gravitational systems for non-rotating, spheri-
cally symmetric and rotating, axially symmetric black holes
respectfully.

As early as 1916, Einstein hypothesised (Einstein 1916,
1918) the existence of gravitational waves using a weak-
field approximation (d’Inverno 1992; Misner et al. 1973;
Weinberg 1972) of the field equations of gravity. The first
direct observation of gravitational waves was due to the co-
alescence of a binary black hole system (Abbott et al. 2016),
which was detected by the advanced laser interferometer
gravitational-wave observatory collaboration (Abbott et al.
2009; Harry 2010). More recently, a simultaneous observa-
tion of both gravitational waves (Abbott et al. 2017) and
electromagnetic radiation (Goldstein et al. 2017) due to the
merger of a binary neutron star system was detected by the
collaboration and the low Earth orbit Fermi—Gamma-ray
burst monitor (Meegan et al. 2009) respectfully.

The treatment of such binary systems under the full non-
linear field equations of GR requires such a spacetime to
provide a complete description of the entire history of the
binary system. Specifically, the solution is required to de-
scribe past events such as the formation of the bodies, and
future events such as the final merger of the binary system
(Poisson and Will 2014). Due to the complexity of the field
equations, no such solution presently exists. Hence, to ac-
commodate the complexities associated with Einstein’s non-
linear theory of gravity, approximation methods have been
developed to determine solutions of the field equations and
the accurate modelling of n-body systems. This is achieved
using the Post-Newtonian (PN) approximation (Brumberg
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2017; Poisson and Will 2014; Soffel 1989) which has proven
to be an important practical approximation for gravitational
wave astronomy and has been coined unreasonably effective
(Poisson and Will 2014) in the description of gravitational
physics. The PN approximation is relied upon in areas such
as astronomy, geodesy (Müller et al. 2008) and deep space
navigation (Moyer 2005) for successfully accounting for the
departure from Newtonian gravity due to GR. Furthermore,
in order to accurately describe the binary or one-body sys-
tems in the PN regime, a complete understanding of the gov-
erning mechanics is required.

The present paper derives a new Binet equation in the
first post-Newtonian regime which characterises the orbit
of test particles. The PN Binet equation is obtained by di-
rect integration of the associated planar equations of motion,
where the expression so obtained does not appear to have
been given in the literature. The newly obtained expression
contains exponential functions that when approximated can
produce known linear results. The accuracy of the PN Bi-
net equation is verified by comparing the long-term secu-
lar variations of both orbit equations (12) and (13) with the
full non-linear general relativistic orbit equation (16). The
results of the numerical simulation suggest that retaining
the exponential functions produces precessing orbits which
closely resemble that of GR. The paper is organised as fol-
lows: in Sect. 2, we outline the procedure required to derive
the relativistic n-body equations of motion associated with
non-spinning point particles that are sufficiently separated
such that the only gravitational contribution to each body is
given by their respective monopole moment. In Sect. 3, we
derive a new PN Binet equation associated with the relativis-
tic Kepler problem offering insight in to the mechanics of
orbiting bodies in the relativistic domain for both near-Earth
objects and astronomical binary systems which are currently
of significant interest to astronomical communities. The ex-
pression obtained confirms the same formal mathematical
structure as the energy integral given by the present authors
O’Leary et al. (2018) and is discussed in Sect. 4.

2 Post-Newtonian equations of motion

In this section, we derive the PN equations of motion for
a test particle containing arbitrary, spatially and temporally
dependent, scalar, vector and PN gravitational potentials U ,
Uj and Ψ respectively (Poisson and Will 2014). This is
then generalised to describe a system of n gravitationally
interacting mass monopoles (Poisson and Will 2014). The
n-body relativistic equations of motion are known as the
Einstein-Infeld-Hoffmann (EIH) equations (Einstein et al.
1938) and form the foundation in computing modern plane-
tary ephemeris files (Soffel 1989). The convention we adopt
here is as follows: Latin indices are reserved for spatial vari-
ables (i, j = 1,2,3) while Greek indices (α,β = 0,1,2,3)

are used for spacetime variables, with the 0th designated for
time. Finally, the Einstein summation convention is assumed
for repeated indices unless otherwise stated.

The 10 independent components describing the gravi-
tational field are contained within the metric tensor gμν

(d’Inverno 1992; Weinberg 1972) which depends on the
spacetime variables xα = (ct, xj ) = (ct, r), where the speed
of light and coordinate time are given by c and t respectively.
The position of the test particle is given by r = r r̂ where r̂
is a unit vector in Cartesian coordinates and r denotes the
magnitude of the position vector. The first-PN metric tensor
components gμν are formally obtained by performing two it-
erations of the relaxed Einstein field equations and are given
by (Poisson and Will 2014)

g00 = −1 + 2U/c2 + 2
(
Ψ − U2)/c4,

g0j = −4Uj/c
3,

gij = δij

(
1 + 2U/c2),

(1)

where the Kronecker delta function is given by δij . The
reader is referred to Poisson and Will (2014) for detailed
discussions on the origin and integral representations of po-
tentials U , Uj and Ψ . The motion of a test particle in the
spacetime governed by the metric tensor components (1) is
described by a modified geodesic equation (Weinberg 1972)

d2xα

dt2
=

(
dt

dτ

)−1
d

dτ

((
dt

dτ

)−1
dxα

dτ

)
,

= −
(

Γ α
βγ − vα

c
Γ 0

βγ

)
vβvγ , (2)

where the proper time of the test particle is given by τ

and the associated coordinate velocity is defined by vα =
(c, vj ) = (c,v) and v = dr/dt . The Christoffel symbols of
the second kind Γ α

βγ are expressed in terms of first deriva-
tives of the metric tensor components (1) and are defined
by

Γ α
βγ = gαδ(∂γ gδβ + ∂βgδγ − ∂δgβγ )/2, (3)

where ∂γ ≡ ∂/∂xγ and explicit calculations of (3) can be
found in Poisson and Will (2014). Finally, the equations of
motion are obtained by substituting the non-zero, indepen-
dent Christoffel symbols in (2) and are given by (Poisson
2007; Poisson and Will 2014)

d2xj

dt2
=∂jU + 1

c2

[(
vkvk − 4U

)
∂jU

− (
4vm∂mU + 3∂tU

)
vj

− 4vn(∂jUn − ∂nUj ) + 4∂tUj + ∂jΨ
]
. (4)

We note the equations of motion (4) are characterised by
spatial variables only i.e. the case α = 0 in (2) is trivial. In
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order to derive the EIH equations using (4), a decomposi-
tion of U , Uj , Ψ into internal and external components is
required where the reader is referred to Poisson (2007) and
Poisson and Will (2014) for the associated lengthy and labo-
rious calculations. The case where n = 2 for the EIH equa-
tions is of particular interest and is discussed in the follow-
ing section.

3 The post-Newtonian Kepler problem

The Kepler problem is the most well studied problem in
classical celestial mechanics. It describes the motion of two
spherically symmetric bodies about a common barycentre
due to their mutual gravitational attraction. The general rel-
ativistic and Newtonian two-body problems are covered ex-
tensively in the literature (Blanchet et al. 2011; Damour
1987; Damour and Deruelle 1985) with the perturbed Ke-
pler problem playing a central role in fields such as precise
satellite orbit propagation and prediction (Montenbruck and
Gill 2012; Vallado 2001). In this section, we present a new
formal solution to the first-PN Kepler problem and derive
the associated PN Binet equation characterising the orbit of
test particles.

The PN two-body equations of motion are given by (Pois-
son 2007; Poisson and Will 2014)

d2r
dt2

= − μ

r2
r̂

− μ

c2r2

[
(1 + 3η)(v · v) − 3

2
ηṙ2 − 2(2 + η)

μ

r

]
r̂

+ 2μ

c2r2
(2 − η)ṙv, (5)

where we introduce μ = G(m1 + m2), η = m1m2/(m1 +
m2)

2 and we denote the mass of body i (for i = 1,2), New-
ton’s gravitational constant and the radial component of the
velocity as mi , G and ṙ respectively. Finally, derivatives
with respect to time are denoted using the usual dot nota-
tion. We note that η is given as a reduced mass term (Poisson
and Will 2014) synonymous with the gravitational two-body
problem and in the limit η → 0, we recover the one-body
problem.

The corresponding system of coupled differential equa-
tions associated with (5) are given by (Poisson 2007; Pois-
son and Will 2014)

r̈ = rθ̇2 − μ

r2
+ μ

c2r2

[
3ṙ2 − 7

2
ηṙ2

− (1 + 3η)(rθ̇)2 + 2(2 + η)
μ

r

]
, (6a)

2rṙ θ̇ + r2θ̈ = 2(2 − η)
μ

c2
ṙ θ̇ , (6b)

where Eqs. (6a), (6b) are separated in to respective radial
and angular components. The integration of (6b) with re-
spect to time produces an alternative expression for the clas-
sical angular momentum in the PN Kepler problem in plane
polar coordinates given by

r2θ̇ = h0e
−2(2−η)μ/(c2r), (7)

where h0 is a constant of integration. The formal procedure
adopted in celestial mechanics is to introduce a Binet trans-
formation (d’Inverno 1992) where θ replaces time as the in-
dependent variable through the relations

r = 1

u
, ṙ = −h0u

′e−2(2−η)μu/c2
,

r̈ = −h2
0u

2
[
u′′ − 2(2 − η)μ

c2

(
u′)2

]
e−4(2−η)μu/c2

,

(8)

where u = u(θ) and u′ = du/dθ . The simplification of (6a)
is greatly facilitated by multiplication of −2u′/(uh0)

2 and
substitution of the relations (8) given by
[

2u′(u′′ + u
) − μu′(2 + 3η)

c2

((
u′)2 + u2)

]
e−4(2−η)μu/c2

= 2μu′

h2
0

− 4μ2uu′(2 + η)

h2
0c

2
+ 3ημu2u′

c2
e−4(2−η)μu/c2

. (9)

We note that in the test particle (η → 0) and Newtonian lim-
its (c → ∞), Eq. (9) reduces to the well known classical Bi-
net equation (d’Inverno 1992) with associated solution de-
scribing conic sections. A new method to derive the equiva-
lent first-PN Binet equation is presented below.

By introducing δ ≡ (u′)2 + u2, we express Eq. (9) as a
first order differential equation given by

(
δe−(2+3η)μu/c2)′ = 2μu′

h2
0

[
1 − 2μu(2 + η)

c2

]
e(6−7η)μu/c2

+ 3ημu2u′

c2
e−(2+3η)μu/c2

, (10)

where we note Eq. (10) has been multiplied by
exp [(6 − 7η)μu/c2] in order to obtain the appropriate in-
tegrating factor.

The analytical solution to Eq. (10) can be reduced to
quadrature and would need to be evaluated numerically as an
integral. The corresponding second order differential equa-
tions characterising orbits for binary and one-body systems
in the first PN regime are given by

u′′ +
(

1 + 3η

2 + 3η
+ 8μ2(4 − η2)

h2
0c

2(6 − 7η)
e4(2−η)μu/c2

)
u
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= δ0μ(2 + 3η)

2c2
e(2+3η)μu/c2

+ 2μ(17η2 − 32η + 28)

h2
0(6 − 7η)2

e4(2−η)μu/c2 − 3ηc2

μ(2 + 3η)2
,

(11)

and

u′′ +
(

1 + 16μ2

3h2
0c

2
e8μu/c2

)
u = 14μ

9h2
0

e8μu/c2 − 5μ

9h2
0

e2μu/c2
,

(12)

respectfully. We note that δ0 is introduced above as an arbi-
trary constant of integration arising from (10). Equation (12)
is the first PN Binet equation which does not appear to
have been given in the literature. The value of δ0 is de-
termined by adding the requirement that in the Newtonian
limit we recover the classical Binet equation and is given by
δ0 = −5c2/9h2

0. Again, we note, the value of δ0 is consistent
with results in O’Leary et al. (2018).

4 Discussion

The problem of motion in GR (see Damour 1987 for a thor-
ough review) has a vast and extensive literature. Many au-
thors have approached the two-body problem in the first-PN
approximation by formulating the problem in terms of oscu-
lating elements (see Kopeikin et al. 2011, Soffel 1989, Will
2011 and references therein). In contrast to this, we have
developed the corresponding solutions by adopting a direct
integration approach. In doing so, we obtain the fully ana-
lytical PN Binet equation and as expected, in the appropriate
limit we recover known results.

The PN orbit equation (11) describes the motion of a bi-
nary system of arbitrary masses m1 and m2. Expanding the
exponential functions (to PN order) in (12) using a Taylor
series approximation gives

u′′ +
(

1 − 6μ2

h2
0c

2

)
u = μ

h2
0

. (13)

The solution to (13) is well known and given by

u(θ) = μ

h2
0

+ 6μ3

h4
0c

2
+ u0 cos

([
1 − 6μ2

h2
0c

2

]1/2

θ − θ0

)
, (14)

where u0, θ0 are arbitrary constants of integration. The orbit
described by Eq. (14) is no longer 2π -periodic but precesses
about an angle

�θ = 2π

(
1 − 6μ2

h2
0c

2

)−1/2

≈ 2π + 6πμ2

h2
0c

2
. (15)

Equation (15) is well-known and accounts for the relativistic
contribution to planetary perihelion precession such as the
anomalous precession associated with Mercury.

We note that Eq. (12) is the exact analytical first-PN Bi-
net equation which does not appear in the literature. Interest-
ingly, the same mathematical structure arises when deriving
the energy associated with a test particle in the first-PN ap-
proximation (O’Leary et al. 2018). With this, the question
arises as to whether there is a benefit in retaining the expo-
nential terms in (12) over the corresponding series expan-
sion (13); this answer is in the affirmative and is presented
below.

The general relativistic Binet equation is well known and
presented in most GR undergraduate textbooks (d’Inverno
1992; Weinberg 1972) given by

u′′ + u = μ

h2
0

+ 3μ

c2
u2. (16)

Equation (16) can be derived from a variational formu-
lation and describes the geodesic motion of a test parti-
cle in Schwarzschild geometry. Introducing ξ = u/uc in
Eqs. (12), (13) and (16) we obtain the corresponding non-
dimensionalised equations given by

ξ ′′ +
(

1 + 16β

3
e8βξ

)
ξ = 14

9
e8βξ − 5

9
e2βξ , (17)

ξ ′′ + (1 − 6β)ξ = 1, (18)

ξ ′′ + ξ = 1 + 3βξ2, (19)

respectfully where uc is a characteristic unit with the same
dimensions as u and β ≡ μ2/(h2

0c
2) is a dimensionless pa-

rameter. To demonstrate the advantage of retaining the ex-
ponential functions in (12) we adopt the approach given
in Koberlein and Meisel (2013) by identifying the long-
term secular changes in the positions of (12) and (13) when
compared with the full GR Binet equation (16) discussed
in Fig. 1. We perform an orbit simulation by numerically
integrating the non-dimensionalised differential equations
given above subject to the initial conditions ξ(0) = 1.3 and
ξ ′(0) = 0 and β = 0.01 which approximately corresponds to
an orbit with semi-major axis a = 1 and eccentricity e = 0.5.
The results given in Fig. 1 suggest that the characterisation
of relativistic orbits in the PN regime should retain the ex-
ponential terms associated with the newly derived PN Binet
equation in order to closely resemble the orbit of a test par-
ticle in GR.
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Fig. 1 Comparisons of secular variation in PN orbits. (a) and (b)
demonstrate the secular variations of Eqs. (17) and (18) when com-
pared with (19) by computing the differences in positions u at each in-
tegration step. (c) Simultaneously compares (a) and (b) indicating that
retaining the exponential terms in (12) and (17) is more consistent with

the well-known general relativistic Binet equation. The simulation uses
initial conditions given by ξ(0) = 1.3, ξ ′(0) = 0 and β = 0.01 which
approximately correspond to an orbit with semi-major axis a = 1 and
eccentricity e = 0.5
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